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Abstract. Let Cr(k) = Aut k(X, Y ) be the Cremona group of rank 2
over a field k. We give a sharp multiplicative bound M(k) for the orders
of the finite subgroups A of Cr(k) such that |A| is prime to char(k). For
instance M(Q) = 120960, M(F2) = 945 and M(F7) = 847065600.
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Let k be a field. Let Cr(k) be the Cremona group of rank 2 over k, i.e. the group
of k-automorphisms of k(X, Y ), where X and Y are two indeterminates.

We shall be interested in the finite subgroups of Cr(k) of order prime to the
characteristic of k. The case k = C has a long history, going back to the 19th
century (see the references in [Bl06] and [DI06]), and culminating in an essentially
complete (but rather complicated) classification, see [DI06]. For an arbitrary field,
it seems reasonable to simplify the problem à la Minkowski, as was done in [Se07]
for semisimple groups; this means giving a sharp multiplicative bound for the orders
of the finite subgroups we are considering.

In §6.9 of [Se07], one finds a few questions in that direction, for instance the
following:

If k = Q, is it true that Cr(k) does not contain any element of prime order > 11?
More generally, what are the prime numbers `, distinct from char(k), such that

Cr(k) contains an element of order `?
This question has now been solved by Dolgachev and Iskovskikh [DI07], the

answer being that there is equivalence between:

Cr(k) contains an element of order `

and

[k(z`) : k] = 1, 2, 3, 4 or 6, where z` is a primitive `-th root of unity.
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As we shall see, a similar method can handle arbitrary `-groups and one obtains
an explicit value for the Minkowski bound of Cr(k), in terms of the size of the Galois
group of the cyclotomic extensions of k (cf. Theorem 2.1 below). For instance:

Theorem. Assume k is finitely generated over its prime subfield. Then the finite
subgroups of Cr(k) of order prime to char(k) have bounded order. Let M(k) be the
least common multiple of their orders.

a) If k = Q, we have M(k) = 120960 = 27.33.5.7.
b) If k is finite with q elements, we have:

M(k) =

{
3.(q4 − 1)(q6 − 1) if q ≡ 4 or 7 (mod 9),
(q4 − 1)(q6 − 1) otherwise.

For more general statements, see §2. These statements involve the cyclotomic
invariants of k introduced in [Se07, §6]; their definition is recalled in §1. The proofs
are given in §3 (existence of large subgroups) and in §4 (upper bounds). For the
upper bounds, we use a method introduced by Manin [Ma66] and perfected by
Iskovskikh [Is79], [Is96] and Dolgachev–Iskovskikh [DI07]; it allows us to realize
any finite subgroup of Cr(k) as a subgroup of Aut(S), where S is either a Del Pezzo
surface or a conic bundle over a conic. A few conjugacy results are given in §5. The
last section contains a series of questions on the Cremona groups of rank > 2.

§1. The cyclotomic invariants t and m

In what follows, k is a field, ks is a separable closure of k and k is the algebraic
closure of ks.

Let ` be a prime number distinct from char(k); the `-adic valuation of Q is
denoted by v`. If A is a finite set, with cardinal |A|, we write v`(A) instead of
v`(|A|).

There are two invariants t = t(k, `) and m = m(k, `) which are associated with
the pair (k, `), cf. [Se07, §4]. Recall their definitions:

1.1. Definition of t. Let z ∈ ks be a primitive `-th root of unity if ` > 2 and a
primitive 4th root of unity if ` = 2. We put

t = [k(z) : k].

If ` > 2, t divides `− 1. If ` = 2 or 3, then t = 1 or 2.

1.2. Definition of m. For ` > 2, m is the upper bound (possibly infinite) of the
n’s such that k(z) contains the `n-th roots of unity. We have m > 1.

For ` = 2, m is the upper bound (possibly infinite) of the n’s such that k contains
z(n) + z(n)−1 , where z(n) is a primitive 2n-root of unity. We have m > 2. [The
definition of m given in [Se07, §4.2] looks different, but it is equivalent to the one
here.]

Remark. When ` > 2, knowing t and m amounts to knowing the image of the `-th
cyclotomic character Gal(ks/k)→ Z∗` , cf. [Se07, §4].
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1.3. Example: k = Q. Here, t takes its largest possible value, namely t = ` − 1
for ` > 2 and t = 2 for ` = 2. And m takes its smallest possible value, namely
m = 1 for ` > 2 and m = 2 for ` = 2.

1.4. Example: k finite with q elements. If ` > 2, one has:

t = order of q in the multiplicative group F∗` ,

m = v`(qt − 1) = v`(q`−1 − 1).

If ` = 2, one has:

t = order of q in (Z/4Z)∗,
m = v2(q2 − 1)− 1.

§2. Statement of the main theorem

Let K = k(X, Y ), where X, Y are indeterminates, and let Cr(k) be the Cremona
group of rank 2 over k, i.e. the group Autk K. Let ` be a prime number, distinct
from char(k), and let t and m be the cyclotomic invariants defined above.

