Semisimplicity and Tensor Products of Group Representations: Converse Theorems

Jean-Pierre Serre

Collège de France, 3 rue d'Ulm, F-75005 Paris

With an appendix by Walter Feit

Department of Mathematics, Yale University, New Haven, Connecticut 06520-8283

Communicated by Efin Zelmanov

Received October 8, 1996

INTRODUCTION

Let k be a field of characteristic $p \ge 0$, and let G be a group. If V and W are finite-dimensional G-modules, it is known that:

(1) V and W semisimple $\Rightarrow V \otimes W$ semisimple if p = 0 ([2], p. 88), or if p > 0 and dim $V + \dim W ([6], Corollary 1 to Theorem 1.)$

(2) V semisimple $\Rightarrow \wedge^2 V$ semisimple if p = 0 or if p > 0 and dim $V \le (p + 3)/2$ (cf. [6], Theorem 2).

We are interested here in "converse theorems": proving the semisimplicity of V from that of $V \otimes W$ or of $\bigwedge^2 V$. The results are the following (cf. Sects. 2, 3, 4, 5):

(3) $V \otimes W$ semisimple $\Rightarrow V$ semisimple if dim $W \neq 0 \pmod{p}$.

(4) $\otimes^m V$ semisimple $\Rightarrow V$ semisimple if $m \ge 1$.

(5) $\wedge^2 V$ semisimple $\Rightarrow V$ semisimple if dim $V \neq 2 \pmod{p}$.

(6) Sym²V semisimple \Rightarrow V semisimple if dim $V \neq -2 \pmod{p}$.

(7) $\wedge {}^{m}V$ semisimple $\Rightarrow V$ semisimple if dim $V \neq 2, 3, ..., m \pmod{p}$.

496

Examples show that the congruence conditions occurring in (3), (5), (6), and (7) cannot be suppressed: see Sect. 7 for (3), (5), and (7) and the Appendix for (5) and (6). These examples are due to (or inspired by) W. Feit.

1. NOTATION

1.1. The Category C_G

As in the Introduction, G is a group and k is a field; we put char(k) = p. The category of k[G]-modules of finite dimension over k is denoted by C_G . If V and W are objects of C_G , the k-vector space of C_G -morphisms of V into W is denoted by Hom^G(V, W).

1.2. Split Injections

A C_G -morphism $f: V \to W$ is called a *split injection* if there exists a left inverse $r: W \to V$ which is a C_G -morphism. This means that f is injective, and that its image is a direct factor of W, viewed as a k[G]-module. We also say that f is *split*.

If $f: V_1 \to V_2$ and $g: V_2 \to V_3$ are split injections, so is $g \circ f$. Conversely, if $g \circ f$ is a split injection, so is f.

An object W of C_G is *semisimple* if and only if every injection $V \to W$ is split.

1.3. Tensor Products

The tensor product (over k) of two objects V and V' of C_G is denoted by $V \otimes V'$.

If $V \to W$ and $V' \to W'$ are split injections, so is $V \otimes V' \to W \otimes W'$.

The vector space k, with trivial action of G, is denoted by <u>1</u>. We have $\underline{1} \otimes V = V$ for every V.

1.4. Duality

The dual of an object V of C_G is denoted by V^* . If W is an object of C_G , one has $W \otimes V^* = \operatorname{Hom}_k(V, W)$, the action of G on $\operatorname{Hom}_k(V, W)$ being $f \mapsto sfs^{-1}$ for $s \in G$. An element f of $\operatorname{Hom}_k(V, W)$ is G-linear (i.e., belongs to $\operatorname{Hom}^G(V, W)$) if and only if it is fixed under the action of G. In particular, one has $V \otimes V^* = \operatorname{End}_k(V)$. The unit element 1_V of Γ is $V \otimes V^* = \operatorname{End}_k(V)$.

In particular, one has $V \otimes V^* = \operatorname{End}_k(V)$. The unit element $\mathbf{1}_V$ of $\operatorname{End}_k(V)$ defines a *G*-linear map $i_V: \underline{1} \to V \otimes V^*$, which is injective if $V \neq \mathbf{0}$.

