▲□▶▲□▶▲□▶▲□▶ □ のQで

Les gaz de Bose unidimensionnels : les expériences d'atomes froids comme simulateurs quantiques.

Isabelle Bouchoule

Collège de France, Juin 2017

N corps : Lieb-Liniger

Gaz unidimensionnels

- Une physique très différente de la physique tri- et bidimensionnelle
- Des systèmes modèles de la physique des systèmes à N corps en interaction : des solutions exactes parfois, des techniques théoriques et numériques puissantes
- Des réalisations dans le monde réel : nano-tubes de carbone, nano-fils, jonctions Josephson allongées, états de bords de systèmes bi-dimensionnels, ...

L'apport des atomes froids

- Des systèmes aux paramètres bien contrôlés
- De nombreux paramètres réglables
- Des diagnostiques performants
- Systèmes dilués et ultra-froids : interactions modélisées très simplement

Gaz ultra-froids unidimensionnels

Obtention d'un gaz unidimensionnel

Degrés de libertés transverses gelés. $T, \mu \ll \hbar \omega_{\perp}$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Réalisation sur des expériences d'atomes froids

- Confinement dipolaire : tubes 1D d'un réseau optique 2D
- Micro-piège magnétique : puce atomique

Ce séminaire

Principales caractéristiques des gaz de Bosons 1D homogènes.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

1 Intéractions à une dimension

- 2 Modèle de Lieb-Liniger
- 3 Fluctuations de densité : la transition de quasi-condensation
- Propriétés dans l'espace des impulsions
- Sonder la dynamique : facteur de structure dynamique

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

1 Intéractions à une dimension

- 2 Modèle de Lieb-Liniger
- 3 Fluctuations de densité : la transition de quasi-condensation
- Propriétés dans l'espace des impulsions
- 5 Sonder la dynamique : facteur de structure dynamique

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Absence de condensation de Bose-Einstein à 1D

Pas de condensation de Bose-Einstein à 1D Physique gouvernée par les interactions. Fluctuations importantes

ŧψ

 a_1b

N corps : Lieb-Liniger

Flutuations de densité

Interactions ponctuelles à 1D

2 particules de masse *m*. Interaction : $V(z_1 - z_2) = g\delta(z_1 - z_2)$

 $\partial_z \psi(0^+) - \partial_z \psi(0^-) = \frac{mg}{\hbar^2} \psi(0)$ Cas symmétrique : $\partial_z \psi(0) = -\psi(0)/a_{1D}$, $a_{1D} = -2\hbar^2/(mg)$. $E_g = mg^2/\hbar^2$

Condition aux limites :

Probabilité de transmission

 $z_1 - z_2$

 $\psi_k(z) = e^{ikz} + fe^{ik|z|},$ energie : $E = \hbar^2 k^2 / m$ $\mathcal{T} = |1 + f|^2$

ŧψ

N corps : Lieb-Liniger

Flutuations de densité

Condition aux limites :

 $a_{1D} = -2\hbar^2/(mg).$ $E_g = mg^2/\hbar^2$

 $\partial_z \psi(0^+) - \partial_z \psi(0^-) = \frac{mg}{\hbar^2} \psi(0)$

Espace des impulsion

Cas symmétrique : $\partial_z \psi(0) = -\psi(0)/a_{1D}$,

Dynmaique

Interactions ponctuelles à 1D

 $E \gg E_{g}$

 $z_1 - z_2$

2 particules de masse *m*. Interaction : $V(z_1 - z_2) = g\delta(z_1 - z_2)$

Probabilité de transmission

 $\psi_k(z) = e^{ikz} + fe^{ik|z|},$ energie : $E = \hbar^2 k^2/m$ $\mathcal{T} = |1 + f|^2$

N corps : Lieb-Liniger

 $E \ll E_{g}$

 $z_1 - z_2$

Flutuations de densité

Interactions ponctuelles à 1D

2 particules de masse *m*. Interaction : $V(z_1 - z_2) = g\delta(z_1 - z_2)$

Probabilité de transmission

 $\psi_k(z) = e^{ikz} + f e^{ik|z|},$ energie : $E = \hbar^2 k^2 / m$ $\mathcal{T} = |1 + f|^2$

įψ

Condition aux limites : $\partial_z \psi(0^+) - \partial_z \psi(0^-) = \frac{mg}{\hbar^2} \psi(0)$ Cas symmétrique : $\partial_z \psi(0) = -\psi(0)/a_{1D}$,