2.1. Notation. Define a number M(k, `) ∈ {0, 1, 2, . . . , ∞} as follows:

For ` = 2, M(k, `) = 2m+ 3.

For ` = 3, M(k, `) =

{
4 if t = m = 1,
2m+ 1 otherwise.

For ` > 3, M(k, `) =


2m if t = 1 or 2,
m if t = 3, 4 or 6,
0 if t = 5 or t > 6.

2.2. The main theorem.

Theorem 2.1. (i) Let A be a finite subgroup of Cr(k). Then v`(A) 6 M(k, `).
(ii) Conversely, if n is any integer > 0 which is 6 M(k, `), then Cr(k) contains

a subgroup of order `n.
(In other words, M(k, `) is the upper bound of the v`(A).)

The special case where A is cyclic of order ` gives:

Corollary 2.2 [DI07]. The following properties are equivalent :

a) Cr(k) contains an element of order `,
b) ϕ(t) 6 2, i.e. t = 1, 2, 3, 4 or 6.

Indeed, b) is equivalent to M(k, `) > 0.
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2.3. Small fields. Let us say that k is small if it has the following properties:

m(k, `) <∞ for every ` 6= char(k),(2.3.1)

t(k, `)→∞ when `→∞.(2.3.2)

Proposition 2.3. A field which is finitely generated over Q or Fp is small.

Proof. The formulae given in §1.3 and §1.4 show that both Fp and Q are small. If
k′/k is a finite extension, one has

[k′ : k].t(k′, `) > t(k, `) and m(k′, `) 6 m(k, `) + log`([k
′ : k]),

which shows that k small ⇒ k′ small. If k′ is a regular extension of k , then

t(k′, `) = t(k, `) and m′(k′, `) = m(k, `),

which also shows that k small ⇒ k′ small. The proposition follows.

Assume now that k is small. We may then define an integerM(k) by the following
formula

(2.3.3) M(k) =
∏

`

`M(k,`),

where ` runs through the prime numbers distinct from char(k). The formula makes
sense since M(k, `) is finite for every ` and is 0 for every ` but a finite number.
With this notation, Theorem 2.1 can be reformulated as:

Theorem 2.4. If k is small, then the finite subgroups of Cr(k) of order prime
to char(k) have bounded order, and the l.c.m. of their orders is the integer M(k)
defined above.

Note that this applies in particular when k is finitely generated over its prime
subfield.

2.4. Example: the case k = Q. By combining 1.3 and 2.1, one gets

M(Q, `) =


7 for ` = 2,
3 for ` = 3,
1 for ` = 5, 7
0 for ` > 7.

This can be summed up by:

Theorem 2.5. M(Q) = 27.33.5.7.

2.5. Example: the case of a finite field.

Theorem 2.6. If k is a finite field with q elements, we have

M(k) =

{
3.(q4 − 1)(q6 − 1) if q ≡ 4 or 7 (mod 9),
(q4 − 1)(q6 − 1) otherwise.
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Proof. Denote by M ′(k, `) the `-adic valuation of the right side of the formulae
above.

If ` is not equal to 3, M ′(k, `) is equal to

v`(q4 − 1) + v`(q6 − 1)

and we have to check that M ′(k, `) is equal to M(k, `).
Consider first the case ` = 2. It follows from the definition of m that v2(q2−1) =

m+ 1, and hence v2(q4−1) = m+ 2 and v2(q6−1) = m+ 1. This gives M ′(k, `) =
2m+ 3 = M(k, `).

If ` > 3, the invariant t is the smallest integer > 0 such that qt = 1 (mod `). If
t = 5 or t > 6, this shows that M ′(k, `) = 0.

If t = 3 or 6, q4 − 1 is not divisible by ` and q6 − 1 is divisible by `; moreover,
one has v`(q6−1) = m. This gives M ′(k, `) = m = M(k, `). Similarly, when t = 4,
the only factor divisible by ` is q4 − 1 and its `-adic valuation is m. When t = 1 or
2, both factors are divisible by ` and their `-adic valuation is m.

The argument for ` = 3 is similar: we have

v3(q4 − 1) = m and v3(q6 − 1) = m+ 1.

The congruence q ≡ 4 or 7 (mod 9) means that t = m = 1.

For instance:
M(F2) = 33.5.7; M(F3) = 27.5.7.13; M(F4) = 34.52.7.13.17;

M(F5) = 27.33.7.13.31; M(F7) = 29.34.52.19.43.

2.6. Example: the p-adic field Qp. For ` 6= p, the t, m invariants of Qp are the
same as those of F̀ , and for ` = p they are the same as those of Q.

This shows that Qp is “small”, and a simple computation gives

M(Qp) = c(p).(p4 − 1)(p6 − 1),

with

c(2) = 27; c(3) = 33; c(5) = 5; c(7) = 3.7;
c(p) = 3 if p > 7 and p ≡ 4 or 7 (mod 9);
c(p) = 1 otherwise.

For instance:

M(Q2) = 27.33.5.7; M(Q3) = 27.33.5.7.13; M(Q5) = 27.33.5.7.13.31;

M(Q7) = 29.34.52.7.19.43; M(Q11) = 27.33.52.7.19.37.61.

