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Les	
  réseaux	
  dépendant	
  du	
  temps	
  

V (x) = V0 sin
2(kx)

x

V (x, t) = V0(t) sin
2[k(x� x0(t)]

Une	
  ques9on	
  générale,	
  dont	
  l’étude	
  est	
  rendue	
  plus	
  facile	
  grâce	
  à	
  la	
  flexibilité	
  	
  
des	
  réseaux	
  op9ques	
  :	
  	
  

Que	
  se	
  passe-­‐t-­‐il	
  quand	
  les	
  paramètres	
  du	
  réseau	
  varient	
  dans	
  le	
  temps	
  ?	
  

• 	
  Localisa9on	
  dynamique	
  et	
  modifica9on	
  de	
  l’effet	
  tunnel	
  

• 	
  Les	
  oscilla9ons	
  de	
  Bloch	
  et	
  leurs	
  applica9ons	
  (mesure	
  de	
  force,	
  métrologie)	
  

• 	
  Spectroscopie	
  des	
  atomes	
  dans	
  le	
  réseau	
  

• 	
  Dynamique	
  chao9que,	
  localisa9on	
  d’Anderson	
  



1.	
  

Quelques	
  hamiltoniens	
  pour	
  décrire	
  	
  
les	
  réseaux	
  dépendant	
  du	
  temps	
  



Transforma8ons	
  unitaires	
  

On	
  va	
  considérer	
  plusieurs	
  hamiltoniens	
  se	
  déduisant	
  les	
  uns	
  des	
  autres	
  	
  
par	
  transforma9on	
  unitaire	
  	
  

Selon	
  le	
  problème	
  considéré,	
  on	
  aura	
  intérêt	
  	
  
à	
  choisir	
  l’un	
  ou	
  l’autre	
  de	
  ces	
  hamiltoniens.	
  

Ĥ0

Ĥ1 Ĥ2

Û1 Û2



Transla8on	
  dans	
  l’espace	
  des	
  impulsions	
  :	
  	
  	
  

Les	
  deux	
  transforma8ons	
  unitaires	
  u8les	
  ici	
  

Û1(t) = e�i x̂ p0(t)/~ Û1 x̂ Û
†
1 = x̂

Û1 p̂ Û
†
1 = p̂+ p0

i~dÛ1

dt

Û

†
1 = x̂ ṗ0 :	
  ajoute	
  un	
  poten9el	
  linéaire	
  (force	
  uniforme)	
  

Transla8on	
  dans	
  l’espace	
  des	
  posi8ons	
  :	
  	
  	
  

i~dÛ2

dt

Û

†
2 = ẋ0 p̂ :	
  ajoute	
  un	
  terme	
  linéaire	
  en	
  	
  	
  	
  	
  	
  	
  	
  	
  (poten9el	
  vecteur)	
  p̂

Û2 x̂ Û
†
2 = x̂� x0

Û2 p̂ Û
†
2 = p̂

Û2(t) = e�i x0(t) p̂/~



Les	
  trois	
  hamiltoniens	
  u8les	
  

Û1 Û2

référenBel	
  du	
  laboratoire	
  (galiléen)	
  :	
  
réseau	
  en	
  mouvement	
  	
  	
  

référenBel	
  du	
  réseau	
  :	
  
potenBel	
  fixe	
  +	
  force	
  d’inerBe	
  

Ĥ0(t) =
[p̂�A(t)]2

2m
+ V (x̂)

Ĥ1(t) =
p̂2

2m
+ V (x̂)� F (t) x̂ Ĥ2(t) =

p̂2

2m
+ V [x̂� x0(t)]

A(t) = mẋ0(t)

F (t) = �Ȧ(t) = �mẍ0(t)



2.	
  

Hamiltonien	
  du	
  réseau	
  vibrant	
  	
  
dans	
  l’approxima8on	
  des	
  liaisons	
  fortes	
  

Dunlap-­‐Kenkre	
  (1986),	
  Holthaus	
  (1992)	
  :	
  	
  
	
  	
  	
  Comportement	
  d’électrons	
  dans	
  des	
  cristaux	
  soumis	
  à	
  un	
  champ	
  électromagné9que	
  

Pour	
  des	
  atomes	
  froids	
  :	
  	
  
	
  	
  	
  	
  Contrôle	
  du	
  coefficient	
  tunnel	
  pour	
  favoriser	
  la	
  transi9on	
  vers	
  un	
  isolant	
  de	
  MoV	
  	
  
	
  	
  	
  	
  Créa9on	
  de	
  champs	
  magné9ques	
  ar9ficiels	
  ...	
  	
  

Il	
  existe	
  une	
  valeur	
  du	
  champ	
  oscillant	
  pour	
  laquelle	
  le	
  transport	
  est	
  complètement	
  inhibé	
  



Posi8on	
  du	
  problème	
  

Réseau	
  périodique	
  1D	
  infini,	
  soumis	
  à	
  une	
  vibra9on	
  périodique	
  en	
  temps	
  

x

V (x, t) = V0 sin
2[k(x� x0(t)]

x0(t) périodique	
  de	
  pulsa9on	
  	
  !
par	
  exemple	
  :	
  	
  x0(t) = x̄0 cos(!t)

On	
  va	
  restreindre	
  la	
  dynamique	
  des	
  atomes	
  à	
  

• 	
  la	
  bande	
  d’énergie	
  fondamentale	
  	
  

