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Introduction

I have often used my friend Walter Feit as a source of examples and counterexamples in group
theory. One such case is [S], on “converse theorems” for the semisimplicity of tensor products.
A much older one is the following, which dates from 1974:

Let ρ :G → GLn(K) be a linear representation of a finite group G over a number field K .
Let OK be the ring of integers of K .

Question 1. Can one write ρ over OK , i.e. is ρ conjugate to a homomorphism of G into
GLn(OK)?

It is easy to see that the answer is “yes” if one is allowed to replace K by a suitable finite
extension. But, if one refuses such an easy way out, what is the answer?
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In more intrinsic terms, let us view ρ as G → GL(V ), where V is an n-dimensional K-vector
space. There are OK -lattices L of V which are stable under the action of G, and Question 1 can
be reformulated as:

Question 1′. Can one choose L in such a way that it is free over OK?

Recall (cf. e.g. [B, §4, n◦10]) that any lattice L has an invariant c(L) which belongs to the
ideal class group CK = Pic(OK) of K ; one may describe c(L) as the class of the invertible
OK -module

∧n
L in Pic(OK). One has c(L) = 0 if and only if L is free.

When I wrote to Feit about this, in 1974, I was not expecting that these questions would
always have a positive answer, but I did not know any counterexample. That is what I asked Feit,
and the answer was not long in coming. Within a few days, he sent me a proof of:

Theorem. (Feit, 1974, unpublished, but see [CRW].) If G is the quaternion group of order 8,
K is the field Q(

√−35 ) and ρ :G → GL2(K) is irreducible, then the answer to Question 1
is NO.

(In that case, the class group CK has order 2, and Feit showed that, if L is any G-stable lattice,
then c(L) is the unique non trivial element of CK .)

This was very satisfactory—except that the role of
√−35 was rather mysterious. Of course, if

K is a quadratic field, the irreducible representation ρ cannot exist unless K splits the quaternion
skew field, which means that K is imaginary, and that the prime 2 is either inert or ramified
in K . There are many such fields, for instance those of the form Q(

√−N ) with N > 0 and
N ≡ 3 (mod 8). Which ones would give a NO answer? I discussed this with Feit, and I ended
up by proving that (in the above case) one gets a NO answer if and only if N is divisible, with
odd exponent, by a prime p with p ≡ ±1 (mod 8); in particular, Feit’s example N = 5.7 is
the smallest such N ; other examples are N = 51,91,115, etc. The proof I had at the time was
computational. It is only recently (1997) that I noticed that the result can be viewed as a special
case of the “genus theory” of Gauss [G] and Hilbert [H]. I wrote this in the form of three letters
to Feit. He urged me to publish them. This is what I do now, as a small tribute to an old friend.

Here are the letters:

Paris, February 26, 1997

Dear Feit,

Let me take up again—after a 22 years interval—our discussion of your example of a repre-
sentation of Q8 (quaternion group) which cannot be got by a free module.

Let K = Q(
√−N ), where N is a square-free integer, N ≡ 3 (mod 8). Let us denote by ON

the ring of integers of K ; the prime 2 is inert (i.e. ON/2.ON = F4); let O ′
N = ON [1/2]. The

class groups of ON and O ′
N are isomorphic. I denote them by CN .

The field K splits the quaternions. Hence there is an irreducible representation of G = Q8, of
degree 2, over K . Let V be that representation. We are interested in the following property of V :

(1) There is an ON -free lattice of V which is stable under G (i.e. the corresponding representa-
tion of G can written with matrices with coefficients in ON , and not merely with coefficients
in K).
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The answer is:

Theorem. Property (1) is equivalent to each of the following:
(2) N can be written as x2 + 2y2, with x, y ∈ Z.
(3) Every prime divisor p of N is congruent (mod 8) to either 1 or 3.
(The equivalence of (2) and (3) is elementary.)

This theorem shows, for instance, that (1) is not true if N = 5q , where q is any prime with
q ≡ 7 (mod 8). Your N = 5.7 is thus the first of an infinite list.

