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Why?



RB-E2F pathwayCancer

Poorly quantified: biochemistry, 
e.g. reaction rates, binding 
energies, etc., not known

What is (are) appropriate  model(s) for dynamics?

This is a dynamic process: timing 
and sequencing of events is 
essential  

Yao, et. al., MSB, 2011

Deregulation of the RB–E2F pathway is implicated in 
most, if not all, human cancers. 



Malaria P. falciparum 
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All genes (5409)

Time in vitro (hours)
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Putative TF genes (456)

Poorly annotated: network of interactions is not known

Dynamic process: timing and sequencing of events is essential  

48 hour cycle

1-2 minutes

What is (are) appropriate  model(s) for dynamics?



What does it mean to solve a 
differential equation?



Classical Differential Equations

Isaac	Newton	
1643-1727

mi
d2qi
dt2

= G
X

j 6=i

mjmi(qj � qi)

kqj � qik3

Newton’s Law of Gravitation

d2q1
dt2

=
Gm2(q2 � q1)

kq2 � q1k3

d2q2
dt2

=
Gm1(q1 � q2)

kq1 � q2k3

2-body problem

Kepler’s three laws
of planetary motion

Johannes	Kepler	
1571-1630



Jules	Henri	Poincare	
1854-1912

Need to consider all solutions:

Steven	Smale	
1930-

The equivalence relation:

Two maps f : X ! X and g : Y ! Y are topologically conjugate if

there exists a homeomorphism h : X ! Y such that h � f = g � h.

�0 2 ⇤ is a bifurcation point if for any neighborhood U of �0 there

exists �1 2 U such that f�0 is not conjugate to f�1

The places of change:

dx

dt

= g(x,�) x 2 Rn
,� 2 ⇤

Flow: ' : R⇥ Rn ⇥ ⇤ ! Rn

(t, x,�) 7! '�(t, x)time

value of 
solution
at time t

parameter
value

initial
condition

Map:
f : Rn ⇥ ⇤ ! Rn

(x,�) 7! f�(x)

The objects of interest: A set S is invariant if f�(S) = S.



logistic map

The challenge of Bifurcations
f : [0, 1]⇥ [2.4, 4] ! [0, 1]

(x, r) 7! fr(x) = rx(x� 1)

Arbitrarily small changes in the
nonlinearity can lead to dramatic
changes in the dynamics.



Combinatorial Dynamics



p1 p0

p2

p3

Vertices: States
Edges: Dynamics

Don’t know exact current state, 
so don’t know exact next state 

Simple decomposition 
of Dynamics:

Recurrent

Nonrecurrent
  (gradient-like)

Linear time Algorithm!

Morse Graph
of state transition graph

State Transition Graph F : X �!!X

Poset



p1 p0

p2

p3

P
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Morse Graph

of F : X �!!X

Join Irreducible

J_(A)

Birkhoff’s Theorem implies that 
the Morse graph and the lattice 
of Attractors are equivalent.

What is observable? A � X is an attractor if F(A) = A

p1 p0

p1, p0

p2, p1, p0

p3, p2, p1, p0

Lower Sets O(M)

;
Lattice of Attractors

of F : X �!!X
_ = [

^ = maximal attractor in \
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Topology
(differential equations are not 

defined on finite sets)



Let X be a compact metric space. phase space

Let R(X) denote the lattice of

regular closed subsets of X.

Infinite unbounded 
lattice

Level of measurement 
Applicable scale for model

Let L be a finite bounded sublattice

of R(X).

To
po

lo
gy

D
yn

am
ic

s Declare a bounded sublattice A ⇢ L to be the lattice of attractors

Use Birkhoff to define poset (P := J_(A), <)

Remark: I have purposefully ignored the relation between L and F : X �!!X

G(L) denoted atoms of L “smallest” elements of L

For each p 2 P define a Morse tile M(p) := cl(A \ pred(A))



Example

Morse tiles M(p)

Let F 0(x) = �f(x).