• 	
  des	
  transi9ons	
  entre	
  proches	
  voisins	
  

Hamiltonien	
  	
  de	
  Hubbard	
   V0 � Er Er = ~2k2/2m



L’hamiltonien	
  de	
  Hubbard	
  pour	
  un	
  réseau	
  secoué	
  

Ĥ2(t) =
p̂2

2m
+ V [x̂� x0(t)]Point	
  de	
  départ	
  :	
  

On	
  veut	
  simplifier	
  ceLe	
  expression	
  à	
  l’approximaBon	
  de	
  Hubbard	
  

On	
  passe	
  à	
  la	
  forme	
  :	
  	
  	
  Ĥ1(t) =
p̂2

2m
+ V (x̂)� F (t) x̂

Jg = 1/2

Je = 1/2

Je = 3/2

D1D2

np1/2

np3/2

ns

Jg = 1/2

Je = 1/2

Jg = 1/2

Je = 3/2
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cellulle j cellulle j + 1

J

jj � 1 j + 1

Jréseau	
  fixe	
  :	
   réseau	
  mobile	
  	
  

�J
⇣
T̂1 + T̂ †

1

⌘

T̂1 =
X

j

|wj+1ihwj |avec	
  

�F (t)
X

j

aj |wjihwj |

opérateur	
  posi9on	
  diagonal	
  	
  
dans	
  la	
  base	
  de	
  Wannier	
  

F (t) = �mẍ0(t)

?	
  



Hamiltonien	
  de	
  Hubbard	
  (suite)	
  

On	
  prend	
  donc	
  en	
  point	
  de	
  vue	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  	
  Ĥ1

Ĥ1 = �J
⇣
T̂1 + T̂ †

1

⌘
� aF (t)

X

j

j |wjihwj |

Le	
  point	
  de	
  vue	
  intermédiaire	
  	
  	
  	
  	
  	
  	
  	
  est	
  également	
  intéressant	
  :	
  Ĥ0

Û1(t) = e�i x̂ p0(t)/~ �! Û1(t)|wj

i = e�i jap0(t)/~|w
j

i

J ei ap0(t)/~

J e�i ap0(t)/~

J ei ap0(t)/~

J e�i ap0(t)/~
j j + 1j � 1

Ĥ0(t) = Û †
1 (t)Ĥ1(t)Û1(t) + i~dÛ

†
1

dt
Û1On	
  prend	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  ce	
  qui	
  donne	
  :	
  	
  

= �J
⇣
T̂1 ei ap0(t)/~ + T̂ †

1 e�i ap0(t)/~
⌘

p0(t) = mẋ0

ModulaBon	
  périodique	
  des	
  coefficients	
  tunnels,	
  qui	
  deviennent	
  complexes	
  

�aF (t) = ~! ⇠(t)

sans	
  dimension	
  



Etude	
  expérimentale	
  :	
  groupe	
  de	
  Pise	
  (E.	
  Arimondo	
  2007)	
  

• 	
  On	
  charge	
  de	
  manière	
  adiaba9que	
  un	
  condensat	
  de	
  rubidium	
  dans	
  un	
  réseau	
  	
  
formé	
  avec	
  de	
  la	
  lumière	
  de	
  longueur	
  	
  	
   � = 852 nm

x

⌫1 ⌫2

atomes	
  dans	
  	
  
la	
  bande	
  fondamentale	
  

voisinage	
  de	
  q = 0	



�1 0 1
0

10

20

30

V0 = 8Er

V0/Er = 4 à 9

• 	
  On	
  montre	
  que	
  la	
  dynamique	
  (étalement	
  d’un	
  paquet	
  d’ondes)	
  des	
  atomes	
  dans	
  le	
  	
  
	
  	
  réseau	
  modulé	
  est	
  similaire	
  à	
  celle	
  d’un	
  réseau	
  fixe	
  et	
  on	
  mesure	
  le	
  taux	
  tunnel	
  J’ 	
  

• 	
  On	
  branche	
  une	
  modula9on	
  sinusoïdale	
  de	
  la	
  différence	
  de	
  fréquence	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
en	
  u9lisant	
  des	
  modulateurs	
  acousto-­‐op9ques	
  indépendants	
  sur	
  chacun	
  des	
  faisceaux	
  	
  

⌫1 � ⌫2

V (x, t) = V0 sin
2[k(x� x0(t)] x0(t) = x̄0 cos(!t)



x

⌫1 ⌫2

Laser	
  

Mesure	
  du	
  coefficient	
  tunnel	
  

x

⌫1 ⌫2

On	
  coupe	
  le	
  laser	
  assurant	
  le	
  confinement	
  le	
  long	
  de	
  l’axe	
  x :	



On	
  compare	
  l’étalement	
  en	
  présence	
  et	
  en	
  absence	
  de	
  modula9on	
  du	
  réseau	
  

t
expansion

. 200 ms



Les	
  résultats	
  du	
  groupe	
  de	
  Pise	
  

Rapports	
  des	
  coefficients	
  tunnel	
  avec	
  (J’)	
  et	
  sans	
  (J)	
  vibra9on	
  pour	
  

• 	
  différentes	
  fréquences	
  de	
  vibra9on	
  du	
  réseau	
  	
  
• 	
  différentes	
  profondeurs	
  du	
  réseau	
  	
  V0/Er

V (x, t) = V0 sin
2[k(x� x0(t)] x0(t) = x̄0 cos(!t)

• 	
  différentes	
  amplitudes	
  de	
  vibra9on	
  	
  	
  	
  	
  	
  	
  	
  	
  (jusqu’à	
  0.5 a)	
  	
  x̄0

!/2⇡

Courbe	
  «	
  universelle	
  »	
  en	
  fonc8on	
  de	
  :	
  

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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p/~k

J 0 > 0

J 0 < 0

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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⇠0

travail	
  de	
  F(0)	
  sur	
  une	
  période	
  spa9ale	
  
quantum	
  	
  ~!