2.7. Remarks. 1. The statement of Theorem 2.6 is reminiscent of the formula
which gives the order of G(k), where G is a split semisimple group and |k| = q. In
such a formula, the factors have the shape (qd − 1), where d is an invariant degree
of the Weyl group, and the number of factors is equal to the rank of G. Here also
the number of factors is equal to the rank of Cr, which is 2. The exponents 4 and
6 are less easy to interpret. In the proofs below, they occur as the maximal orders
of the torsion elements of the “Weyl group” of Cr, which is GL2(Z). See also §6.
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2. Even though Theorem 2.6 is a very special case of Theorem 2.1, it contains
almost as much information as the general case. More precisely, we could deduce
Theorem 2.1.(i) [which is the hard part] from Theorem 2.6 by the Minkowski method
of reduction (mod p) explained in [Se07, §6.5].

3. In the opposite direction, if we know Theorem 2.1.(i) for fields of character-
istic 0 (in the slightly more precise form given in §4.1), we can get it for fields of
characteristic p > 0 by lifting over the ring of Witt vectors; this is possible: all the
cohomological obstructions vanish (for a detailed proof, see [Se08, §5]).

4. For large fields, the invariant m can be∞. If t is not 1, 2, 3, 4 or 6, Corollary
2.2 tells us that Cr(k) is `-torsion-free. But if t is one of these five numbers, the
above theorems tell us nothing. Still, as in [Se07, §14, Theorem 12 and Theorem
13] one can prove the following:

a) If t = 3, 4 or 6, then Cr(k) contains a subgroup isomorphic to Q`/Z` and
does not contain Q`/Z` ×Q`/Z`.

b) If t = 1 or 2, then Cr(k) contains a subgroup isomorphic to Q`/Z` ×Q`/Z`

and does not contain a product of three copies of Q`/Z`.

§3. Proof of Theorem 2.1(ii)

We have to construct large `-subgroups of Cr(k). It turns out that we only need
two constructions, one for the very special case ` = 3, t = 1, m = 1, and one for all
the other cases.

3.1. The special case ` = 3, t = 1, m = 1. We need to construct a subgroup
of Cr(k) of order 34. To do so we use the Fermat cubic surface S given by the
homogeneous equation

x3 + y3 + z3 + t3 = 0.

It is a smooth surface, since p 6= 3. The fact that t = 1 means that k contains a
primitive cubic root of unity. This implies that the 27 lines of S are defined over
k, and hence S is k-rational: its function field is isomorphic to K = k(X, Y ). Let
A be the group of automorphisms of S generated by the two elements

(x, y, z, t) 7→ (rx, y, z, t) and (x, y, z, t) 7→ (y, z, x, t)

where r is a primitive third root of unity.
We have |A| = 34 and A is a subgroup of Aut(S), hence a subgroup of Cr(k).

3.2. The generic case. Here is the general construction:
One starts with a 2-dimensional torus T over k, with an `-group C acting faith-

fully on it. Let B be an `-subgroup of T (k). Assume that B is stable under C, and
let A be the semi-direct product A = B.C. If we make B act on the variety T by
translations, we get an action of A, which is faithful. This gives an embedding of A
in Aut(k(T )), where k(T ) is the function field of T . By a theorem of Voskresenskĭı
(see [Vo98, §4.9]) k(T ) is isomorphic to K = k(X, Y ). We thus get an embedding
of A in Cr(k). Note that B is toral, i.e. is contained in the k-rational points of a
maximal torus of Cr.
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It remains to explain how to choose T , B and C. We shall define T by giving
the action of Γk = Gal(ks/k) on its character group; this amounts to giving an
homomorphism Γk → GL2(Z).

3.2.1. The case ` = 2. Let n be an integer 6 m. If z(n) is a primitive 2n-root
of unity, k contains z(n) + z(n)−1. The field extension k(z(n))/k has degree 1
or 2, hence defines a character Γk → {1, −1}. Let T1 be the 1-dimensional torus
associated with this character. If k(z(n)) = k , T1 is the split torus Gm and we have
T1(k) = k∗. If k(z(n)) is quadratic over k, T1(k) is the subgroup of k(z(n))∗ made
up of the elements of norm 1. In both cases, T1(k) contains z(n). We now take
for T the torus T1 × T1 and for B the subgroup of elements of T of order dividing
2n. We have v2(B) = 2n. We take for C the group of automorphisms generated by
(x, y) 7→ (x−1, y) and (x, y) 7→ (y, x); the group C is isomorphic to the dihedral
group D4; its order is 8. We then have v2(A) = v2(B) +v2(C) = 2n+ 3, as wanted.

(Alternate construction: the group Cr1(k) = PGL2(k) contains a dihedral sub-
group D of order 2n+1; by using the natural embedding of (Cr1(k) × Cr1(k)).2
in Cr(k) we obtain a subgroup of Cr(k) isomorphic to (D × D).2, hence of order
22n+3.)