 $a_{1D} = -2\hbar^2/(mg).$ $E_g = mg^2/\hbar^2$

N corps : Lieb-Liniger

Flutuations de densité

Espace des impulsion

Dynmaique

Du monde 3D au monde 1D

Confinement transverse : ω_{\perp} , $a_{\perp} = \sqrt{2\hbar/(m\omega_{\perp})}$ Energie $< 2\hbar\omega_{\perp}$

- $r \gg l_{\perp}$: $\psi \simeq \phi_0(x, y) \cos(k(|z| a_{1D}))$
- $r \ll l_{\perp}$: divergence 3D $\psi(r) \underset{r \to 0}{\propto} (a_{3D}/r 1)$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Résolu par M.Olshanii :

Phys, Rev. Lett., 81, 938 (1998)

<ロト < 同ト < 回ト < 回ト = 三日 = 三日

Outline

- 2 Modèle de Lieb-Liniger
- 3 Fluctuations de densité : la transition de quasi-condensation
- Propriétés dans l'espace des impulsions
- 5 Sonder la dynamique : facteur de structure dynamique

N particules : approche qualitative N bosons identiques de masse m, densité n. • Corrélations faibles

 \overline{Z}_{1}

Energie : $E/N \simeq E_{int} \simeq gn$

. Z.4 25

 $\overline{Z_2}$

Z3

Fortement corrélé (fermionisé) : $\hbar^2 n^2/m \ll gn \Rightarrow \gamma \gg 1$ 3D : cas opposé

Régime fortement corrélé :

N corps : Lieb-Liniger

• Température finie : $\psi(z_i = z_j) \simeq 0$ tant que $T \ll E_g$.

• Fermionisation : bijection entre état du gaz de Fermions et du gaz de Bosons : $\psi_{\rm B} = \prod_{j < i} sgn(x_j - x_i)\psi_{\rm F}(z_1, ..., z_N)$ Particulier au gaz 1D

Flutuations de densité

Dynmaique

 \overline{Z}_{1}

• Valable aussi en présence d'un potentiel

Energie : $E/N \simeq E_{int} \simeq gn$

Energie : $E/N \simeq E_{\rm kin} \simeq \hbar^2 n^2/m$ Fortement corrélé (fermionisé) : $\hbar^2 n^2/m \ll gn \Rightarrow \gamma \gg 1$

Dynmaique

3D : cas opposé Régime fortement corrélé :

• Température finie : $\psi(z_i = z_j) \simeq 0$ tant que $T \ll E_g$.

- Fermionisation : bijection entre état du gaz de Fermions et du gaz de Bosons : $\psi_{\rm B} = \prod_{i < i} sgn(x_i - x_i)\psi_{\rm F}(z_1, ..., z_N)$ Particulier au gaz 1D
- Valable aussi en présence d'un potentiel

N corps : Lieb-Liniger

Flutuations de densité

Espace des impulsions

Dynmaique

N particules : ansatz de Bethe

Lieb and Liniger. Phys. Review, 130, 1605, 1963

Lieb-Liniger hamiltonian :
$$H = \sum_{i} -\frac{\hbar^2}{2m} \frac{\partial^2}{\partial z_i^2} + g \sum_{i < j} \delta(z_i - z_j)$$

Sub-space $z_1 < z_2 < ... < z_N$. Onde plane $e^{ik_1 z_1} e^{ik_2 z_2} ... e^{ik_N z_N}$ Bethe-Ansatz : $\psi = \sum_P a(P) e^{ik_P(1) z_1} e^{ik_P(2) z_2} ... e^{ik_P(N) z_N}$

- Condition aux limites $z_i = z_j$: P et $Q: Q(i) = P(j), Q(j) = P(i), Q_{\alpha \neq i,j} = P_{\alpha}$ -Symmétrie par échange de Bosons -Condition de discontinuité sur la dérivée $\Rightarrow a(P) = -a(Q)e^{2i\operatorname{Atan}(\hbar^2(k_i - k_j)/mg)}$. Même facteur pour différentes combinaisons de transpositions : Yang-Baxter $\Rightarrow a(P) = \prod_{i < j} (1 + img/(\hbar^2(k_{P(j)} - k_{P(i)})))$
 - Conditions aux limites périodiques : *N* nombres quantiques (entiers) $I_1 < I_2 < ... < I_N \rightarrow \{k_i\}$