⇠0 =

~!/J varie	
  de	
  0.3	
  à	
  30	
  

⇠0 = �m!ax̄0/~

poin9llé	
  :	
  	
  |J0(⇠0)|

⇠(t) = ⇠0 cos(!t)



Les	
  résultats	
  du	
  groupe	
  de	
  Pise	
  (suite)	
  

L’étalement	
  en	
  présence	
  de	
  réseau	
  ne	
  donne	
  pas	
  accès	
  au	
  signe	
  du	
  coefficient	
  tunnel	
  	
  

Un	
  temps	
  de	
  vol	
  sans	
  réseau	
  et	
  sans	
  piège	
  dipolaire	
  de	
  20	
  ms	
  	
  
permet	
  de	
  tester	
  la	
  distribu9on	
  en	
  impulsion	
  des	
  atomes	
  	
  

• 	
  Posi9on	
  du	
  maximum	
  de	
  la	
  distribu9on	
  	
  
	
  	
  en	
  impulsion	
  (minimum	
  de	
  l’énergie	
  dans	
  
	
  	
  la	
  zone	
  de	
  Brillouin)	
  

• 	
  Largeur	
  des	
  pics	
  (cohérence	
  du	
  gaz,	
  	
  
	
  	
  	
  ini9alement	
  condensé)	
  

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
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tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,
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(triangles). The dashed line is the theoretical prediction.
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9 corresponding to J=h ! 90 Hz.
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! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
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Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
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region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
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We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
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FIG. 2. Dynamical suppression of tunneling in an optical lat-
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9 corresponding to J=h ! 90 Hz.
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that, over a wide range of frequencies between @!=J " 0:3
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although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
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these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
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jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
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We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
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edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
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FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
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that, over a wide range of frequencies between @!=J " 0:3
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although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
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tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
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tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
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For a perfectly phase-coherent condensate, V " 1,
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! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
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at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.
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tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
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9 corresponding to J=h ! 90 Hz.
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our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,
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FIG. 3. Plot of the ratio s/so as a function of yHq/cu.
The experimental points for Rb and H fit into the same
theoretical curve.

both experiments the ratio s/s, as a function of
the dimensionless quantity yH, /&u, proportional
to the rf field amplitude. It can be seen that the
experimental results for H' and Rb fjt into the
same curve.
These results can be understood if one consid-

ers that the microwave field h, cosset is a probe
which explores the energy diagram of the com-
pound system "atom+rf field" which we call the
atom "dressed" by the rf photons. We have al-
ready studied in great detail the effect of such a
"dressing" on the magnetic properties of an atom-
ic level. ' Let us recall briefly the results of the
theory in the simple case of hydrogen. The en-
ergy diagram of the free-hydrogen ground state
in the field H, is given on Fig. 2(a). In the pres-
ence of an rf field H, cos~t perpendicular to Ho,
these energy levels are modified. First, suppose
that B, is very small so that the coupling between
the atomic system and the rf photons can be ne-
glected. Then the energy levels of the compound
system will merely be the states

~ E, mF, n) rep-
resenting the atom in the state ( Em )F(E=1,0)
with n rf photons. present; the energy of these
states is (with h = 1) n~ if F = 0, and &, +m ~&uo
+n~ if I' = 1. In the I" = 1 states, the energy dia-
gram of the compound system will consist of
manifolds separated from each other by the en-
ergy ~; each manifold corresponds to a given
value of n and is split into three magnetic levels
corresponding to the three possible m~ values
[da.shed lines on Fig. 2(b)]. A microwave field
can induce only ~=1, &n=0 transitions [for ex-
ample when h, is perpendicular to H„only the
transitions A. and g of Fig. 2(b) are possible].
The selection rule &n=O results from the com-
mutation of microwave and rf variables. The
coupling with the rf field which we now take into

0 = 0, +(n—n')(d+(ggmg-g/ m/') psH,
must appear. They can be understood in terms

(2)

account occurs only in the F = 1 states and leads
to a kind of "renormalization" of the "unper-
turbed" system described above. It has two ef-
fects': First, it changes the slope of the energy
levels [full lines on Fig. 2(c)]; this corresponds
to R modification of the Lande factor g~ of the
hyperfine level E, which becomes now

ZF ZF~O(yFHy/~), yF 8F i"8,
where ~, is the zero-order Bessel function and
p~ the Bohr magneton. Second, the coupling
modifies the energy eigenstates: The "renorm-
alized" states ~E, m~, n)d are now admixtures of
the unperturbed states ~ E, m~', n') due to virtual
absorptions and emissions of rf quanta and no
longer correspond to a definite n value.