3.2.2. The case ` > 2. We start similarly with an integer n 6 m. We may assume
that the invariant t is equal to 1, 2, 3, 4 or 6; if not we could take A = 1. Call
Ct the Galois group of k(z)/k , cf. §1. It is a cyclic group of order t. Choose an
embedding of Ct in GL2(Z), with the condition that, if t = 2, then the image of
Ct is {1, −1}. The composition map

r : Γk → Gal(k(z)/k) = Ct → GL2(Z)

defines a 2-dimensional torus T .
The group B is the subgroup T (k)[`n] of T (k) made up of elements of order

dividing `n. We take C equal to 1, except when ` = 3 where we choose it of order
3 (this is possible since t = 1 or 2 for ` = 3, and the group of k-automorphisms of
T is isomorphic to GL2(Z)). We thus have:

v`(A) = v`(B) if ` > 3 and v`(A) = 1 + v`(B) if ` = 3.

It remains to estimate v`(B). Namely:

(3.2.3) v`(B) = 2n if t = 1 or 2.

This is clear if t = 1 because in that case T is a split torus of dimension 2, and k
contains z(n).

If t = 2, then T = T1 × T1, where T1 is associated with the quadratic character
Γk → Gal(k(z)/k). We may identify T1(k) with the elements of norm 1 of k(z), and
this shows that z(n) is an element of T1(k) of order 2n. We thus get v`(B) = 2n.

(3.2.4) v`(|B|) > n if t = 3, 4 or 6.

We use the description of T given in [Se07, §5.3]: let L be the field k(z). It is
a cyclic extension of k of degree t. Let s be a generator of Ct = Gal(L/k). Let
TL = RL/k(Gm) be the torus “multiplicative group of L”; we have dimTL = t,
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and s acts on TL. We have st − 1 = 0 in End(TL). Let F (X) be the cyclotomic
polynomial of index t, i.e.

F (X) = X2 +X + 1 if t = 3,

F (X) = X2 + 1 if t = 4,

F (X) = X2 −X + 1 if t = 6.

This polynomial divides Xt−1; let G(X) be the quotient (Xt−1)/F (X), and let
u be the endomorphism of T1 defined by u = G(s). One checks (loc. cit.) that the
image T of u : T1 → T1 is a 2-dimensional torus, and s defines an automorphism sT

of T of order t, satisfying the equation F (sT ) = 0. This shows that T is the same as
the torus also called T above. Moreover, it is easy to check that the element z(n) of
T1(k) is sent by u into an element of T (k) of order `n. This shows that v`(B) > n.

[When t = 3, we could have defined T as the kernel of the norm mapN : T1→Gm.
There is a similar definition for t = 4, but the case t = 6 is less easy to describe
concretely.]

This concludes the proof of the “existence part” of Theorem 2.1.

§4. Proof of Theorem 2.1(i)

4.1. Generalization. In Theorem 2.1.(i), the hypothesis made on the `-group A
is that it is contained in Cr(k). This is equivalent to saying that A is contained
in Aut(S), where S is a k-rational surface, cf. e.g. [DI06, Lemma 6]. We now
want to relax this hypothesis: we will merely assume that S is a surface which is
“geometrically rational”, i.e. becomes rational over k; for instance S can be any
smooth cubic surface in P3. In other words, we will be interested in field extensions
L of k with the property:

(4.1.1) k ⊗ L is k-isomorphic to k(X, Y ).

We shall say that a group A has “property Crk” if it can be embedded in Aut(L),
for some L having property (4.1.1). The bound given in Theorem 2.1.(i) is valid
for such groups. More precisely:

Theorem 4.1. If a finite `-group A has property Crk, then v`(A) 6 M(k, `), where
M(k, `) is as in §2.1.

This is what we shall prove. Note that we may assume that k is perfect since
replacing k by its perfect closure does not change the invariants t, m and M(k, `).

[As mentioned in §2.7, we could also assume that k is finite, or, if we preferred
to, that char(k) = 0. Unfortunately, none of these reductions is really helpful.]

4.2. Reduction to special cases. We start from an `-group A having property
Crk. As explained above, this means that we can embed A in Aut(S), where S is
a smooth projective k-surface, which is geometrically rational. Now, the basic tool
is the “minimal model theorem” (proved in [DI06, §2]) which allows us to assume
that S is of one of the following two types:
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a) (conic bundle case) There is a morphism f : S → C, where C is a smooth
genus zero curve, such that the generic fiber of f is a smooth curve of genus 0.
Moreover, A acts on C and f is compatible with that action.

b) (Del Pezzo) S is a Del Pezzo surface, i.e. its anticanonical class −KS is ample.

In case b), the degree deg(S) is defined as KS .KS (self-intersection); one has
1 6 deg(S) 6 9.

We shall look successively at these different cases. In the second case, we shall
use without further reference the standard properties of the Del Pezzo surfaces; one
can find them for instance in [De80], [Do07], [DI06], [Ko96], [Ma66] and [Ma86].

