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In what follows, K is a commutative field of characteristic 2.

1. A criterion for the existence of a BL-basis

Let L/K be a finite Galois extension, with Galois group G. A basis (ei) of the K-vector
space L is called a self-dual normal basis (BL-basis, for short) if it has the following two
properties (cf. [1], [2], [3]) :

a) TrL/K(ei.ej) = δi
j ;

b) G acts transitively on the (ei).

Note that b) means that (ei) is a “normal basis” of L/K, while a) says that it is
orthonormal with respect to the nondegenerate bilinear form TrL/K(x.y).

One finds in [1] and [2] several cases where BL-bases can be proved to exist (or not to
exist) :
Existence : when G is of odd order, or when G is abelian and does not contain any

element of order 4.
Non-existence : when G has a quotient which is cyclic of order 4.

These results are special cases of :

Theorem 1 - A BL-basis exists if and only if G is generated by squares and by ele-
ments of order 2.

Note that this criterion does not depend on K, nor of the chosen extension L/K. It only
depends on the structure of G. This is quite different from what happens in characteristic
6= 2, cf. e.g. [3].

Examples. A BL-basis exists if G is a dihedral group or a simple group; it does not
exist if G is a quaternion group.

2. Proof of theorem 1

First, we may assume that K is perfect. Indeed, a BL-basis for L/K exists if and only
if there exists one for the extension L.K ′/K ′, where K ′ is the perfect closure of K.
Consider now the group algebra K[G], with its usual involution g 7→ g∗ = g−1. Let U sch

G



be its scheme-theoretic unitary group, which is an algebraic group over K. The group
scheme U sch

G is not reduced; call UG the corresponding reduced scheme; it is a smooth
algebraic group over K. We have a natural embedding G → U sch

G (K) = UG(K).
Let now K be an algebraic closure of K, and put ΓK = Gal(K/K). The given extension

L/K corrresponds to a surjective homomorphism ϕL : ΓK → G. By composing ϕL with
the embedding G → UG(K), one may view ϕL as a 1-cocycle of ΓK with values in UG(K).
Let zL ∈ H1(K, UG) be the cohomology class of this cocycle.

Proposition 1 - We have zL = 0 if and only if L/K has a BL-basis.

This is explained in [3], § 1.5 when the characteristic of K is 6= 2; the case of characte-
ristic 2 is similar. (Loosely speaking, the BL-bases are the K-points of a UG-torsor which
corresponds to zL.)

Put now :

U o
G = connected component of UG ;

Go = subgroup of G generated by the elements of order 2 and by the squares g2, where g
runs through G.

Proposition 2 - (a) Go = G ∩ U o
G.

(b) UG/U o
G is a finite commutative group of type (2, . . . ,2).

Both (b) and the inclusion Go ⊂ G ∩ U o
G are fairly easy. The inclusion G ∩ U o

G ⊂ Go

requires more work.

Proposition 3 - H1(K, U o
G) = 0.

This is a special case of a general result on unitary groups, cf. §3, th.2.

Let us now prove half of theorem 1, namely that a BL-basis exists if G = Go. Indeed, in
that case, by prop.2, we may view ϕL : ΓK → G as a 1-cocycle with values in U o

G(K);
let zo

L ∈ H1(K, U o
G) be the class of this cocycle. The image of zo

L in H1(K, UG) is zL. By
prop.3, we have zo

L = 0, hence zL = 0 and prop.1 shows that L/K has a BL-basis.
It remains to show that, if G 6= Go, there is no BL-basis. To do so, one first remarks

that the assumption G 6= Go is equivalent to the existence of a surjective quadratic char-
acter e: G → {±1} with the property that e(s) = 1 for every s ∈ G with s2 = 1. Choose
such an e, and assume there exists an element x of L whose G-orbit is a BL-basis. Put :

x0 =
∑

e(g)=1

g.x and x1 =
∑

e(g)=−1

g.x.

An explicit computation, similar to the one made in [2], proof of prop.6.1 b), shows that
x0.x1 = 0. Since L is a field, we have either x0 = 0 or x1 = 0, which contradicts the
assumption that the g.x are linearly independent.



3. Unitary groups

We continue to assume that K is perfect of characteristic 2.
Let R be a finite-dimensional K-algebra with involution, and let UR be the corresponding
reduced unitary group. Let U o

R be the connected component of UR.

Theorem 2 - H1(K, U o
R) = 0.

Let S be the quotient of U o
R by its unipotent radical; the algebraic group S is a re-

ductive group over K (it is the largest reductive quotient of U o
R), and the natural map

H1(K, U o
R) → H1(K, S) is a bijection. Hence proving theorem 2 amounts to proving that

H1(K, S) = 0. To do so, we need to describe the structure of S. The result is :

Theorem 3 - Up to a purely inseparable isogeny, S is a product of classical groups of the
following three types:
(i) Multiplicative group of a central simple algebra over a finite extension of K.
(ii) Unitary group of a central simple algebra with involution (of first or second kind) over
a finite extension of K.
(iii) Special orthogonal group of a nondegenerate quadratic form of even rank > 2 over a
finite extension of K.

This is proved by choosing a maximal torus of U o
R and looking at the weights of its

action on R (by left multiplication), and at the root system of S. Most of the proof can
be done under the assumption that K is algebraically closed: the descent from K to K
is easy.

Once theorem 3 is proved, theorem 2 follows by standard methods in Galois cohomolo-
gy, based essentially on the fact that cd2(ΓK) 6 1, and on the following auxiliary result:

Proposition 4 - Let A be a connected linear algebraic group over K, and let K1 be
a quadratic extension of K. The natural map H1(K, A) → H1(K1, A) is injective.
(See e.g. [4], Chap. III, § 2.3, exerc.2 (b).)

Here are a few more properties of the unitary group UR:

Theorem 4 - (i) The finite group UR/U o
R is commutative of type (2, . . . ,2).

(ii) The map H1(K,UR) → H1(K, UR/U o
R) is injective.

(iii) Every commutative smooth subgroup of UR of multiplicative type is contained in a
maximal torus.
(iv) If K ′ is an odd degree extension of K, the map H1(K, UR) → H1(K ′, UR) is injective.

Properties (i) and (iii) are easy; (ii) follows from (i) and from th.2; (iv) follows from
(ii). (It would be interesting to have an a priori proof of (iv).)
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