The modification of the Lande factor explains
our experimental observations. In the H-maser
experiment, we detect the maser oscillation on
the transition g, (~E =0;n) —~E = 1,m~ =+1;n)d)
[Fig. 2(c)] of the "dressed" atom which corre-
sponds, for B,=O, to the field-dependent transi-
tion p of the free atom [Fig. 2(a)]. The case of
Rb" is more complicated because both hyperfine
levels E=2, E'=1 are coupled to the rf field.
But relation (1) holds for both hyperfine levels
and since y~——-y~., and Jo is an even function,
g~ and g~. are modified in the same way and in
particular cancel for the same values of B,. For
this reason, the splitting s between the field-de-
pendent resonances must vary exactly as in the
hydrogen case. On Fig. 3 we have plotted in solid
lines the theoretical curve &o(y~H, /u) which fits
very well with the experimental points. We have
observed several oscil1.ations of s. Let us men-
tion that the variations of g~ are responsible for
other physical effects such as the modification of
the width of the zero-field level-crossing reso-
nance s (Hanle effect).'
As can be seen on Fig. 1 in the case of Rb",

the coupling with the rf field affects not only the
splitting s but also the intensity of the lines.
This is due to the modification of the magnetic
dipole matrix elements between the correspond-
ing perturbed eigenstates. Moreover, new tran-
sitions can now be induced between two eigen-
states ~E, m~, n)d and ~E', mF. ', n')d with differ-
ent n values (as n is no longer a good quantum
number, the se1.ection rule M=0 is no longer
valid). Thus, new sideband resonances at the
frequencies
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ergy diagram of the free-hydrogen ground state
in the field H, is given on Fig. 2(a). In the pres-
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these energy levels are modified. First, suppose
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gram of the compound system will consist of
manifolds separated from each other by the en-
ergy ~; each manifold corresponds to a given
value of n and is split into three magnetic levels
corresponding to the three possible m~ values
[da.shed lines on Fig. 2(b)]. A microwave field
can induce only ~=1, &n=0 transitions [for ex-
ample when h, is perpendicular to H„only the
transitions A. and g of Fig. 2(b) are possible].
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account occurs only in the F = 1 states and leads
to a kind of "renormalization" of the "unper-
turbed" system described above. It has two ef-
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levels [full lines on Fig. 2(c)]; this corresponds
to R modification of the Lande factor g~ of the
hyperfine level E, which becomes now
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where ~, is the zero-order Bessel function and
p~ the Bohr magneton. Second, the coupling
modifies the energy eigenstates: The "renorm-
alized" states ~E, m~, n)d are now admixtures of
the unperturbed states ~ E, m~', n') due to virtual
absorptions and emissions of rf quanta and no
longer correspond to a definite n value.

The modification of the Lande factor explains
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sponds, for B,=O, to the field-dependent transi-
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Rb" is more complicated because both hyperfine
levels E=2, E'=1 are coupled to the rf field.
But relation (1) holds for both hyperfine levels
and since y~——-y~., and Jo is an even function,
g~ and g~. are modified in the same way and in
particular cancel for the same values of B,. For
this reason, the splitting s between the field-de-
pendent resonances must vary exactly as in the
hydrogen case. On Fig. 3 we have plotted in solid
lines the theoretical curve &o(y~H, /u) which fits
very well with the experimental points. We have
observed several oscil1.ations of s. Let us men-
tion that the variations of g~ are responsible for
other physical effects such as the modification of
the width of the zero-field level-crossing reso-
nance s (Hanle effect).'
As can be seen on Fig. 1 in the case of Rb",

the coupling with the rf field affects not only the
splitting s but also the intensity of the lines.
This is due to the modification of the magnetic
dipole matrix elements between the correspond-
ing perturbed eigenstates. Moreover, new tran-
sitions can now be induced between two eigen-
states ~E, m~, n)d and ~E', mF. ', n')d with differ-
ent n values (as n is no longer a good quantum
number, the se1.ection rule M=0 is no longer
valid). Thus, new sideband resonances at the
frequencies

!0
0/!0

!̄1/!

!0
0 = !0 J0(!̄1/!)



Comment	
  comprendre	
  l’annula9on	
  
du	
  facteur	
  de	
  Landé	
  

du	
  coefficient	
  tunnel	
   ?	
  

On	
  remplace	
  la	
  modula9on	
  sinusoïdale	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
par	
  une	
  modula9on	
  carrée	
  	
  (plus	
  simple	
  analy9quement)	
  	
  

B1(t) = ¯B1 cos(!t)

t

+B̄1

�B̄1

B0

+B̄1

�B̄1

q
B̄2

1 +B2
0 ⇡ B̄1 +

B2
0

2B̄1

⇡ B̄1

Modifica9on	
  du	
  facteur	
  de	
  Landé	
  :	
  	
   sinc
⇣⇡
2

!̄1

!

⌘
J0

⇣ !̄1

!

⌘
au	
  lieu	
  de	
  	
  

Premier	
  zéro	
  en	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  le	
  spin	
  fait	
  exactement	
  un	
  tour	
  complet	
  à	
  chaque	
  demi-­‐période	
  !	
  	
  !̄1 = 2!



Transposi8on	
  de	
  ce`e	
  méthode	
  approchée	
  au	
  réseau	
  infini	
  

J ei ap0(t)/~

J e�i ap0(t)/~

J ei ap0(t)/~

J e�i ap0(t)/~
j j + 1j � 1

Choisissons	
  la	
  version	
  	
  	
  	
  	
  	
  	
  	
  de	
  l’hamiltonien	
  avec	
  des	
  taux	
  tunnel	
  modulés	
  

|�(t)i =
X

j

↵̃j(t) |wjiet	
  écrivons	
  l’état	
  de	
  l’atome	
  sous	
  la	
  forme	
  

Ĥ0

i~ ˙̃↵j = �J
�
ei⌘ ↵̃j�1 + e�i⌘ ↵̃j+1

�

⌘ = !

Z t

0
⇠(t0) dt0 = ap0(t)/~

chaîne	
  d’équa9ons	
  couplées	
  :	
  

avec	
  :	
  

On	
  prend	
  la	
  moyenne	
  sur	
  une	
  période	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  
de	
  ces	
  équa9ons	
  :	
  

2⇡/!

i~ ˙̄↵j = �J 0 (↵̄j�1 + ↵̄j+1)

J 0 = J hei⌘i = J J0(⇠0)

équivalent	
  à	
  un	
  réseau	
  sta8que,	
  	
  
avec	
  un	
  taux	
  tunnel	
  J’	
  

our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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p/~k
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J 0 < 0
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We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
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pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
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retical models.