1.5. Trace

The trace $t_V: V \otimes V^* \to \underline{1}$ is a *G*-linear map. The composite map $t_V \circ i_V: 1 \to V \otimes V^* \to 1$

is equal to dim V, viewed as an element of $k = \text{End}^{G}(\underline{1})$; it is 0 if and only if dim $V \equiv 0 \pmod{p}$. (When p = 0 this just means dim V = 0.)

2. FROM $V \otimes W$ TO V

Let V and W be two objects of C_G .

PROPOSITION 2.1. Let V' be a subobject of V. Assume:

 $i_W: \underline{1} \to W \otimes W^*$ is a split injection, (2.1.1)

and

 $V' \otimes W \to V \otimes W$ is a split injection. (2.1.2)

Then $V' \rightarrow V$ is a split injection.

Proof. Consider the commutative diagram:

where the vertical maps come from the injection $V' \to V$ and the horizontal maps are $\beta = 1_V \otimes i_W$ and $\beta' = 1_{V'} \otimes i_W$ (cf. Sect. 1.5). By (2.1.1), β' is split; by (2.1.2), $V' \otimes W \to V \otimes W$ is split, and the same is true for γ . Hence $\beta \circ \alpha = \gamma \circ \beta'$ is split, and this implies that α is split.

Remark 2.2. Assumption (2.1.1) is true in each of the following two cases:

(2.2.1) When dim $W \not\equiv 0 \pmod{p}$, i.e., when dim W is invertible in k. Indeed, if c denotes the inverse of dim W in k, the map

$$c \cdot t_W : W \otimes W^* \to 1$$

is a left inverse of i_W (cf. Sect. 1.5).

(2.2.2) When $W \neq 0$ and $W \otimes W^*$ is semisimple, since in that case every injection in $W \otimes W^*$ is split.

PROPOSITION 2.3. Assume (2.1.1) and that $V \otimes W$ is semisimple. Then V is semisimple.

Proof. Let V' be a subobject of V. Since $V \otimes W$ is semisimple, the injection $V' \otimes W \to V \otimes W$ is split, hence (2.1.2) is true, and Proposition 2.1 shows that $V' \to V$ splits. Since this is true for every V', it follows that V is semisimple.

Alternate proof (sketch). One uses (2.1.1) to show that the natural map

$$H^n(G, \operatorname{Hom}_k(V_1, V_2)) \to H^n(G, \operatorname{Hom}_k(V_1 \otimes W, V_2 \otimes W))$$

is injective for every n, V_1, V_2 . If V is an extension of V_1 by V_2 and (V) denotes the corresponding element of the group $\text{Ext}(V_1, V_2) = H^1(G, \text{Hom}_k(V_1, V_2))$, the assumption that $V \otimes W$ is semisimple implies that (V) gives 0 in $\text{Ext}(V_1 \otimes W, V_2 \otimes W)$ and hence (V) = 0. This shows that V is semisimple.

THEOREM 2.4. If $V \otimes W$ is semisimple and dim $W \neq 0 \pmod{p}$, then V is semisimple.

Proof. This follows from Proposition 2.3 and Remark (2.2.1).

Remark. The condition dim $W \neq 0 \pmod{p}$ of Theorem 2.4 cannot be suppressed. This is clear for p = 0, since it just means $W \neq 0$; for p > 0, see Feit's examples in Sect. 7.2.

3. FROM $\mathbf{T}^n V \otimes \mathbf{T}^m V^*$ TO V

Let V be an object of C_G .

LEMMA 3.1. The injection $j_V = 1_V \otimes i_V$: $V \to V \otimes V \otimes V^*$ is split.

Proof. If we identify $V \otimes V^*$ with $\operatorname{End}_k(V)$, the map

$$j_V \colon V \to V \otimes \operatorname{End}_k(V)$$

is the map $x \mapsto x \otimes 1_V$. Let $f_V \colon V \otimes \operatorname{End}_k(V) \to V$ be the "evaluation map" $x \mapsto \varphi(x) \ (x \in V, \ \varphi \in \operatorname{End}_k(V))$. It is clear that $f_V \circ j_V = 1_V$. Hence j_V is a split injection.