-4 40

Atoms of lattice: G(L) = {[n, n+ 1] | n = �4, . . . , 3}
Phase space: X = [�4, 4] ⇢ R

A

Lattice of attractors: A = {[�3,�1], [1, 3], [�3,�1] [ [1, 3], [�4, 4]}

P

1 2

3

Birkhoff

How does this relate to a differential
equation dx

dt

= f(x)?

-4 40

F

F

F

Combinatorial attractors represent re-

gions of phase space that are forward

invariant with time.



Example (continued)

-4 40

X = [�4, 4] ⇢ R

1 2

3

(P, <)A

For flows the homology Conley index of M(p) is

CH⇤(p) := H⇤(A, pred(A))

(0,Z, 0, . . .)

(Z, 0, . . .) (Z, 0, . . .)

For maps the homology Conley index of M(p) is the shift equivalence

class of

f⇤ : H⇤(A, pred(A)) ! H⇤(A, pred(A))

Remark: f⇤ can be computed (rigorously) from an outer approximation

F : X (L)�!!X (L) without knowing f .

S. Harker, H. Kokubu, K.M., P. Pilarczyk, Proc. AMS, 2016
S. Harker, K.M., M. Mrozek, V. Nanda, FoCM, 2013



Theorem: (C. Conley; M. Mrozek; J. Robbin, D. Salamon) If Conley

index of the Morse tile M(p) is nontrivial, then there exists a non-empty

invariant set in cl(A \ pred(A)).

-4 40

F

F

F

-4 40

(0,Z, 0, . . .)

(Z, 0, . . .) (Z, 0, . . .)

Recall Example:

Phase space: X = [�4, 4] ⇢ R

A

A = {[�3, �1], [1, 3], [�3, �1] [ [1, 3], [�4, 4]}
Lattice of Attractors

1 2

3

(P, <)

Birkhoff

Moral: We can make nontrivial statements about dynamics without

having an analytic representation of the dynamical system.



Conley index can be used to guarantee existence of equilibria, periodic

orbits, heteroclinic and homoclinic orbits, and chaotic dynamics.

Theorem: (R. Franzosa) There exists a strictly upper triangular (with

respect to <) boundary operator

� :
M

p2P

CH⇤(p) !
M

p2P

CH⇤(p)

such that the induced homology is isomorphic to H⇤(X).

-4 40
1 2

3

(P, <)
(k, 0, . . .)(k, 0, . . .)

A

(0,k, 0, . . .)

Claim: (S. Harker, K. Spendlove, K.M.)
� can be computed efficiently.

� =

2

4
0 0 1
0 0 1
0 0 0

3

5 :
3M

p=1

CH⇤(p) !
3M

p=1

CH⇤(p)F

F

F



Switching Systems
(an example of how to use these ideas)

Choosing L and F : X �!!X



Biological Model

Assume xi decays. dxi
dt

= ��

i

x

i

dxi
dt

= ��

i

x

i

+ ⇤
i

(x)dxi
dt

= ��

i

x

i

+ ⇤
i

(x
j

)

How do I want to interpret this information?
What differential equation do I want to use?

Proposed model:

dx2

dt

x1

✓2,1

u2,1

l2,1

x1 represses the

production of x2.

1 2

x1 activates the

production of x2.

1 2

�

�
j,i(xi) =

(
uj,i if xi < ✓j,i

`j,i if xi > ✓j,i

Focus on sign of ��ixi + �

�
i,j(xj)

Parameters
1/node
3/edge 

For x1 < ✓2,1 we ask about sign (��2x2 + u2,1).

For x1 > ✓2,1 we ask about sign (��2x2 + l2,1).

xi denotes amount of species i.