We now turn to the phase coherence of the BEC in the
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value of the condensate density at the position of the two
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4.	
  

U8lisa8on	
  du	
  théorème	
  de	
  Bloch,	
  
lien	
  avec	
  l’approche	
  de	
  Floquet	
  	
  



Le	
  théorème	
  de	
  Bloch	
  dans	
  le	
  cas	
  dépendant	
  du	
  temps	
  	
  

On	
  considère	
  un	
  hamiltonien	
  dépendant	
  du	
  temps	
  	
  
et	
  spa9alement	
  périodique	
  à	
  chaque	
  instant	
  :	
  

Ĥ(t) =
(p̂�A(t))2

2m
+ V (x̂, t)

V (x+ a, t) = V (x, t)

La	
  forme	
  de	
  Bloch	
  est	
  préservée	
  au	
  cours	
  de	
  l’évolu9on	
  :	
  

�(x, t = 0) = e

iqx

u(x, t = 0) u(x, t = 0) :	
  périodique	
  de	
  période	
  a	



même	
  quasi-­‐moment	
  q	


�(x, t) = e

iqx

u(x, t) u(x, t) :	
  périodique	
  de	
  période	
  a	



Démonstra9on	
  :	
   [Ĥ(t), T̂a] = 0 [Û(0 ! t), T̂a] = 0 Û) :	
  opérateur	
  d’évolu9on	
  

Û(0 ! t)�(x, 0) = �(x, t) sont	
  états	
  propres	
  de	
  	
  	
  	
  	
  	
  	
  	
  avec	
  la	
  même	
  v.p.	
  et	
  	
   T̂a) �(x, 0)

x



Evolu8on	
  d’une	
  onde	
  de	
  Bloch	
  pour	
  les	
  trois	
  hamiltoniens	
  	
  

Ĥ0(t) =
[p̂�A(t)]2

2m
+ V (x̂)Hamiltonien	
  	
  

Forme	
  de	
  Bloch	
  conservée,	
  	
  

Hamiltonien	
  	
  Ĥ2(t) =
p̂2

2m
+ V [x̂� x0(t)]

Forme	
  de	
  Bloch	
  conservée,	
  	
  

Hamiltonien	
  	
  Ĥ1(t) =
p̂2

2m
+ V (x̂)� F (t) x̂

Il	
  n’est	
  pas	
  spa9alement	
  périodique,	
  mais	
  il	
  se	
  déduit	
  de	
  	
  	
  	
  	
  	
  	
  	
  par	
  :	
  	
  Ĥ0

�(x, t) = Û1�0(x, t) = e

iq(t)x/~
u(x, t)

Û1(t) = e�i x̂ p0(t)/~

e

ixq

u(x, 0) ! e

ixq

u(x, t)

e

ixq

u(x, 0) ! e

ixq

u(x, t)

e

ixq

u(x, 0) ! e

ixq(t)
u(x, t)

q(t) = q(0)

q(t) = q(0)

q(t) = q(0)� p0(t)/~ = q(0) +
1

~

Z t

0
F (t0) dt0



Evolu8on	
  d’une	
  onde	
  de	
  Bloch	
  (approx.	
  à	
  une	
  bande)	
  

Ĥ0(t) =
[p̂�A(t)]2

2m
+ V (x̂)L’hamiltonien	
  	
   devient	
   Ĥ0(t) = �J

⇣
T̂1 ei ap0(t)/~ + T̂ †

1 e�i ap0(t)/~
⌘

CeVe	
  solu9on	
  est	
  exacte	
  dans	
  le	
  cadre	
  du	
  modèle	
  à	
  une	
  bande	
  

La	
  valeur	
  explicite	
  de	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  est	
  obtenue	
  en	
  injectant	
  	
  
ceVe	
  forme	
  de	
  solu9on	
  dans	
  l’équa9on	
  de	
  Schrödinger	
  

�q(t)

J ei ap0(t)/~

J e�i ap0(t)/~

J ei ap0(t)/~

J e�i ap0(t)/~
j j + 1j � 1

La	
  conserva9on	
  de	
  la	
  forme	
  de	
  Bloch	
  	
  
e

ixq

u(x, 0) ! e

ixq

u(x, t) devient	
  donc	
  :	
  

Il	
  n’y	
  a	
  qu’une	
  seule	
  fonc9on	
  périodique	
  sur	
  le	
  réseau	
  	
  (à	
  une	
  constante	
  mul9plica9ve	
  près)	
  :	
  	
  

! | (t)i = e�i�q(t)
X

j

ei jaq|wji

|ui =
X

j

|wji

| (0)i = e�i�q(0)
X

j

ei jaq|wji | (t)i = e�i�q(t)
X

j

ei jaq|wji



Evolu8on	
  d’une	
  onde	
  de	
  Bloch	
  (suite)	
  

La	
  forme	
  proposée	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  est	
  par	
  construc9on	
  	
  

des	
  ondes	
  de	
  Bloch	
  un	
  état	
  propre	
  de	
  l’hamiltonien	
  	
  

avec	
  la	
  valeur	
  propre	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  ,	
  où	
  	
  	
  	
  

| (t)i = e�i�q(t)
X

j

ei jaq|wji

Ĥ0(t) = �J
⇣
T̂1 ei ap0(t)/~ + T̂ †

1 e�i ap0(t)/~
⌘

E[q � p0(t)/~] E[q] = �2J cos(aq)

L’équa9on	
  de	
  Schrödinger	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  s’écrit	
  donc	
  	
  i~d| (t)i
dt

= Ĥ0(t)| (t)i

~�̇q = E[q � p0(t)/~] �q(t) = �q(0) +
1

~

Z t

0
E[q � p0(t

0)/~] dt0

x0(t) = x̄0 cos(!t)

p0(t) = �m!x̄0 sin(!t) ⇠0 = �m!ax̄0/~

�q(T ) = �q(0)�
2J

~ cos(aq) J0(⇠0)

Pour	
  une	
  modula9on	
  sinusoïdale	
  de	
  période	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  	
  T = 2⇡/!