Ansatz de Bethe : état fondamental

Etat fondamental : $I_1 < I_2 < ... < I_N = -N/2, -N/2 + 1, ..., N/2$ Distribution des rapidités : $f(k), E = \int \hbar^2 k^2 / (2m) f(k)$

Fonction de correlation à distance nulle : $g^{(2)}(0) = \langle \psi^+ \psi^+ \psi \psi \rangle / n^2$ Helman-Feynman theorem : $g^{(2)}(0) = \frac{2}{Ln^2} \frac{dE}{dg}$

N corps : Lieb-Liniger

Flutuations de densité

Espace des impulsio

Dynmaique

Bethe-Ansatz : résultats expérimentaux

Kinoshita et al., Science 305, 1125 (2004), Kinoshita et al., Phys. Rev. Lett. 95, 190406 (2005)

N corps : Lieb-Liniger

Flutuations de densité

Espace des impulsio

▲□▶▲□▶▲□▶▲□▶ □ のQで

Dynmaique

Ansatz de Bethe : excitations et thermodynamique

Excitations : des trous dans la distribution des *I* 2 branches d'excitations élémentaires :

Thermodynamique. Yang-Yang \Rightarrow Equation d'état $n(T, \mu)$

Yang and Yang, Journ. of math. phys. 10,115 (1969)

Diagramme de phase du modèle Lieb-Liniger

Paramètres adimensionnés : $(E_g = mg^2/\hbar^2, |a_{1D}| = 2\hbar^2/mg)$

- Température réduite : $t = T/E_g$
- Paramètre d'intéraction : $\gamma = 2/(na_{1D}) = mg/n\hbar^2$

Flutuations de densité

Analyse des profils avec les équations thermodynamiques Yang-Yang

Equilibre thermodynamique et LDA : $n(z) = n_h(T, \mu - 0 - V(z))$

Première analyse avec l'équation d'état de YAng-Yang :

Amerongen, Phys. Rev. Lett. 100, 090402

(2008)

Réseau optique bi-dimensionnel. Mesure précise du profil dans un microscope à électron :

Vogler et al., Phys. Rev. A 88, 031603 (2013)

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のQ@

Intéractions à une dimension

2 Modèle de Lieb-Liniger

Illuctuations de densité : la transition de quasi-condensation

- Propriétés dans l'espace des impulsions
- Sonder la dynamique : facteur de structure dynamique

▲□▶▲□▶▲□▶▲□▶ □ のQで

N corps : Lieb-Liniger

Flutuations de densité

Régime de gaz de Bose idéal : groupement bosonique

Fonction de corrélation à 2 corps $g_2(z) = \langle \psi_z^+ \psi_0^+ \psi_0 \psi_z \rangle / n^2$

$$g_{2} 2 \qquad l_{c} = \lambda_{dB} : |\mu| \gg T$$

$$l_{c} \simeq \hbar^{2} n / (mT) : |\mu| \ll T$$

$$u_{c} \simeq \pi^{2} n / (mT) : |\mu| \ll T$$

$$H = \sum_{k} \left(\frac{\hbar^2 k^2}{2m} \right) a_k^+ a_k, \psi = \sum_{k} a_k \frac{e^{ikz}}{\sqrt{L}}$$

Statistique bosonique \rightarrow groupement bosonique Théorie de chemp classique e

Théorie de champ classique : tavelure

Groupement \rightarrow fluctuations de densité

 $H_{int} = \frac{g}{2} \int dz n^2 \Rightarrow \delta H_{int} > 0$ Réduction des fluctuations de densité à *T* faible Transition (molle) : $\frac{1}{N} H_{int} \propto gn \simeq |\mu|$.

 $\Rightarrow \boxed{T_{c.o.} \simeq \frac{\hbar^2 n^2}{2m} \sqrt{\gamma}} \quad \begin{array}{c} \text{Transition pour un} \\ \text{gaz dégénéré } (\gamma \ll 1) \end{array}$

$$t_{c.o.} \propto \gamma^{-2/3}$$

・ロト・(四ト・(日下・(日下・))

Régime de quasi-condensat : description de Bogoliubov

 $\gamma \ll 1, t \ll t_{co}: \delta n \ll n$ Représentation phase/denisté : $\psi = \sqrt{n}e^{i\theta}$