If $n \ge 0$, let us write $\mathbf{T}^n V$ for the tensor product $V \otimes V \otimes \cdots \otimes V$ of *n* copies of *V*, with the convention that $\mathbf{T}^0 V = \underline{1}$.

PROPOSITION 3.2. Let V' be a subobject of V. Assume that the natural injection of $\mathbf{T}^n V' = V' \otimes \mathbf{T}^{n-1} V'$ in $V \otimes \mathbf{T}^{n-1} V'$ splits for some $n \ge 1$. Then $V' \to V$ splits.

Proof. This is clear if n = 1. Assume $n \ge 2$, and use induction on n. We have a commutative diagram:

$$\begin{array}{cccc} \mathbf{T}^{n-1}V' & \stackrel{\lambda}{\longrightarrow} & V \otimes \mathbf{T}^{n-2}V' \\ & & & & \downarrow^{\beta} \\ \mathbf{T}^{n-1}V' \otimes V' \otimes V'^* \stackrel{\mu}{\longrightarrow} V \otimes \mathbf{T}^{n-2}V' \otimes V' \otimes V'^*, \end{array}$$

where the horizontal maps are the obvious injections, and the vertical ones are of the form $x \mapsto x \otimes 1_{V'}$, with $1_{V'} \in V' \otimes V'^*$ (cf. Sect 1.4). If we put $W = \mathbf{T}^{n-2}V'$, we may write γ as $1_W \otimes j_{V'}$, where $j_{V'}$ is the map of V' into $V' \otimes V' \otimes V'^*$ defined in Lemma 3.1 (with V replaced by V'). From this lemma, and from Sect. 1.3, it follows that γ is a split injection. On the other hand, μ is the tensor product of the natural injection $\mathbf{T}^n V' \to V \otimes \mathbf{T}^{n-1} V'$, which is split by assumption, with the identity map of V'^* ; hence μ is split and the same is true for $\beta \circ \lambda = \mu \circ \gamma$, hence also for λ . By the induction assumption this shows that $V' \to V$ is a cult injection split injection.

THEOREM 3.3. Assume that $\mathbf{T}^n V \otimes \mathbf{T}^m V^*$ is semisimple for some integers $n, m \ge 0$, not both 0. Then V is semisimple.

COROLLARY 3.4. If $\mathbf{T}^n V$ is semisimple for some $n \ge 1$, then V is semisimple.

Proof of Theorem 3.3. Consider first the case of Corollary 3.4, i.e., $m = 0, n \ge 1$. Let V' be a subobject of V. Then $V \otimes \mathbf{T}^{n-1}V'$ is a subobject of $\mathbf{T}^n V$. Since $\mathbf{T}^n V$ is assumed to be semisimple, so is $V \otimes \mathbf{T}^{n-1}V'$. Hence the injection $\mathbf{T}^n V' \to V \otimes \mathbf{T}^{n-1}V'$ splits. By Proposition 3.2, this implies that $V' \to V$ splits. Since this is true for every V', it follows that V is semisimple.

Since duality preserves semisimplicity, the same result holds when n = 0Since duality preserves semisimplicity, the same result holds when n = 0and $m \ge 1$. Hence, we may assume that $n \ge 1$ and $m \ge 1$, and also that $V \ne 0$. If n and m are both equal to 1, then $V \otimes V^*$ is semisimple by assumption. Put $W = V^*$; using (2.2.2) we see that W has property (2.1.1) and by Proposition 2.3 this implies that V is semisimple (I owe this argument to W. Feit). The remaining case $n + m \ge 3$ is handled by induction on n + m, using the fact that $\mathbf{T}^{n-1}V \otimes \mathbf{T}^{m-1}V^*$ embeds into $\mathbf{T}^n V \otimes \mathbf{T}^m V^*$, hence is semisimple.