«	
  Stroboscopie	
  »	
  et	
  quasi-­‐énergie	
  

Phase	
  accumulée	
  après	
  n	
  périodes	
  T	
  :	
   �q(nT )� �q(0) =
1

~

Z nT

0
E[q � p0(t

0)/~] dt0

= n [�q(T )� �q(0)]

Si	
  on	
  regarde	
  la	
  valeur	
  de	
  l’onde	
  de	
  Bloch	
  aux	
  instants	
  0, T, 2T,	
  ...	
  on	
  trouve	
  	
  

0 T 2T nT
t

| (0)i e�i✏(q)T/~| (0)i e�i✏(q) 2T/~| (0)i e�i✏(q) nT/~| (0)i

Posons	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  :	
  «	
  quasi-­‐énergie	
  »	
  	
  ✏(q) =
~
T

[�q(T )� �q(0)] = �2J cos(aq) J0(⇠0)

Avec	
  ceVe	
  stroboscopie	
  de	
  période	
  T,	
  l’évolu9on	
  est	
  iden9que	
  à	
  celle	
  d’une	
  onde	
  	
  
de	
  Bloch	
  dans	
  un	
  réseau	
  indépendant	
  du	
  temps,	
  moyennant	
  la	
  subs9tu9on	
  :	
  	
  

E(q) = �2J cos(aq) ✏(q) = �2J cos(aq) J0(⇠0)
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Û(T )
e�i✏↵T/~
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our experimental resolution, we could measure a suppres-
sion by at least a factor of 25).

We also checked the behavior of jJeff=Jj as a function of
! for a fixed value of K0 ! 2 (see inset in Fig. 2) and found
that, over a wide range of frequencies between @!=J " 0:3
and @!=J " 30, the tunneling suppression works,
although for @!=J & 1 we found that jJeff#K0$=Jj deviated
from the Bessel function near the zero points, where the
suppression was less efficient than expected. In the limit of
large shaking frequencies (!=2! * 3 kHz, to be com-
pared with the typical mean separation of "15 kHz be-
tween the two lowest energy bands at V0=Erec ! 9), we
observed excitations of the condensate to the first excited
band of the lattice. In our in situ expansion measurements,
these band excitations (typically less than 30% for K0 > 3
and less than 10% for K0 < 3) were visible in the conden-
sate profile as a broad Gaussian pedestal below the near-
Gaussian profile of the ground-state condensate atoms.
From the widths of those pedestals, we inferred that
jJeff=Jj of the atoms in the excited band also followed
the Bessel-function rescaling of Eq. (2) and that the ratios
of the tunneling rates in the two bands agreed with theo-
retical models.

We now turn to the phase coherence of the BEC in the
shaken lattice, which was made visible by switching off the
dipole trap and lattice beams and letting the BEC fall under
gravity for 20 ms. This resulted in an interference pattern
whose visibility reflected the condensate coherence [20]. In
the region between the first two zeros of the Bessel func-

tion, where J 0 < 0, we found an interference pattern [see
Fig. 3(a)] that was shifted by half a Brillouin zone. This
shift can be interpreted as an inversion of the curvature of
the (quasi)energy band at the center of the Brillouin zone
when the effective tunneling parameter is negative. We
then quantified the visibility V ! #hmax % hmin$=#hmax &
hmin$ of the interference pattern after shaking the conden-
sate in the lattice for a fixed time between 1 and " 200 ms
and finally accelerating the lattice to the edge of the
Brillouin zone. In the expression for V , hmax is the mean
value of the condensate density at the position of the two
interference peaks, and hmin is the condensate density in a
region of width equal to about 1=4 of the peak separation
centered about the halfway point between the two peaks.
For a perfectly phase-coherent condensate, V " 1,

FIG. 3. Phase coherence in a shaken lattice. (a) Dephasing
time "deph of the condensate as a function of K0 for V0=Erec !
9 and !=2! ! 3 kHz. The vertical dashed line marks the
position of K0 ! 2:4 dividing the regions with Jeff > 0 (left)
and Jeff < 0 (right). In both regions, a typical (vertically inte-
grated) interference pattern without final acceleration to the zone
edge is shown (the x axis is scaled in units of the recoil
momentum prec ! h=dL.) Inset: Rephasing time after dephasing
at K0 ! 2:4 and subsequent reduction of K0. (b) Dephasing time
as a function of @!=J for K0 ! 2:2.