Remark. In some of these references, the ground field is assumed to be of charac-
teristic 0, but there is very little difference in characteristic p > 0; moreover, as
pointed out above, the characteristic 0 case implies the characteristic p case, thanks
to the fact that |A| is prime to char(k).

4.3. The conic bundle case. Let f : S → C be as in a) above, and let A0 be the
subgroup of Aut(C) given by the action of A on C. The group Aut(C) is a k-form
of PGL2. By using (for instance) [Se07, Theorem 5] we get:

v`(A0) 6


m+ 1 i ` = 2,
m if ` > 2 and t = 1 or 2,
0 if t > 2.

Let B be the kernel of A → A0. The group B is a subgroup of the group of
automorphisms of the generic fiber of f . This fiber is a genus 0 curve over the
function field kC of C. Since kC is a regular extension of k, the t and m invariants
of kC are the same as those of k. We then get for v`(B) the same bounds as for
v`(A0), and by adding up this gives:

v`(A) 6


2m+ 2 if ` = 2,
2m if ` > 2 and t = 1 or 2,
0 if t > 2.

In each case, this gives a bound which is at most equal to the number M(k, `)
defined in §2.1.

4.4. The Del Pezzo case: degree 9. Here S is k-isomorphic to the projective
plane P2; in other words, S is a Severi–Brauer variety of dimension 2. The group
AutS is an inner k-form of PGL3. By using [Se07, §6.2] one finds:

v`(A) 6



2m+ 1 if ` = 2,
2m+ 1 if ` = 3, t = 1,
m+ 1 if ` = 3, t = 2,
2m if ` > 3, t = 1,
m if ` > 3, t = 2 or 3,
0 if t > 3.

Here again, these bounds are 6 M(k, `).
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4.5. The Del Pezzo case: degree 8. This case splits into two subcases:
a) S is the blow up of P2 at one rational point. In that case A acts faithfully on

P2 and we apply 4.4.
b) S is a smooth quadric of P3. The connected component Aut0(S) of Aut(S)

has index 2. It is a k-form of PGL2 ×PGL2. If we denote by A0 the intersection
of A with Aut0(S), we obtain, by [Se07, Theorem 5], the bounds:

v`(A0) 6


2m+ 2 if ` = 2,
2m if ` > 2 and t = 1 or 2,
m if t = 3, 4 or 6,
0 if t = 5 or t > 6.

Since v`(A) = v`(A0) if ` > 2 and v`(A) 6 v`(A0)+1 if ` = 2, we obtain a bound
for v`(A) which is 6 M(k, `).

Remarks. 1) Note the case ` = 2, where the M(k, `) bound 2m+3 can be attained.
2) In the case t = 6, the bound v`(A0) 6 m given above can be replaced by

v`(A0) = 0, but this is not important for what we are doing here.

4.6. The Del Pezzo case: degree 7. This is a trivial case; there are 3 exceptional
curves on S (over k), and only one of them meets the other two. It is thus stable
under A, and by blowing it down, one is reduced to the degree 8 case. [This case
does not occur if one insists, as in [DI07], that the rank of Pic(S)A be equal to 1.]

4.7. The Del Pezzo case: degree 6. Here the surface S has 6 exceptional curves
(over k); their incidence graph Σ is an hexagon. There is a natural homomorphism

g : Aut(S)→ Aut(Σ)

and its kernel T is a 2-dimensional torus. Put A0 = A ∩ T (k). The index of A0 in
A is a divisor of 12. By [Se07, Theorem 4], we have

v`(A0) 6


2m if t = 1 or 2 (i.e. if ϕ(t) = 1),
m if t = 3, 4 or 6 (i.e. if ϕ(t) = 2),
0 if t = 5 or t > 6.

Hence:

v`(A) 6



2m+ 2 if ` = 2,
2m+ 1 if ` = 3,
2m if ` > 3 and t = 1 or 2,
m if t = 3, 4 or 6,
0 if t = 5 or t > 6.

These bounds are 6 M(k, `).

Remarks. 1) Note the case t = 6, where the bound m can actually be attained.
2) In the case t = 4, the bound v`(A) 6 m given above can be replaced by

v`(A) = 0.



A BOUND FOR THE ORDERS OF FINITE SUBGROUPS OF THE CREMONA GROUP 203

4.8. The Del Pezzo case: degree 5. As above, let Σ be the incidence graph of
the exceptional curves of S. Since deg(S) 6 5, the natural map Aut(S)→ Aut(Σ) is
injective. We can thus identify A with its image in Aut(Σ). In the case deg(S) = 5,
the graph Σ is the Petersen graph, and Aut(Σ) is isomorphic to the symmetric
group S5. This shows that

v`(A) 6


3 if ` = 2,
1 if ` = 3 or 5,
0 if ` > 5,

and we conclude as before.

4.9. The Del Pezzo case: degree 4. This case is similar to the preceding one.
Here Aut(Σ) is isomorphic to the group 24.S5 = Weyl(D5); its order is 27.3.5. We
get the same bounds as above, except for ` = 2 where we find v`(A) 6 7, which is
6 M(k, 2) [recall that M(k, 2) = 2m+ 3 and that m > 2 for ` = 2].