Hamiltonien linéarisé en δn et en $\nabla \theta$. (Mora, Castin Phys. Rev. A, 2003) Modes k: $H_k = \left(\frac{\hbar^2 k^2}{8mn_0} + \frac{g}{2}\right) \delta n_k^2 + \frac{\hbar^2 k^2 n_0}{2m} \theta_k^2$ Spectre : $\omega_k = \sqrt{\frac{\hbar^2 k^2}{2m} (\frac{\hbar^2 k^2}{2m} + 2gn_0)}$

Fluctuations de densité :

Fluctuations de phase : $\langle \theta_k^2 \rangle = \frac{mT}{\hbar^2 k^2 n_0} \text{ pour } T \gg \omega_k$ T > gn $\langle (\theta(z) - \theta(0))^2 \rangle = \frac{mTz}{n_0 \hbar^2}$

> Hohenberg-Wagner-Mermin retrouvé

Régime de quasi-condensat : description de Bogoliubov

 $\gamma \ll 1, t \ll t_{co}: \delta n \ll n$ Représentation phase/denisté : $\psi = \sqrt{n}e^{i\theta}$

Hamiltonien linéarisé en δn et en $\nabla \theta$. (Mora, Castin Phys. Rev. A, 2003) Modes k: $H_k = \left(\frac{\hbar^2 k^2}{8mn_0} + \frac{g}{2}\right) \delta n_k^2 + \frac{\hbar^2 k^2 n_0}{2m} \theta_k^2$ Spectre : $\omega_k = \sqrt{\frac{\hbar^2 k^2}{2m} (\frac{\hbar^2 k^2}{2m} + 2gn_0)}$

Fluctuations de densité : g_2 $\xi = \hbar/\sqrt{mgn}$ T > gn T < gn $\langle (\theta(z) - \theta(0))^2 \rangle = \frac{mTz}{n_0\hbar^2}$ Hohenberg-Wagner-Mermin

retrouvé

> '€ □ ▶ ∢ @ ▶ ∢ ≣ ▶ ∢ ≣ ▶ ⊂ ≣ ∽ 의 < (~

▲□▶▲□▶▲□▶▲□▶ □ のQで

Gaz de Bose 1D en intéraction faible

N corps : Lieb-Liniger

Flutuations de densité

Approximation de champs classique

Grande population des modes : $\psi(z)$ traité comme un champ classique Equilibre thermodynamique :

$$Z = \sum_{\{\psi\}} e^{-\beta E(\{\psi\})} = \sum_{\{\psi\}} e^{-\beta \int dz \left(-\psi^* \frac{\hbar^2}{2m} \frac{\partial^2}{\partial z^2} \psi + \frac{g}{2} |\psi|^4 - \mu |\psi|^2\right)}$$

Un seul paramètre :
$$\begin{cases} \eta = \mu \left(\hbar^2 / (mg^2 T^2) \right)^{1/3} \\ \chi = \frac{\hbar^2 g \rho^3}{mT^2} = 1 / (t^2 \gamma^3) \end{cases}$$

Résolution : évolution stocastique, Monte Carlo Problème quantique equivalent de dimension 0 $dz \rightarrow id\tau$ $H_{\text{quant}} = (p_x^2 + p_y^2)/2 + (x^2 + y^2)^2/2 - \eta(x^2 + y^2)$ Quantitativement valable pour $t \gtrsim 10^6$ (Jacqmin et al., Phys. Rev. A, **86**, 043626 (2012))

▲□▶▲□▶▲□▶▲□▶ □ のQで

Transition de quasi-condensation pour un gaz piégé

Approximation de densité locale (LDA)

Localement : gaz homognène avec $\mu(z) = \mu_0 - V(z)$. Validité : $l_c \ll \frac{1}{n} \frac{dn}{dz}$.

Transition de quasi-condensation due aux interactions : $N_{\rm co} = T/(\hbar\omega) \ln(t^{1/3})$

LDA valable si $\omega \ll (mg^2T^2/\hbar^5)^{1/3}$

En général vérifié expérimentalement.

