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Let G be the Weyl group of a root system, i.e. a crystallographic finite
Coxeter group, cf. [LIE], chap.VI, §4.1. Let k0 be a field of characteristic 6= 2, let
H• = ⊕n>0 H

n(k0,Z/2Z) and let IG = Inv(G)k0 be the ring of cohomological
invariants mod 2 of G, as defined in [Se], §1 ; it is a graded H•-algebra. When G
is of type A, G is a symmetric group SymN , and IG is H•-free of rank n = [N/2],
with an explicit basis w0 = 1, w1, ..., wn, cf. [Se], chap.VII.

In order to extend this description of IG to the general case, define SG to
be the set of elements g ∈ G with g2 = 1 ; an element of SG shall be called an
involution of G. Let Σ be the set of conjugation classes of elements of SG.
Theorem A. There is a canonical map e : Σ→ IG whose image is an H•-basis
of IG.

[Equivalently : the module IG is canonically isomorphic to the set of all maps
Σ→ H•.]

The map e is compatible with the grading of IG : if g ∈ G is an involution,
let deg(g) be the multiplicity of −1 as an eigenvalue of g in the canonical linear
representation of G as a Coxeter group ; let Σn be the set of involution classes
of degree n. If σ ∈ Σn, then e(σ) belongs to the n-th component Hn(k0) of H•.

Examples. 1. When G = SymN , the elements of Σ are the conjugation classes
of the product of i disjoint transpositions, with 2i 6 N , and we recover the fact
that H•-free of rank n = [N/2], with a basis made up of elements of degree
0, 1, ..., [N/2], as above.
2. When G = Weyl(E8), we have |Σn| = 1 for n 6 8, with the only excep-
tion of n = 4 where Σn = 2 ; and, of course, |Σn| = 0 for n > 8. Hence IG
is a free H•-module of rank 10, with a basis made up of elements of degree
0, 1, 2, 3, 4, 4, 5, 6, 7, 8.
3. For E7 and E6, the degrees are 0, 1, 2, 3, 3, 4, 4, 5, 6, 7 and 0, 1, 2, 3, 4.

Definition of the map e : Σ→ IG.
Let a be an element of IG and let g be an involution of G of degree n. We

first define a �scalar product� 〈a, g〉, which is an element of H•. To do so,
choose a splitting g = s1 · · · sn, where the si are commuting reflections (recall
that a reflection is an involution of degree 1) ; such a splitting always exists.
Let C = 〈s1, ..., sn〉 be the group generated by the si, and let ac ∈ IC be
the restriction of a to C. The algebra IC has a natural basis (αI) indexed by
the subsets I of [1, n], cf. [Se], §16.4. Let aC ∈ H• be the coefficient of the
�top� element α[1,n] in a, c. It is possible to show that aC is independent of
the chosen splitting of g, i.e., that it only depends on (a, g). We then define the
scalar product 〈a, g〉 as aC ; we have 〈a, g〉 = 〈a, g′〉 if g and g′ are conjugate
in G ; this allows us to define 〈a, σ〉 for every σ ∈ ΣG. For a given σ, the map
a 7→ 〈a, σ〉 is H•-linear ; if a has degree m, then 〈a, σ〉 has degree m − n (one
may view a 7→ 〈a, σ〉 has an m-th fold residue).
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Theorem B.
(i) If 〈a, σ〉 = 0 for every σ, then a = 0.
(ii) For every σ ∈ ΣG, of degree n > 0, there exists an invariant aσ ∈ InG

such that 〈aσ, σ〉 = 1 and 〈aσ, σ′〉 = 0 for every σ′ 6= σ.
[Note that, by (i), such an aσ is unique.]

It is clear that Theorem B implies Theorem A, by defining e(σ) as aσ.

Indications on the proof of part (i) of Theorem B.
An induction argument shows that, if 〈a, σ〉 = 0 for every σ, then the res-

triction of a to every subgroup generated by commuting reflections is 0. In that
case, if the characteristic of k0 is �good� for G, the arguments of [Se], §25, apply
without change. This already covers the case where the irreducible components
of G are of classical type. The exceptional types can be reduced to that case,
thanks to the fact that, if G is such a Weyl group, there exists a subgroup G′ of
G, generated by some reflections of G, which is a product of groups of classical
type, and has odd index in G ; for instance Weyl(E8) contains Weyl(D8) with
index 135, Weyl(E6) contains Weyl(D5) with index 27. One then uses the fact
that the restriction map IG → IG′ is injective, cf. [Se], prop.14.4.

Indications on the proof of part (ii) of Theorem B.
We need to construct enough cohomological invariants. For most Weyl groups,

this is done by using Stiefel-Whitney classes. There are however three cases
where we have to do otherwise . For each one, there are two distinct classes
of involutions of the same degree n for which it is hard to find a ∈ InG with
〈a, σ〉 = 0, 〈a, σ′〉 = 1. These cases are : D2n , n > 3 ; E7, n = 3 and 4 ; E8, n = 4.

For these cases, one uses the relation given by Milnor’s conjecture (now
Voevodsky’s theorem). The method applies to every linear group G. The ring
Inv(G,W ) of Witt invariants of G (as defined in [Se], §27.3) has a natural filtra-
tion : an invariant h has filtration > n is, for every G-torsor t of G over any exten-
sion k/k0, the element h(t) of the Witt ring W (k) belongs to the n-th power of
the canonical ideal of W (k) ; in that case, h defines (by the Milnor construction)
an element ah of Invn(G,Z/2Z), and ah = 0 if and only if the filtration of h is
> n. In other words, we have an injective map : gr Inv(G,W ) → Inv(G,Z/2Z).

We apply this with G = G, where G is as in the three cases above. One
finds a linear orthogonal representation of G whose Brauer character χ is such
that χ(σ) − χ(σ′) = 2n. This gives a G-quadratic form, hence an element of
Inv(G,W ) ; one modifies slightly that element to make it of filtration > n, so
that it gives a cohomological invariant a of G of degree n, and one checks that
〈a, σ〉 − 〈a, σ′〉 = 1 ; that information is enough to conclude the proof.
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Note. After my lecture, Stefan Gille has pointed out to me that, using a different
method (based on a theorem of Totaro, but not involving involutions), C. Hirsch
had already computed in 2009 the structure of the cohomological invariants of
all the finite Coxeter groups, under mild hypotheses on the ground field ; his
method also applies to other types of invariants. Reference :

Christian Hirsch, Cohomological invariants of reflection groups, Di-
plomarbeit (Betreuer : Prof. Dr. Fabien Morel), Univ. München, 2009.
This text has not been published yet. I hope it will soon be.
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