4.10. The Del Pezzo case: degree 3. Here S is a smooth cubic surface, and A
embeds in Weyl(E6), a group of order 27.34.5. This gives a bound for v`(A) which
gives what we want, except when ` = 3. In the case ` = 3, it gives v`(A) 6 4, but
Theorem 2.1 claims v`(A) 6 3 unless k contains a primitive cubic root of unity. We
thus have to prove the following lemma:

Lemma 4.2. Assume that |A| = 34, that A acts faithfully on a smooth cubic surface
S over k, and that char(k) 6= 3. Then k contains a primitive cubic root of unity.

Proof. The structure of A is known since A is isomorphic to a 3-Sylow subgroup of
Weyl(E6). In particular the center Z(A) of A is cyclic of order 3 and is contained
in the commutator subgroup of A. Since A acts on S, it acts on the sections of
the anticanonical sheaf of S; we get in this way a faithful linear representation
r : A→ GL4(k). Over k, r splits as r = r1 + r3 where r1 is 1-dimensional and r3 is
irreducible and 3-dimensional. If z is a non trivial element of Z(A), the eigenvalues
of z are {1, r, r, r} where r is a primitive third root of unity. This shows that r
belongs to k.

4.11. The Del Pezzo case: degree 2. Here A embeds in Weyl(E7), a group of
order 210.34.5.7. This gives a bound for v`(A), but this bound is not good enough.
However, the surface S is a 2-sheeted covering of P2 (the map S → P2 being the
anticanonical map) and we get a homomorphism g : A → PGL3(k) whose kernel
has order 1 or 2. We then find the same bounds for v`(A) as in §4.2, except that,
for ` = 2, the bound is 2m+ 2 instead of 2m+ 1.

4.12. The Del Pezzo case: degree 1. We use the linear series |−2KS |. It gives
a map g : S → P3 whose image is a quadratic cone Q, cf. e.g. [De80, p. 68]. This
realizes S as a quadratic covering of Q. If B denotes the automorphism group of
Q defined by A, we have v`(A) = v`(B) if ` > 2 and v`(A) 6 v`(B) + 1 if ` = 2.
But B is isomorphic to a subgroup of k∗ ×Aut(C), where C is a curve of genus 0.
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This implies

v`(B) 6


m+m+ 1 if ` = 2,
m+m if t = 1,
0 +m if t = 2, ` > 2,
0 + 0 if t > 2.

The corresponding bound for v`(A) is 6 M(k, `).

This concludes the proof of Theorem 4.1 and hence of Theorem 2.1.

§5. Structure and conjugacy properties of `-subgroups of Cr(k)

5.1. The `-subgroups of Cr(k). The main theorem (Theorem 2.1) only gives
information on the order of an `-subgroup A of Cr(k), assuming as usual that
` 6= char(k). As for the structure of A, we have:

Theorem 5.1. (i) If ` > 3, A is abelian of rank 6 2 (i.e. can be generated by two
elements).

(ii) If ` = 3 (resp. ` = 2) A contains an abelian normal subgroup of rank 6 2
with index 6 3 (resp. with index 6 8).

Proof. Most of this is a consequence of the results of [DI06]; see also [Bl06] and
[Be07]. The only case which does not seem to be explicitly in [DI06] is the case
` = 2, when A is contained in Aut(S), where S is a conic bundle. Suppose we are
in that case and let f : S → C and A0, B be as in §4.3, so that we have an exact
sequence 1→ B → A→ A0 → 1, with A0 ⊂ Aut(C), and B ⊂ Aut(F ) where F is
the generic fiber of f (which is a genus zero curve over the function field k(C) of
C). We use the following lemma:

Lemma 5.2. Let a ∈ A and b ∈ B be such that a normalizes the cyclic group 〈b〉
generated by b. Then aba−1 is equal to b or to b−1.

Proof of the lemma. Let n be the order of b. If n = 1 or 2, there is nothing to
prove. Assume n > 2. By extending scalars, we may also assume that k contains
the primitive n-th roots of unity. Since b is an automorphism of F of order n, it
fixes two rational points of F which one can distinguish by the eigenvalue of b on
their tangent space: one of them gives a primitive n-th root of unity z, and the
other one gives z′ = z−1. [Equivalently, b fixes two sections of f : S → C.] The pair
(z, z′) is canonically associated with b. Hence the pair associated with aba−1 is also
(z, z′). On the other hand, if aba−1 = bi with i ∈ Z/nZ, then the pair associated
to ai is (zi, z′i). This shows that zi is equal to either z or z−1, hence i ≡ 1 or −1
(mod n). The result follows.

End of the proof of Theorem 5.1 in the case ` = 2. Since B is a finite 2-subgroup
of a k(C)-form of PGL2, it is either cyclic or dihedral. In both cases, it contains a
characteristic subgroup B1 of index 1 or 2 which is cyclic. Similarly, A has a cyclic
subgroup A1 which is of index 1 or 2. Let a ∈ A be such that its image in A0

generates A1. If b is a generator of B1, Lemma 5.2 shows that a2 commutes with
b. Let 〈b, a2〉 be the abelian subgroup of A generated by b and a2. It is normal in
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A, and the inclusions 〈b, a2〉 ⊂ 〈b, a〉 ⊂ B.〈a〉 ⊂ A show that its index in A is at
most 8.