LDA cesse d'être valable \Rightarrow "condensation" dûe à la taille finie saturation de la population des états excités pour $|\mu| \ll (E_1 - E_0)$. Piège harmonique : $N_C = T/(\hbar\omega) \ln(2T/\hbar\omega)$

(Bouchoule et al., Phys. Rev. A 75, 031605 (2007))

N corps : Lieb-Liniger

Flutuations de densité

Espace des impulsion

Dynmaique

Expérience de puce atomique au LCF

- Forts confinement transverses possibles : $\omega_{\perp} \simeq 100 \text{ kHz}$
- Confinements transverses et longitudinaux indépendants.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Dispositif expérimental

Imagerie in-situ

 $1D: T \ll \hbar \omega_{\perp}$ Constante de couplage 1D : $g = 2\hbar \omega_{\perp} a$ A partir des images : profil moyen Un gaz 1D unique : **mesure des fluctuations de densité**

▲□▶▲□▶▲□▶▲□▶ ■ のへ⊙

 $\langle \delta N^2 \rangle$: intégrale de la fonction de corrélation à deux corps $\langle \delta N^2 \rangle = \langle N \rangle + n^2 \int \int dz (g_2(z - z') - 1)$

 $l_c \ll \Delta \Rightarrow$ quantité thermodynamique

$$\left< \delta N^2 \right> = k_B T \Delta \frac{\partial n}{\partial \mu}$$

Résultats experimentaux

- Effet de groupement bosonique fort dans la zone de transition
- Quasi-condensat avec à la fois $\mu < T$ et $\mu > T$.

N corps : Lieb-Liniger

Flutuations de densité

◆□▶ ◆帰▶ ◆ヨ▶ ◆ヨ▶ = ● ののの

Du régime d'intéraction faible au régime d'intéraction forte

- t > 1: Effet de groupement diminue avec t: $\langle \delta N^2 \rangle_{\rm max} / \langle N \rangle \propto t^{1/3}$
- t ≪ 1 : comportement fermionique → du régime poissonien au régime sous-poissonien. Pas de fluctuations super-poissoniennes.
- *t* petit, γ grand \Rightarrow *g* important $\Rightarrow \omega_{\perp}$ élevé

▲□▶▲□▶▲□▶▲□▶ □ のQで

Fluctuations de densité dans le régime d'interaction fortes

Compression transverse : $\omega_{\perp}/2\pi = 18.8$ kHz T = 40 nK $\simeq \hbar \omega_{\perp}/20$ $t \simeq 5$ $\mu/T \simeq 1.9$

Pas de fluctuations superpoissoniennes. Comportement proche de celui d'un gaz de Fermions.

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

- Intéractions à une dimension
- 2 Modèle de Lieb-Liniger
- 3 Fluctuations de densité : la transition de quasi-condensation
- Propriétés dans l'espace des impulsions
 - Sonder la dynamique : facteur de structure dynamique

Distribution d'impulsion

Transformée de Fourier de $\langle \psi^+(z)\psi(0)\rangle$

N'est pas connue exactement

-particules N corps : Lieb-Liniger Flutuations de densité Espace des impulsions Dyn

Mesure de la fonction $g^{(1)}$ par interférométrie

Hofferberth et al., Nature Physics 4, 489 (2008)

- Coupure "instantanée" des interactions : $\omega_{\perp} \gg$ temps caractéristique du mouvement longitudinal
- Interférence entre deux gaz 1D indépendants $\Rightarrow \int \int_{\Delta} dz dz' \langle \psi^+(z)\psi(z') \rangle$

En accord avec le résultat du quasi-condensat : $g^{(1)}(z) = e^{-zTm/\hbar^2 n}$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Mesures de distributions d'impulsion

Jaqmin et al., Phys Rev. A 86, 043626 (2012)

Donnée dans le régime quasicondensat

- De type lorentzien
- Larger inférieure à $1/\xi$ ($T < T_{co}$)

•
$$T = 72 \text{ nK}$$
, $\omega_{\perp} = 6.4 \text{ kHz}$,
 $n_0 = 15 \text{ at/}\mu\text{m}$

Données dans le régime de gaz de Bose idéal

- De type Lorentzien
- Largeur supérieure à $1/\xi$ $(T > T_{co})$

•
$$T=84~\mathrm{nK}$$
 , $\omega_{\perp}=2.1~\mathrm{kHz}$, $n_0\simeq 15~\mathrm{at}/\mathrm{\mu m}$

▲□▶▲圖▶▲圖▶▲圖▶ ▲圖 めんの

Corrélations dans l'espace des impulsions

Ensemble d'images prises dans les mêmes conditions : $\Rightarrow \langle \delta n_k \delta n_{k'} \rangle$ Gaz de Bose idéal

Groupement bosonique : $\langle \delta n_k \delta n_{k'} \rangle = \delta_{k,k'} \left(\langle n_k \rangle + \langle n_k \rangle^2 \right)$