The first step is to look at all possible lattices which are stable under G. It is simpler to do so
over the ring O ′

N = ON [1/2]. Indeed, if L is an O ′
N -lattice of V stable under G, every other such

lattice is of the form a.L, where a is an O ′
N -fractional ideal (irreducibility of the representation

in characteristic �= 2). Hence the invariant of L in the class group CN is well defined up to
multiplication by a square. We thus get an invariant c ∈ CN/(CN)2. Property (1) is equivalent to
c = 1. Hence we have to compute c.

Since we are computing in the group C = CN/(CN)2, we can take advantage of the “theory
of genera,” due essentially to Gauss, which gives a very concrete description of C. Let me recall
how one does this. Let S be the set of primes dividing N , so that N = ∏

p∈S p. Put s = |S|.
Gauss’s theory tells us that the elementary 2-group C has rank s − 1, and also gives explicit
characters χp :C → {±1}, for each p ∈ S. More precisely, if g is any element of C, we can

represent g by an integral ideal a which is prime to p; moreover the Legendre symbol (
Na

p
),

where Na is the norm of a, is independent of the choice of a in g. One then defines

χp :C → {±1}

by χp(g) = (
Na

p
).

The characters χp (p ∈ S) have product 1, and they give an isomorphism of C onto the
subgroup of {±1}S consisting of families of ±1 with product 1.

(From the point of view of class field theory, χp corresponds to the unramified quadratic
extension of KN generated by

√
p∗, with p∗ = ±p,p∗ ≡ 1 (mod 4), as usual—I am assuming

here that N is not a prime, since in that case C is trivial.)
Let us now come back to the invariant c we want to compute. By the above, this amounts to

computing χp(c) for every p ∈ S. The result is the following:

Formula. χp(c) = (−2
p

) for every p ∈ S.

Since (−2
p

) = 1 if and only if p ≡ 1,3 (mod 8), this formula shows that c = 1 if and only if
condition (3) above is fulfilled. Hence the theorem.

(Moreover, when it is not fulfilled, the formula tells us where the obstruction lies.)
Let me now prove the formula. I follow the starting point of your method. Namely, let D be

the standard quaternion field. Since N ≡ 3 (mod 8), the field KN can be embedded in D. In
particular, ON can be put in D (such an embedding amounts to choosing a decomposition of N

as a sum of 3 squares—and, again by Gauss’s Disquisitiones, we know that this defines an ideal
class of ON —I will not need this). Let R be any maximal order of D containing ON . As you
explained in your 1974 letter, we can take for V the K-vector space D, and we can choose for
lattice the maximal order R. Hence, if a is the invariant in CN of the ON -module R, our c is just
the class of a modulo squares. What we have to do is to compute χp(a) for every p ∈ S.
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To do so, notice first that we may write the quaternion algebra D as (−N,−x), for some
x ∈ Q∗, since it is split by KN . Moreover, one sees easily that x has 2-adic valuation equal to
1 (mod 2), and hence can be chosen of the form x = 2a, where a is a positive odd square-free
integer. This means that D contains an element q with

q2 = −2a, qzq−1 = z̄ for every z ∈ KN.

If you put:

R(N,q) = ON ⊕ qON,

one gets an order of D. Choose a maximal order R containing R(N,q). Since R(N,q) is ON -
free, the invariant of R is given by the formula:

inv(R) = (
R/R(N,q)

)
K

where I denote by (M)K the ideal attached to a finite ON -module (by Jordan–Hölder). In par-
ticular, the norm of that ideal is equal to the index (R : R(N,q)) of R(N,q) in the maximal
order R. But that index is easy to compute. One way to do it is to look at the corresponding
quadratic form N(z) of the quaternion algebra. On R, that quadratic form has discriminant 22.
On R(N,q), that form is f ⊕ 2af , where f is the norm form of ON . Since the discriminant of
f is −N , we thus get the discriminant (2aN)2. Comparing the two results show that the index
we are looking at is equal to aN . Now N is the norm of the principal ideal generated by

√−N .
We can suppress it. We thus see that the invariant χp(c) is given by:

(4) χp(c) = ( a
p
) for p ∈ S.