12

✓2,1

✓1,2

x1

x2

Phase space: X = (0,1)2

If ��1✓2,1 + �

�
1,2(x2) > 0

If ��1✓2,1 + �

�
1,2(x2) < 0

Example (The Toggle Switch)

Parameter space is a subset of (0, 1)8

Fix z a regular parameter value.

z is a regular parameter value if

0 < �i

0 < `i,j < ui,j ,

0 < ✓i,k 6= ✓j,k, and
0 6= ��i✓j,i + ⇤i(x)



✓2,1

✓1,2

x1

x2

Need to Construct State Transition Graph Fz : X �!!X

Example (The Toggle Switch) 12
Fix z a regular parameter value.

Vertices
X corresponds to all rectangular

domains and co-dimension 1 faces

defined by thresholds ✓.

Faces pointing in map to their domain.

Domains map to their faces pointing

out.

Edges

If no outpointing faces domain maps

to itself.



12The Toggle Switch

✓2,1

✓1,2

x1

x2

Assume: l1,2 < �1✓2,1 < u1,2

�2✓1,2 < l2,1

Morse
Graph

FP{0,1}

Fix z a regular parameter value.

Constructing state transition

graph Fz : X �!!X

Check signs of ��i✓j,i + �

�
i,j(xj)



DSGRN Database from Genetic Toggle Switch

12Input:
Regulatory Network

Output:
DSGRN database

(7)
FP(1,1)

�1✓2,1 < l1,2

�2✓1,2 < l2,1

(8)
FP(1,0)
�1✓2,1 < l1,2

l2,1 < �2✓1,2 < u2,1

(9)
FP(1,0)

�1✓2,1 < l1,2

u2,1 < �2✓1,2

(4)
FP(0,1)

l1,2 < �1✓2,1 < u1,2

�2✓1,2 < l2,1

(5)
FP(0,1) FP(1,0)

l1,2 < �1✓2,1 < u1,2

l2,1 < �2✓1,2 < u2,1

(6)
FP(1,0)

l1,2 < �1✓2,1 < u1,2

u2,1 < �2✓1,2

(1)
FP(0,1)

u1,2 < �1✓2,1

�2✓1,2 < l2,1

(2)
FP(0,1)

u1,2 < �1✓2,1

l2,1 < �2✓1,2 < u2,1

(3)
FP(0,0)

u1,2 < �1✓2,1

u2,1 < �2✓1,2

Parameter graph provides explicit partition of entire 8-D parameter space.

We can query this database for local or global dynamics.



Why is the Toggle Switch a Switch?

(7)
FP(1,1)

�1✓2,1 < l1,2

�2✓1,2 < l2,1

(8)
FP(1,0)
�1✓2,1 < l1,2

l2,1 < �2✓1,2 < u2,1

(9)
FP(1,0)

�1✓2,1 < l1,2

u2,1 < �2✓1,2

(4)
FP(0,1)

l1,2 < �1✓2,1 < u1,2

�2✓1,2 < l2,1

(5)
FP(0,1) FP(1,0)

l1,2 < �1✓2,1 < u1,2

l2,1 < �2✓1,2 < u2,1

(6)
FP(1,0)

l1,2 < �1✓2,1 < u1,2

u2,1 < �2✓1,2

(1)
FP(0,1)

u1,2 < �1✓2,1

�2✓1,2 < l2,1

(2)
FP(0,1)

u1,2 < �1✓2,1

l2,1 < �2✓1,2 < u2,1

(3)
FP(0,0)

u1,2 < �1✓2,1

u2,1 < �2✓1,2

x1

x2

✓2,1

✓1,2

(0,1)

(1,0)

Paths defined by varying ✓1,2

12

FP(0,1)

FP(1,0)

✓1,2

x1

switch/hysteresis

Hysteresis can be identified 
by tracking changes in 
Morse graphs over paths in 
parameter graph.



Choosing Models



Cancer

Goal: minimal network that
exhibits hysteresis

Yao et. al. tested 3-node networks (with Hill function nonlinearities to 
define dynamics) to identify frequency of hysteresis based on choice of 
20,000 random parameters.