Données expérimentales

Théorie du gaz de Bose idéal

Quasi-condensat : attendu

$$\langle \psi_k^+ \psi_k \psi_{k'}^+ \psi_{k'} \rangle = \frac{\rho^2}{L^2} \iiint d^4 z \, e^{ik(z_1 - z_2)} e^{ik'(z_3 - z_4)} \left\langle e^{i(\theta_1 - \theta_2 + \theta_3 - \theta_4)} \right\rangle$$

$$\text{Wick} : \langle e^{i(\theta_1 - \theta_2 + \theta_3 - \theta_4)} \rangle = e^{-1/2 \langle (\theta_1 - \theta_2 + \theta_3 - \theta_4)^2 \rangle}$$

$$\mathcal{G}(k, k') = \frac{1}{L} \left(2\pi \langle n_k \rangle \langle n_{k'} \rangle \delta(k - k') + \rho^2 l_\theta^3 c^n(kl_\theta, k'l_\theta) \right)$$

0.0023

-0.048

-0.098

-0.15

 $c^n(kl_{\theta}, k'l_{\theta})$

- Zones négatives : fluctuations de *N* faibles (fluctuations de densité réduites)
- Anti-diagonale positive attendue pour un vrai condensat : retrouvée seulement pour $k \gg 1/l_{\theta}$.

Corrélations en impulsion dans le régime qBEC

Cas d'un nuage profondément dans le régime quasi-condensat. $T \simeq 80$ nK, $N_{at} = 14000$, $\omega_{\perp}/(2\pi) = 1.9$ kHz, $\omega_z/(2\pi) = 7$ Hz.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ・三 つへの

2-particules N corps : Lieb-Liniger Flutuations de densité Espace des impulsions Dynmaique Ailes en $1/p^4$: le contact

Olshanii and Dunjko, Phys. Rev. Lett. (2003)

$$w(p) = \frac{N}{L} \int dz_2 \dots dz_N \Big| \underbrace{\int dz_1 e^{ipz_1/\hbar} \psi(z_1, \dots, z_N)}_{\mathcal{F}} \Big|^2$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Quantité thermodynamique : $C = m^2 g^2 \frac{2}{L} \left. \frac{\partial F}{\partial g} \right|_T$.

Distribution d'impulsion dans le régime de Tonks

Régime fermionisé : $\psi_{\rm B} = \prod_{j < i} sgn(x_j - x_i)\psi_{\rm F}(z_1, ..., z_N)$ Fonction de corrélation à 1 corps. Problème difficile. Récent développement : Y. Atats et al., Phys. Rev. A **95**, 043622 (2017) **Cas discrétisé**. Transformation de Jordan Wigner : $a_i = e^{i\pi \prod_{l < j} c_l^+ c_l} c_i$

Distribution d'impulsion dans le régime de Tonks-Girardeau

Paredes et al., Nature **429**, 277(2004) Potentiel périodique ⇒ intéractions augmentées

▲□▶▲□▶▲□▶▲□▶ □ のQで

Outline

- Intéractions à une dimension
- 2 Modèle de Lieb-Liniger
- 3 Fluctuations de densité : la transition de quasi-condensation
- Propriétés dans l'espace des impulsions
- 5 Sonder la dynamique : facteur de structure dynamique

N corps : Lieb-Liniger

Flutuations de densité

Espace des impulsion

Dynmaique

Sonder les excitations : $S(k, \omega)$

$$S(k,\omega) = \sum_{\nu} |\langle \nu | \rho_q | 0 \rangle|^2 \delta(\omega - (E_{\nu} - E_0)/\hbar)$$

Diffraction de Bragg

 $V \propto \cos(kz - \omega t)$ Réponse linéaire Energie déposée : $\Delta E \propto \omega S(k, \omega)$

J.S. Caux et al., Phys. Rev. A 74, 031605 (2006)

Conclusion et perspectives

Quelques autres aspects non abordés ici

- Transition dimensionnelle 1D/3D
- Technique théorique de bosonisation
- Physique des gaz 1D dans des réseaux : transition de Mott/pinning, modèle de Sine-Gordon

Quelques champs de recherche particulièrement riches pour les systèmes uni-dimensionnels

- Dynamique hors équilibre
- Présence de dissipation : refroidissement par perte d'atome
- Rôle de l'intégrabilité de beaucoup de systèmes 1D
- Propriétés de transport : transport de de particules, de chaleur