FIG. 2. Dynamical suppression of tunneling in an optical lat-
tice. Shown here is jJeff=Jj as a function of the shaking parame-
ter K0 for V0=Erec ! 6, !=2! ! 1 kHz (squares), V0=Erec ! 6,
!=2! ! 0:5 kHz (circles), and V0=Erec ! 4, !=2! ! 1 kHz
(triangles). The dashed line is the theoretical prediction.
Inset: jJeff=Jj as a function of ! for K0 ! 2:0 and V0=Erec !
9 corresponding to J=h ! 90 Hz.
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configurations in the quantum spin case arising
from the competition between interactions and
the geometry of the lattice has been studied in
many different contexts (3, 4). Classical frustrated
spin systems also show intriguing properties
(5–7), such as highly degenerate ground states,
and emergent phenomena, such as artificial mag-
netic fields and monopoles observed in spin ice.

Despite the interest in magnetically frustrated
systems, their experimental realization and char-
acterization in “natural” solid-state devices still
poses a major challenge. Recently, there have
been considerable advances in the direction of
simulating quantum magnetism (8–15). We re-
port on a versatile simulator for large-scale classical
magnetism on a two-dimensional (2D) triangu-
lar optical lattice (16) by exploiting the motional
degrees of freedom of ultracold bosons (17). The
cornerstone of our simulation is the independent
tuning of the nearest-neighbor coupling elements
J and J ′ (Fig. 1) by introducing a fast oscillation
of the lattice (18). In particular, we can even
control the sign of these elements (19, 20), thus
allowing for ferromagnetic or antiferromagnetic
coupling schemes. Hence, we gain access to the
whole diversity of expected complex magnetic
phases in our 2D triangular system and can study
large-system phase transitions as well as spon-
taneous symmetry-breaking caused by frustration.
With our approach, the easily achievable Bose-
Einstein condensate (BEC) temperatures are suf-
ficient to observe Néel-ordered and spin-frustrated
states. This is an advantage when compared with
systems based on superexchange interaction
(10), which demand much lower temperatures.

For weak interactions, ultracold bosonic atoms
in an optical lattice form a superfluid state [in our
2D array of tubes: lattice depth is 5.6Er (where Er
is the recoil energy of the lattice), on-site inter-
action U = 0.004Er, single-particle tunneling
J̃ ¼ 0:002Er, and a maximum of 250 particles
per tube]. In this case, the atoms at each site i of
the lattice have a well-defined local phase qi that
can, as a central concept here, be identified with
a classical vector spinSi ¼ [cos(qi),sin(qi)] (see
also Fig. 1). Long-range order of these local
phases (spins) is imprinted by the minimiza-
tion of the energy

E(fqig) ¼ − ∑
〈i, j〉

Jij cos(qi − qj)

¼ − ∑
〈i, j〉

JijSi ⋅ Sj ð1Þ

where the sum extends over all pairs of neigh-
boring lattice sites. Note that we study large
systems of ~1000 populated lattice sites. As a
second central concept, the tunneling matrix ele-

ments Jij assume the role of the “spin-spin”
coupling parameters between neighboring lattice
sites: Positive Jij correspond to ferromagnetic
interaction, and negative Jij are consistent with
antiferromagnetic interaction. The most impor-
tant feature of our approach is the independent
tuning of the tunneling parameters J and J′ along
two directions (Fig. 1) via an elliptical shaking
of the lattice (17). This leads to various ferro-
magnetic, antiferromagnetic, and mixed-spin con-
figurations (Fig. 2). In the situation where all
tunneling parameters are positive (J, J′ > 0), the
spins align parallel, and we associate this with a
fully ferromagnetically ordered phase. This is
identical to the ordering observed without shak-
ing. When, for example, the signs of the J ′ cou-
plings are inverted (J > 0, J′ < 0), the new
ground state of the system is of rhombic order:
Along the direction of negative coupling, the
spins arrange in antiferromagnetic order, where-
as the coupling in J direction remains ferromag-
netic. The other configurations shown in Fig. 2

(spiral and chain order) can be explained in a
similar fashion. Each of these spin configura-
tions has its own, unique quasi-momentum dis-
tribution, which serves as a clear signature for
identification via standard time-of-flight imaging
techniques (18). The experimental data obtained
for the different cases are presented in Fig. 2.

The rich variety of spin orders as a function
of the control parameters J and J′ can be mapped
into the phase diagram (Fig. 3A). The background
colors are meant to guide the eye and indicate
the different spin configurations as expected from
the minimization of the energy function (Eq. 1).
We assign a symbol, representing the respective
phase, to each data point by comparing the mea-
sured momentum distribution with the one ob-
tained from theoretical calculations (17). The
measured data matches very well with theory
(18). The phase diagram has several interest-
ing features that can be understood from the
energy function (Eq. 1): First, the ferromagnetic
phase (F) on the right-hand side (J′ > 0) extends
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Fig. 1. Illustration of a
single plaquette within a
large-scale triangular lat-
tice. The accessible, inde-
pendent control parameters
J and J′ are highlighted. The
local phase of the atoms
residing on a single lat-
tice site is mapped onto a
classical vector spin (red ar-
rows). The coupling param-
eters J and J′ can be tuned ferro- or antiferromagnetically and determine the resulting spin configuration.

Fig. 2. Spin configura-
tions in a triangular lattice
and their experimental
signatures. Sketches of
small parts of the six rel-
evant spin-orders, which
can be realized within
the large-scale lattice
by tuning J and J′, are
shown. Solid and dashed
lines indicate ferro- and
antiferromagnetic cou-
plings, respectively. In
the spiral cases, two en-
ergetically degenerate
spin configurations exist.
The corresponding ex-
perimentally observed
momentum distributions
show distinct signatures.
The axes in the experi-
mental data mark the
absolute position of the
peaks. The pictures rep-
resent averages of sev-
eral experimental runs.
In the two spiral cases,
because both ground-
state configurations randomly appear, the signature of both modes is present in the average of con-
secutive pictures (see Fig. 4).
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configurations in the quantum spin case arising
from the competition between interactions and
the geometry of the lattice has been studied in
many different contexts (3, 4). Classical frustrated
spin systems also show intriguing properties
(5–7), such as highly degenerate ground states,
and emergent phenomena, such as artificial mag-
netic fields and monopoles observed in spin ice.