(Hysteresis) Two equilibria:
(A) Rb ON, E2F OFF = quiescence
(B) Rb OFF, E2F ON = proliferation

A B

Yao, et. al., MSB, 2011

Quality of model = QM =

# parameters with bistability

20,000



DSGRN Approach 
16 BREE, TOMAS, SHAUN AND KONSTANTIN

1999; Hatzimanikatis et al, 1999; Qu et al, 2003; Novak and
Tyson, 2004; Yao et al, 2008). However, these studies have not
attempted to examine the essential regulatory features that
create resettable bistability in mammalian cell cycle entry.
In this study, we modeled and identified the basic gene

circuit underlying resettable Rb–E2F bistable switch by the
criterion of robustness. Robustness is a property of a system to
maintain its functionality against perturbations, such as
cellular noise, genetic variation, and environmental changes
(Kitano, 2004; Stelling et al, 2004). Biological systems often
exhibit robustness as a fundamental characteristic (Barkai and
Leibler, 1997; Alon et al, 1999; Little et al, 1999; von Dassow
et al, 2000; Eldar et al, 2002; Rao et al, 2004; Feinerman et al,
2008; Wang et al, 2008; Krantz et al, 2009). The Rb–E2F
bistable switch is also robustly observed under different
cell culture conditions (Yao et al, 2008), consistent with its
critical roles for the R-point control. Therefore, our starting
hypothesis is that among all possible circuit combinations in
the Rb–E2F network, the actual control circuit underlying the
resettable bistability should be able to generate such switching
property robustly.
By modeling all 768 possible gene circuits derived from

a simplified Rb–E2F network, we identified a minimal
circuit that is able to generate robust, resettable bistability.
Consisting of a coupled positive-feedback loop and a feed-
forwardmotif, this circuit exhibits resettable bistability against
a wide range of parametric and structural perturbations.

Its unique characteristics reveal basic design features of
the Rb–E2F bistable switch, which is commonly disrupted in
cancer development.

Results and discussion

Model simplification and construction

The Rb–E2F pathway is a complex signaling network
(Figure 1A). It consists of intertwined transcriptional controls,
kinase cascades, and microRNA regulations (Blagosklonny
and Pardee, 2002; Sears and Nevins, 2002). To formulate a
mathematically tractable system, we coarse-grained the
system to reduce network complexity, while keeping its
essential regulatory features. To this end, we combined
redundant and overlapping cellular activities and collapsed
linear signaling cascades (Figure 1). For example, all E2F
activators (E2F1, 2, and 3) were combined into one node EE,
and all Rb family proteins (Rb, p107, and p130)were combined
into another node RP. The linear signaling cascade consisting
of Ras, Myc and CycD/cdk4,6 was collapsed into the nodeMD;
the cascade consisting of E2F and CycE/cdk2 was collapsed
into the node EE. Overlapping links between collapsed
network modules were also combined. For example, the two
original activation links (fromMyc to E2F1, 2, 3, and fromMyc
to cdc25A and CycE/cdk2) were combined into one link #7
(fromMD to EE); the twomutual-inhibition loops (between Rb

S

MD

EE

1

2 3

4

5

6
7

8

9

10

Growth signals

Myc

CycD/cdk4,6

Rb,p107,p130

E2F1,2,3

CycE/cdk2

p15,p16

p27

cdc25A

Ras

miR

miR,
CycA

RP

1

2 3

4

6

10

8

7

9

7

Quiescence

R-point

Rb–E2F bistable switch

Proliferation

6

5

3

45

2

B

C

A

Figure 1 The Rb–E2F network. (A) A detailed Rb–E2F signaling network (modified from Blagosklonny and Pardee, 2002; Sears and Nevins, 2002) that controls the
G1/S transition of mammalian cell cycle. Gray-shaded ovals indicate overlapping or intermediate signaling activities to be lumped. Circled numbers indicate indexes
of the regulatory links (Supplementary Table S1). (B) A simplified Rb–E2F network. Positive regulatory links are shown in green and negative regulatory links in red.
Link indexes are the same as in (A). (C) The Rb–E2F bistable switch. Once the system at the quiescence state (E2F-OFF state) is stimulated beyond the R-point, it will
stay at the proliferation state (E2F-ON state) even in the absence of continuous stimulation.