Remark. Similar arguments can be applied to prove a Jordan-style result on the
finite subgroups of Cr(k), namely:

Theorem 5.3. There exists an integer J > 1, independent of the field k, such that
every finite subgroup G of Cr(k), of order prime to char(k), contains an abelian
normal subgroup A of rank 6 2, whose index in G divides J .

The proof follows the same pattern: the conic bundle case is handled via Lemma
5.2 and the Del Pezzo case via the fact that G has a subgroup of bounded index
which is contained in a reductive group of rank 6 2, so that one can apply the usual
form of Jordan’s theorem to that group. As for the value of J , a crude computation
shows that one can take J = 210.34.52.7; the exponents of 2 and 3 can be somewhat
lowered, but those of 5 and 7 cannot since Cr(C) contains A5×A5 and PSL2(F7).

5.2. The cases t = 3, 4, 6. More precise results on the structure of A depend on
the value of the invariant t = t(k, `). Recall that t = 1, 2, 3, 4 or 6 if A 6= 1, cf.
Cor. 2.2. We shall only consider the cases t = 3, 4 or 6 which are the easiest. See
[DI07, §4] for a (more difficult) conjugation theorem which applies when t = 1 or 2.
Recall (cf. §3.2) that A is said to be toral if there exists a 2-dimensional subtorus
T of Cr (in the sense of [De70]) such that A is contained in T (k). We have:

Theorem 5.4. Assume that t = 3, 4 or 6. Then:
(a) A is cyclic of order `n with n 6 m.
(b) A is toral, except possibly if |A| = 5.
(c) If A′ is a subgroup of Cr(k) of the same order as A, then A′ is conjugate

to A in Cr(k), except possibly if |A| = 5.

Note that the hypothesis t = 3, 4 or 6 implies ` > 5. Moreover, if ` = 5, then
t = 4 and, if ` = 7, then t = 3 or 6.

Proof of (a) and (b). We follow the same method as above, i.e. we view A as a
subgroup of Aut(S), where S is either a conic bundle or a Del Pezzo surface. The
bounds given in §4.3 show that A = 1 if S is a conic bundle (this is why this case
is easier than the case t = 1 or 2). Hence we may assume that S is a Del Pezzo
surface. Let d be its degree. We have an exact sequence:

1→ G(k)→ Aut(S)→ E → 1,

where G = Aut(S)0 is a connected linear group of rank 6 2 and E is a subgroup
of a Weyl group W depending on d (e.g. W = Weyl(E8) if d = 1).

Consider first the case ` > 7. The order of W is not divisible by `; hence A
is contained in G(k). Since A is commutative, there exists a maximal torus T of
G such that A is contained in the normalizer N of T , cf. e.g. [Se07, §3.3]; since
` > 3, the order of N/T is prime to `, hence A is contained in T (k) and this implies
dim(T ) > 2 by [Se07, §4.1]. This proves (b), and (a) follows from Lemma 5.5 below.

Suppose now that ` = 5 or 7, and let n = v`(A). If n = 1 and ` = 5 , there
is nothing to prove. If n = 1 and ` = 7, then (a) is obvious and (b) is proved in
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[DI07, Prop. 3] (indeed Dolgachev and Iskovskikh prove (b) when v`(A) = 1, and
they also prove (c) for ` = 7). We may thus assume that n > 1. If d 6 5, then
G = 1 and A embeds in E; but E does not contain any subgroup of order `2 (see
the tables in [DI06] and [Bl06]); hence this case does not occur. If d > 5, then the
order of E is prime to `, hence A is contained in G(k) and the proof above applies.

Proof of (c). By (b), we have A ⊂ T (k) and A′ ⊂ T ′(k) where T and T ′ are
2-dimensional subtori of Cr. By Lemma 5.5 below, these tori are isomorphic; by a
standard argument (see e.g. [De70, §6] this implies that T and T ′ are conjugate by
an element of Cr(k); moreover A (resp. A′) is the unique subgroup of order `n of
T (k) (resp. of T ′(k)). Hence A and A′ are conjugate in Cr(k).

Remark. The case |A| = 5 is indeed exceptional: there are examples of such A’s
which are not toral, cf. [Be07], [Bl06], [DI06].

5.3. A uniqueness result for 2-dimensional tori. We keep the assumption
that t = 3, 4 or 6. We have seen in §3.2.2 that there exists a 2-dimensional k-torus
T such that T (k) contains an element of order `.

Lemma 5.5. (a) Such a torus is unique, up to k-isomorphism.
(b) If n 6 m = m(k, `), then T (k)[`n] is cyclic of order `n.