Despite the interest in magnetically frustrated
systems, their experimental realization and char-
acterization in “natural” solid-state devices still
poses a major challenge. Recently, there have
been considerable advances in the direction of
simulating quantum magnetism (8–15). We re-
port on a versatile simulator for large-scale classical
magnetism on a two-dimensional (2D) triangu-
lar optical lattice (16) by exploiting the motional
degrees of freedom of ultracold bosons (17). The
cornerstone of our simulation is the independent
tuning of the nearest-neighbor coupling elements
J and J ′ (Fig. 1) by introducing a fast oscillation
of the lattice (18). In particular, we can even
control the sign of these elements (19, 20), thus
allowing for ferromagnetic or antiferromagnetic
coupling schemes. Hence, we gain access to the
whole diversity of expected complex magnetic
phases in our 2D triangular system and can study
large-system phase transitions as well as spon-
taneous symmetry-breaking caused by frustration.
With our approach, the easily achievable Bose-
Einstein condensate (BEC) temperatures are suf-
ficient to observe Néel-ordered and spin-frustrated
states. This is an advantage when compared with
systems based on superexchange interaction
(10), which demand much lower temperatures.

For weak interactions, ultracold bosonic atoms
in an optical lattice form a superfluid state [in our
2D array of tubes: lattice depth is 5.6Er (where Er
is the recoil energy of the lattice), on-site inter-
action U = 0.004Er, single-particle tunneling
J̃ ¼ 0:002Er, and a maximum of 250 particles
per tube]. In this case, the atoms at each site i of
the lattice have a well-defined local phase qi that
can, as a central concept here, be identified with
a classical vector spinSi ¼ [cos(qi),sin(qi)] (see
also Fig. 1). Long-range order of these local
phases (spins) is imprinted by the minimiza-
tion of the energy

E(fqig) ¼ − ∑
〈i, j〉

Jij cos(qi − qj)

¼ − ∑
〈i, j〉

JijSi ⋅ Sj ð1Þ

where the sum extends over all pairs of neigh-
boring lattice sites. Note that we study large
systems of ~1000 populated lattice sites. As a
second central concept, the tunneling matrix ele-

ments Jij assume the role of the “spin-spin”
coupling parameters between neighboring lattice
sites: Positive Jij correspond to ferromagnetic
interaction, and negative Jij are consistent with
antiferromagnetic interaction. The most impor-
tant feature of our approach is the independent
tuning of the tunneling parameters J and J′ along
two directions (Fig. 1) via an elliptical shaking
of the lattice (17). This leads to various ferro-
magnetic, antiferromagnetic, and mixed-spin con-
figurations (Fig. 2). In the situation where all
tunneling parameters are positive (J, J′ > 0), the
spins align parallel, and we associate this with a
fully ferromagnetically ordered phase. This is
identical to the ordering observed without shak-
ing. When, for example, the signs of the J ′ cou-
plings are inverted (J > 0, J′ < 0), the new
ground state of the system is of rhombic order:
Along the direction of negative coupling, the
spins arrange in antiferromagnetic order, where-
as the coupling in J direction remains ferromag-
netic. The other configurations shown in Fig. 2

(spiral and chain order) can be explained in a
similar fashion. Each of these spin configura-
tions has its own, unique quasi-momentum dis-
tribution, which serves as a clear signature for
identification via standard time-of-flight imaging
techniques (18). The experimental data obtained
for the different cases are presented in Fig. 2.

The rich variety of spin orders as a function
of the control parameters J and J′ can be mapped
into the phase diagram (Fig. 3A). The background
colors are meant to guide the eye and indicate
the different spin configurations as expected from
the minimization of the energy function (Eq. 1).
We assign a symbol, representing the respective
phase, to each data point by comparing the mea-
sured momentum distribution with the one ob-
tained from theoretical calculations (17). The
measured data matches very well with theory
(18). The phase diagram has several interest-
ing features that can be understood from the
energy function (Eq. 1): First, the ferromagnetic
phase (F) on the right-hand side (J′ > 0) extends
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Fig. 1. Illustration of a
single plaquette within a
large-scale triangular lat-
tice. The accessible, inde-
pendent control parameters
J and J′ are highlighted. The
local phase of the atoms
residing on a single lat-
tice site is mapped onto a
classical vector spin (red ar-
rows). The coupling param-
eters J and J′ can be tuned ferro- or antiferromagnetically and determine the resulting spin configuration.

Fig. 2. Spin configura-
tions in a triangular lattice
and their experimental
signatures. Sketches of
small parts of the six rel-
evant spin-orders, which
can be realized within
the large-scale lattice
by tuning J and J′, are
shown. Solid and dashed
lines indicate ferro- and
antiferromagnetic cou-
plings, respectively. In
the spiral cases, two en-
ergetically degenerate
spin configurations exist.
The corresponding ex-
perimentally observed
momentum distributions
show distinct signatures.
The axes in the experi-
mental data mark the
absolute position of the
peaks. The pictures rep-
resent averages of sev-
eral experimental runs.
In the two spiral cases,
because both ground-
state configurations randomly appear, the signature of both modes is present in the average of con-
secutive pictures (see Fig. 4).
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