But we have by assumption (−1,−1) = (−N,−2a). The p-component of (−1,−1) is trivial,
and that of (−N,−2a) is equal to (−2a

p
). Hence we have ( a

p
) = (−2

p
), and (4) gives the formula

we wanted. (Note that we end up with a result independent of the auxiliary choice of a, which is
reassuring . . . .)

Well, that is the proof. Clearly, it can be used in other situations (the “−2” of the formula being
replaced by the “signed square root of the discriminant,” if we were working with a different
quaternion algebra).

In the “trivial” case, where N can be written as a2 + 2b2, one may want to write explicitly a
free stable module. I think I have such formulae, but I doubt they are worth writing down. . .

Amitiés

J.-P. Serre

Paris, March 1, 1997

Dear Feit,

About the quaternion business: things look simpler if one views them as in Gauss’s Disqui-
sitiones (Art.291, for instance). This amounts to the following (or at least this is how I interpret
Gauss):
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I keep the hypothesis of my previous letter, i.e. N is square-free, positive, and N ≡ 3 (mod 8).
(Of course Gauss considers the general case!)

Suppose N is written as a sum of 3 squares:

N = a2 + b2 + c2.

It is easy to see that a, b, c are odd. The main point of Gauss construction is to attach to
(a, b, c) an element of the class group CN of ON , or equivalently, an ON -module of rank 1. Here
is the construction: define L as the set of v = (x, y, z) ∈ Z3 which are orthogonal to (a, b, c). This
is a rank 2 lattice. Moreover, if π = √−N in ON , we can make π act on L by v �→ (a, b, c)×v =
(bz − cy, cx − az, ay − bx); because (a, b, c) ≡ 1 (mod 2), this action of Z[π] on L extends to
an action of ON . We thus get the ON -module of rank 1 we wanted. In the language of quadratic
forms, the binary quadratic form attached to L is the restriction of the form (x2 + y2 + z2)/2; it
has discriminant −N .

Moreover, the quadratic invariants χp(L) (cf. my previous letter) are equal to (−2
p

), for every
prime p ∈ S (i.e. p | N ). I am sure that this is also in Gauss, but it is hard to pinpoint it. Anyway, it
is easy to prove: one knows that χp(L) can be computed as ( t

p
), for any value t of the quadratic

form attached to L (provided of course that t be prime to p). Here we may take the vector
(−b, a,0) which is in L; the value of the quadratic form is (a2 + b2)/2 ≡ −c2/2 (mod p).

Hence, its Legendre symbol is (−2
p

), provided that c �≡ 0 (mod p), which we may assume (if
not, replace c by a or b).

Hence the class of L lies in a well defined “genus” (i.e. a coset of CN modulo squares).
What Gauss does is to show that every class in that genus is obtainable by a suitable solution
of a2 + b2 + c2 = N . Moreover, he also counts the number of (a, b, c) corresponding to a given
class; with the exception of N = 3, it is equal to 24.2s−1, where s is the number of prime divisors
of N . Since h(−N) = |CN | is equal to 2s−1|C2

N |, he finds that the number of representations of
N as a sum of 3 squares is 24.h(−N), if N ≡ 3 (mod 8), N > 3 (for N = 3, the formula would
remain true if one made the convention that h(−3) = 1/3).

By the way, do you know of any modern (less than a century old) exposition of these nice
results of Gauss (found when he was about 20 years old)? I do not. Fortunately, the Collège de
France library has a French translation (dated 1807) of the Disquisitiones, made by a mathe-
matics teacher with the nice name “Poullet-Delisle.” And I got two days ago, as a present from
Barcelona, a Catalan translation of the same (Catalan is not very different from French—I can
usually guess what it means).