Proof of (a). Let L = Homks
(Gm, T ) be the group of cocharacters of T . It is a

free Z-module of rank 2, with an action of Γk = Gal(ks/k). If we identify L with
Z2, this action gives a homomorphism r : Γk → GL2(Z) which is well defined up
to conjugation. Let G be the image of r. Since G is a finite subgroup of GL2(Z),
its order divides 24, and hence is prime to `.

The Γk-module T (ks)[`] of the `-division points of T (ks) is canonically isomorphic
to L/`L ⊗ µ`, where µ` is the group of `-th roots of unity in ks. This shows that
L/`L contains a rank-1 submodule I which is isomorphic to the dual µ∗` of µ`. The
action of G on L/`L is semisimple since |G| is prime to `. Hence there exists a
rank 1 submodule J of L/`L such that L/`L = I ⊕ J . By a well-known lemma of
Minkowski (see e.g. [Se07, Lemma 1]), the action of G on L/`L is faithful. This
shows that G is commutative. Moreover, the character giving the action of Γk on
I has an image which is cyclic of order t. Since t = 3, 4 or 6, this shows that
G contains an element of order 3 or 4. One checks that these properties imply
G ⊂ SL2(Z) i.e. det(r) = 1, hence the Γk-modules I and J are dual of each other,
i.e. J ' µ`. We thus have L/`L ' µ` ⊕ µ∗` . We may then identify r with the
homomorphism Γk → Ct → GL2(Z), where Ct is the Galois group of k(µ`/k)
and Ct → GL2(Z) is an inclusion. Since any two such inclusions only differ by an
inner automorphism of GL2(Z), this shows that the Γk-module L is unique, up to
isomorphism; hence the same is true for T .

Proof of (b). Assertion (b) follows from the description of T given in §3.2.2. It
can also be checked by writing explicitly the Γk-module L/`nL; when n 6 m this
module is isomorphic to the direct sum of µ`n and its dual.

Remarks. 1) If n > m we have T (k)[`n] = T (k)[`m]. This can be seen, either by a
direct computation of `-adic representations, or by looking at §3.2.2.
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2) When t = 1 or 2, it is natural to ask for a 2-dimensional torus T such that
T (k) contains Z/`Z ⊕Z/`Z. Such a torus exists, as we have seen in §3.2. If ` > 2,
it is unique, up to isomorphism. There is a similar result for ` = 2, if one asks not
merely that T (k) contains Z/2Z× Z/2Z but that it contains Z/4Z× Z/4Z.

§6. The Cremona groups of rank > 2

For any r > 0 the Cremona group Crr(k) of rank r is defined as the group
Autk k(T1, . . . , Tr) where (T1, . . . , Tr) are r indeterminates. When r > 2 not
much seems to be known on the finite subgroups of Crr(k), even in the classical
case k = C. For instance:

6.0. Does there exist a finite group which is not embeddable in Cr3(C)?

This looks very likely. It is natural to ask for much more, for instance:

6.1 (Jordan bound, cf. Theorem 5.3). Does there exist an integer N(r) > 0, de-
pending only on r, such that, for every finite subgroup G of Crr(k) of order prime
to char(k), there exists an abelian normal subgroup A of G, of rank 6 r, whose
index divides N(r)?

Note that this would imply that, for ` large enough (depending on r), every finite
`-subgroup of Crr(k) is abelian of rank 6 r.

6.2 (cf. [Se07, §6.9]). Is it true that r > ϕ(t) if Crr(k) contains an element of
order `?

6.3. Let G ⊂ Crr(k) be as in 6.1, and assume that k is small (cf. §2.3). Is it true
that |G| is bounded by a constant depending only on r and the cyclotomic invariants
(t, m) of k?

If the answer to 6.3 is “yes” we may define Mr(k) as the l.c.m. of all such |G|’s,
and ask for an estimate of Mr(k). For instance, in the case r = 3:

6.4. Is it true that M3(k) is equal to M1(k)M2(k)?

If k is finite with q elements, this means (cf. §2.5):

6.5. Is it true that

M3(k) =

{
3.(q2 − 1)(q4 − 1)(q6 − 1) if q ≡ 4 or 7 (mod 9),
(q2 − 1)(q4 − 1)(q6 − 1) otherwise?

For larger r’s the polynomial (X2−1)(X4−1)(X6−1) of 6.5 should be replaced
by the polynomial Pr(X) defined by the formula

Pr(X) =
∏
d

Φd(X)[r/ϕ(d)],

where Φd(X) is the d-th cyclotomic polynomial.

Examples. P4(X) = (X6−1)(X8−1)(X10−1)(X12−1); P5(X) = (X2−1)P4(X).

With this notation, the natural question to ask seems to be:
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6.6. Is it true that there exists an integer c(r) > 0 such that Mr(Fq) divides
c(r).Pr(q) for every q?

Unfortunately, I do not see how to attack these questions; the method used for
rank 2 is based on the detailed knowledge of the “minimal models”, and this is not
available for higher ranks.

Acknowledgment. I wish to thank A. Beauville for a series of e-mails in 2003–
2005 which helped me to correct the naive ideas I had on the Cremona groups.
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