Robust design of RB–E2F switch
G Yao et al

2 Molecular Systems Biology 2011 & 2011 EMBO and Macmillan Publishers Limited

Figure 4. The full and simplified mammalian cell cycle regulatory
networks from Yao et al. [15] Figure 1. Arrowhead edges mean up-
regulation; blunt edges mean down-regulation. Notice the dual up-
and down-regulation at from EE to RP , EE to EE, and MD to EE
in the simplified network.

<<COMMENT>> Here’s an attempt to define essential. It should

go in another paper I think.!!

<<BEG<<

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Definition 6.1. Let G(V,E) be a regulatory network in which the sign of the regula-

tion is ignored, so that G(V,E) is a directed graph with unsigned edges. Every node

vi 2 V has Si source nodes (in-edges) and Ti target nodes (out-edges). We assume

that Si, Ti > 0 for every vi. Every edge vj ! vi has three parameters, li,j, ui,j, ✓
i,j.

Considering the Si in-edges of vi, there are 2Si
input values of vi:

{li,j1 , ui,j1} ⇥ · · · ⇥ {li,jSi
, ui,jSi

}

For each possible regulatory network compute
database.

QM = # paths varying ✓S,S with hysteresis
# paths varying ✓S,S

20 BREE CUMMINS1, TOMAS GEDEON1 SHAUN HARKER2, AND KONSTANTIN MISCHAIKOW2

S

MD

RP

EE

S

MD

RP

EE

(a) (b)

Figure 6. Top two networks satisfying full inducibility in at least 50% of
reduced parameters. (a) 56% (b) 50%

Aside from identifying top networks, we can also identify top edges, in the sense of counting

which edges were added most often in the top networks. In Table 3, we show the count of

every edge ordered from most common to least common for every network that had at least

one reduced parameter exhibiting full inducibility. We exclude edges 1 (S ! MD), 6 (RP

a EE), and the self-edge on S since they are always present given our modeling procedure.

The edge numbering scheme is identical to that in Figure 4 (b). There is a nonzero count for

every elective edge; this means that every edge contributed to full inducibility in a number

of networks, with edge 3 contributing the most and edge 4 contributing the least. Of the 15

networks exhibiting some full inducibility, 14 networks included the edge 3, which appears

in both of the top networks in Figure 6 and has strong support in the literature [?, ?]. It

is interesting to note that although edge 2 (EE ! MD) ranks quite highly in this list, it

does not appear in either of the two top networks, while the other four of the top five edges

(edges 3, 9, 7, and 5) appear in at least one of the two top networks. Since edge 7 ranks

above edge 8 may indicate that the positive regulation from MD to EE is more important

for the switching phenotype than the negative regulation. We remark that there is strong

support for edge 7 [?, ?, ?].

<<COMMENT>> what specific previous results do you have in mind? KM

!!

Two networks where QM > 50%
(match top two networks of Yao et. al.)



For each possible regulatory network compute
database.

QM = # paths varying ✓S,S with hysteresis
# paths varying ✓S,S

S

Myc

CycD

E2F-Rb

E2F

CycE

2a

2b8 7

1

More Detailed Models
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about the correspondence between the edges in 4-node network Figure 4(b) and the 6-node

network in Figure 8 (a)

• Edge 2 (EE ! MD) in Yao et al. [?] corresponds to two edges in our network:

E2F ! Myc and E2F ! CycD because we split the target node MD into Myc and

CycD.

• Edge 5 (EE a RP) corresponds to a path E2F ! CycE a E2F-Rb since we split

EE into E2F and CycE.

• Edge 3 (MD a RP) corresponds to a path Myc ! CycD a E2F-Rb since we split

MD into Myc and CycD.