Well, let us apply this to the quaternion problem. Call D the standard quaternions, and R the
standard (= Hurwitz) maximal order. We embed ON in R by mapping π = √−N to ai+bj +ck,
where a2 + b2 + c2 = N as above. We want to determine the ideal class of R as an ON -module
(using multiplication on the left).

Claim. This ideal class is the class of the module L defined above.

Clearly, this implies what we wanted: R is free over ON if and only if L is the trivial class,
and this will not happen if there exists a prime p dividing N with (−2

p
) = −1.

Proof of the claim. Look at the exact sequence

0 → ON ⊕ L → R → Z/NZ → 0,
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where I have identified1 L (in an obvious way) with a subset of R. As for the map R → Z/NZ,
it is defined by q �→ Trd(qπ) (mod N). Note that this map is ON -linear, if we identify Z/NZ
with ON/πON , i.e. if we make π act by 0 on Z/NZ.

The claim follows obviously from the exact sequence, since πON is a principal ideal. Done!

Amitiés

J.-P. Serre

Paris, March 26, 1997

Dear Feit,

More on the quaternion business. Some preliminaries first:

1. Gauss’s genera à la Hilbert

Almost exactly one century ago—and one century after Gauss—Hilbert gave an account of
genus theory in terms of (a, b) symbols. See his Ges. Abh. I, pp. 161–188. Here it is:

I limit myself to the case of an imaginary quadratic field K , whose discriminant I write as
−d , with d > 0; one has K = Q(

√−d ). Let C (or CK ) be its ideal class group. Genus theory
describes C/C2 by giving explicit homomorphisms of that group in ±1. The way Hilbert defines
these homomorphisms is by a �→ (Na,−d)p , where p is a chosen prime divisor of d and Na

denotes the norm of a. It is easy to see that the sign so obtained does not change when a is
replaced by xa, with x ∈ K∗. An alternate way of viewing these signs is to define a map:

e :C/C2 → Br2(Q)

by e(a) = (Na,−d), viewed as an element of the Brauer group of Q. Gauss’s results can then be
formulated as:

(i) e is injective.
(ii) The image of e is the subgroup of Br2(Q) consisting of the quaternion algebras unrami-

fied at ∞ and at all the primes not dividing d . (Hence, if the number of prime divisors of
d is s,C/C2 has rank s − 1 because of the product formula.)

(The proof of (i) is elementary. The proof of (ii) requires a little more work, but not much.)
There is a similar theory for real quadratic fields; one has to take into account the fact that the

norm of an element x can be either > 0 or < 0. Hence e takes values in the quotient of Br2(Q)

by the subgroup of order 1 or 2 generated by (−1, disc.K).

1 With this identification, the cross product (a, b, c)× v(v ∈ L) becomes the quaternion product π.v. This is why I had
to use left multiplication.
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2. Ideal classes attached to quaternion algebras

Let D be any quaternion field over Q (I do not want to limit myself to the standard case
D = (−1,−1)). Suppose K is an imaginary quadratic field which splits D. Choose an embedding
K → D, and a maximal order OD containing OK (ring of integers of K). Call c(OD) the ideal
class of OD , viewed as an OK -module. We have c(OD) ∈ C = CK .

Proposition 1. The image of c(OD) in C/C2 does not depend on the choice of OD .

Proof. If L,M are different OK -lattices of a K-vector space V , denote by a(L,M) the (frac-
tional) ideal of K which measures the relative position of L,M (see Bourbaki AC 7, p. 63).
Apply this with V = D,L = OD and M = O ′

D (another maximal order containing OK ). We
thus get an ideal a of K , and Proposition 1 is equivalent to saying that the class of a is a square.
But it is easy to check that L and M have the same volume (their a invariant over Q is 1—this is
a general property of maximal orders of semisimple algebras). Hence the ideal a above is such
that Na = 1. The fact that its class is a square follows.

There is a kind of converse to Proposition 1:

Proposition 2. Every c′ ∈ C which has the same image as c(OD) in C/C2 is equal to c(O ′
D) for

some maximal order O ′
D containing OK .

This is not hard to prove, but I shall not need it.
Anyway, Proposition 1 gives us an invariant c(D,K) ∈ C/C2 which is trivial if (and only if,

by Proposition 2) there exists an OD which is OK -free. By genus theory à la Hilbert, this c(D,K)

is transformed in an element e(D,K) of Br2(Q). What else can we do except computing e(D,K)

explicitly in terms of D and K? To do so, let me define the “signed discriminant” dD of D as:
dD = ± product of the primes p where D is ramified,2 the sign being + (respectively −) if

D is unramified at infinity (respectively ramified at infinity).
The square of dD is what is usually called the “discriminant” of D. With this notation, we

have:

Proposition 3. The invariant e(D,K) is given by:

e(D,K) = (D) + (dD,−d) in Br2(Q), (∗)

where (D) denotes the class of the quaternion algebra D in Br2(Q).

Example. If D is the standard quaternion algebra (−1,−1), we have dD = −2, hence e(D,K) =
(−1,−1) + (−2,−d) = (−2, d). This shows that OD can be chosen to be OK -free if and only if
d is of the form x2 + 2y2, with x, y ∈ Z.

To prove Proposition 3, I use the same method as in my letter of February 26, namely I write
(D) as (x,−d) for some x ∈ Z: this is possible since K splits D. Then D contains the order

2 The absolute value of dD is the “reduced discriminant” of D, cf. Vignéras [V]. However, the sign is important here.
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R = OK ⊕ q.OK , where q is a quaternion with q2 = x, and qz = z̄q for every z ∈ K . Clearly, R

is OK -free. On the other hand, if OD is any maximal order of D containing R, one finds that the
index of R in OD is:

(OD : R) = xd/dD (note that x and dD have the same sign).

This gives us the norm of the K-ideal a(OD,R) and this is all we need to compute e(D,K);
we find:

e(D,K) = (xddD,−d).

But (d,−d) = 0, (x,−d) = (D). Hence we get formula (∗).

3. Application to the representations of Q8

Let us go back to the case D = (−1,−1) and G = Q8, the quaternion group of order 8. We
take K as above, with K splitting D, and we want to know in what case there is a free rank 2
OK -module which gives the standard irreducible representation of G over K . There are two
cases (since 2 cannot split in K):

(i) 2 is unramified and inert in K (i.e. d ≡ 3 (mod 8)). In that case, there is only one prime
ideal of K dividing 2, which is 2 itself, and is principal. Hence, the ideal class of a stable lattice
gives a well-defined element of C/C2, which is the one computed above. We recover the fact
that a free lattice exists if and only if (−2, d) = 0.

(ii) 2 is ramified in the field K . In that case, let us call a the prime ideal of K of norm 2. The
invariant of a stable lattice is then well defined, up to multiplication by a square, and multipli-
cation by a power of a. Since e(a) = (2,−d) in Br2(Q), we see that a free lattice exists if and
only if either (−2, d) = 0, or (−2, d) = (2,−d). The symbol (2,−d) is equal to (2, d). Hence
we can rewrite the criterion as:

(−2, d) = 0 or (−1, d) = 0,

i.e.

d is representable by x2 + 2y2 or by x2 + y2.

Example. d = 8p, where p ≡ −1 (mod 8), p prime: in that case, no free lattice exists.

Well, that is it. I hope I have not made a mistake in the computation of (a, b) symbols. It would
be reassuring if one could write explicitly a free lattice when d is written either as x2 + 2y2 or
x2 + y2; in the first case, the lattice should be stable, not only under G = {±1,±i,±j,±k}, but
also under (1 ± i ± j ± k)/2.

Amitiés

J.-P. Serre

PS. Have you thought of more complicated examples? For instance, G = An, and K the
corresponding quadratic field. Explicit case: n = 10,K = Q(

√
21 ), irreducible representation
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of degree 384 (ATLAS, p. 49). One of the difficulties is that the representation is reducible in
several characteristics.

PS 2. A good account of “genus theory” can be found in a book by Venkov on Number Theory
(English translation of a Russian book).
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