S

Myc

CycD

E2F-Rb

E2F

CycE

S

Myc

CycD

E2F-Rb

E2F

CycE

S

Myc

CycD

E2F-Rb

E2F

CycE

S

Myc

CycD

E2F-Rb

E2F

CycE

Network 1 Network 2 Network 3 Network 4

Figure 8. 6D networks with additional cyclins.

Therefore our model is a refinement of the 4-node network in Figure 4 (b) where we exclude

edges that make it a multigraph based on the top networks in Yao et al. [?] and Table (3).

Since the edge EE ! MD vanishes in the top two networks Figure 6 and is not well-

supported in the literature, we tested networks in which either E2F ! Myc or E2F !
CycD or both are missing. The four 6D networks that we explored are given in Figure 8.

A notable result summarized in Table 9 is that the Network 4 is the top performing net-

work in all categories and presents most robustly the full inducibility phenotype. This

suggests that regulation from E2F to Myc/CycD is not important for the dynamics of the

DSGRN best network (human): 

Is the structure selected for its dynamical property 
i.e. a robust bistable switch?

NETWORKS TO PHENOTYPES 23

network. Further support of this hypothesis comes from consideration of the yeast cell cy-

cle initiation network (START), see Figure 10, where this edge is not present. The START

network of the budding yeast cell cycle has the same topology as E2F-Rb networks, yet

there is no homology among the protein and transcription factors in the two networks.

There, a transcription factor SBF is sequestered by Whi5 in G1. The cell growth leads to

accumulation of kinase Cln3-CDk1 which phosphorylates Whi5 and as a results, releases

SBF from the complex. Released SBF promotes expression of another cyclin Cln2, which

is part of a kinase Cln2-CDk1. This kinase in turn finished phosphorylation of Whi5 and

completes the release of SBF [?, ?, ?, ?]. The analogy with the mammalian restriction

point network in Figure 8(d) is striking.

bistability resettable bistability inducibility full inducibility
Network 1 59.0% 12.3% 12.4% 0.9%
Network 2 59.7% 24.5% 24.8% 7.0%
Network 3 58.9% 15.6% 15.5% 1.8%
Network 4 58.7% 31.0% 31.1% 14.0%

Figure 9. Results for the networks in Figure 8.

S

Cln3

SBF-Whi5

SBF

Cln2

Figure 10. Yeast cycle START network shows striking topological simi-
larity with restriction point network in mammalian cell cycle, in spite of no
underlying homology between individual proteins.

Yeast cell cycle entry:

No homology between 
individual genes!

Only network structure 
is similar.

Cross Species Comparison



Malaria
(what are the models?)
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Computation time on 
laptop ≈ 1 second.

SQL Query:  Minimal node in Morse graph 
containing cycle involving all variables.

DSGRN computation 
produces parameter 
graph with  ≈ 45,000 
nodes.

Can a Network (model) Support Experimental Data?

96	parameter	graph	nodes	with	
Morse	graph	that	has	a	minimal	
node	consisGng	of	a	Full	Cycle	(FC).

?
Can we reproduce relative order 
of maxima and minima? 



Tested	all	max-min	sequences	from	state	transiGon	graphs	from	all	96	
parameter	graph	nodes	against	17,280	experimental	paSerns.		No	Match	

Conclusion:		This	network	does	not	generate	observed	dynamics

DSGRN Strategy for Matching Max-Min

Polynomial time algorithm compares 
possible max-min orderings of state 
transition graph paths with max-min 
orderings of experimental data.

M m 
M m 
M m

M M 
    m 
M m 
    m

Determine Poset of Max-Min orders

Recompute State Transition Graph



Current Favorite Model

Network dynamics matches experimental data for 49.7% of 
9,069,926,400 parameter regions.

Parameter space is a subset of (0, 1)59.



Thank-you for your Attention

Homology + Database Software
chomp.rutgers.edu

Rutgers
S. Harker

MSU
T. Gedeon

B. Cummings

FAU
W. Kalies

VU Amsterdam
R. Vandervorst

http://www.math.rutgers.edu/~vidit/perseus.html