4. FROM $\wedge^2 V$ AND Sym² V TO V

4.1. Notation

Let V be an object of C_G , and let λ_V be the canonical map

$$V \otimes V \to \wedge^2 V.$$

Define $\varphi_V: V \to \bigwedge^2 V \otimes V^*$ as the composite of the maps $j_V: V \to V \otimes V \otimes V^*$ (cf. Lemma 3.1) and $\lambda_V \otimes \mathbf{1}_{V^*}: V \otimes V \otimes V^* \to \bigwedge^2 V \otimes V^*$. Define $\psi_V: \bigwedge^2 V \otimes V^* \to V$ as the composite

$$\wedge^2 V \otimes V^* \to V \otimes V \otimes V^* \to V,$$

where the map on the left is $(x \land y) \otimes z \mapsto x \otimes y \otimes z - y \otimes x \otimes z$ (for $x, y \in V, z \in V^*$) and the map on the right is the map f_V defined in the proof of Lemma 3.1, i.e., $x \otimes y \otimes z \mapsto \langle x, z \rangle y$. We have

$$\psi_V((x \wedge y) \otimes z) = \langle x, z \rangle y - \langle y, z \rangle x \qquad (x, y \in V, z \in V^*).$$

Both φ_V and ψ_V are C_G -morphisms.

PROPOSITION 4.2. The composite map

$$V \xrightarrow{\varphi_V} \Lambda^2 V \otimes V^* \xrightarrow{\psi_V} V$$

is equal to $(1 - n)\mathbf{1}_V$, where $n = \dim V$.

Proof. Choose a k-basis (e_{α}) of V, and let (e_{α}^*) be the dual basis of V^* . We have $\mathbf{1}_V = \sum e_{\alpha} \otimes e_{\alpha}^*$ in $V \otimes V^*$, hence:

$$\begin{split} j_V(x) &= \sum x \otimes e_\alpha \otimes e_\alpha^* \qquad (x \in V), \\ \varphi_V(x) &= \sum (x \wedge e_\alpha) \otimes e_\alpha^*, \end{split}$$

and

$$\psi_V(\varphi_V(x)) = \sum \langle x, e_\alpha^* \rangle e_\alpha - \sum \langle e_\alpha, e_\alpha^* \rangle x$$

= x - nx.

COROLLARY 4.3. If dim $V \neq 1 \pmod{p}$, φ_V is a split injection.

PROPOSITION 4.4. Let $\rho: W \to V$ be an injection in C_G . Assume that $\dim W \neq 1 \pmod{p}$ and that $\wedge^2 \rho: \wedge^2 W \to \wedge^2 V$ splits. Then ρ splits.

Proof. Consider the commutative diagram

$$\begin{array}{cccc} W & \stackrel{\rho}{\longrightarrow} & V \\ & & & \swarrow^{\varphi_{V}} \\ & & & & \wedge^{2}V \otimes V^{*} \\ & & & & \sigma_{V}' \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & & \\ & & & & & & & & & \\ & & & & & & & & &$$

where φ_V and φ_W are as above, ρ' is equal to $\wedge^2 \rho \otimes \mathbf{1}_{W^*}$ and σ is the tensor product of the identity endomorphism of $\wedge^2 V$ with the natural projection $\rho^*: V^* \to W^*$. By Corollary 4.3, applied to W, φ_W is split; by assumption, ρ' is split. Hence $\sigma \circ \varphi_V \circ \rho = \rho' \circ \varphi_W$ is split, and this implies that ρ is split.

THEOREM 4.5. If $\wedge^2 V$ is semisimple and dim $V \neq 2 \pmod{p}$, then V is semisimple.

Proof. We have to show that every injection $W \to V$ splits. Since $\wedge^2 V$ is semisimple, the injection $\wedge^2 W \to \wedge^2 V$ splits. If dim $W \neq 1 \pmod{p}$, Proposition 4.4 shows that $W \to V$ splits. Assume now that dim $W \equiv 1 \pmod{p}$. Let W^0 be the orthogonal complement of W in V^* , i.e., the kernel of the projection $V^* \to W^*$. We have dim $W^0 \equiv \dim V - 1 \pmod{p}$, hence dim $W^0 \neq 1 \pmod{p}$, since dim $V \neq 2 \pmod{p}$. By duality, $\wedge^2 V^*$ is semisimple. The first part of the argument, applied to $W^0 \to V^*$, shows that $W^0 \to V^*$ splits, and hence $W \to V$ splits.

The next theorem describes the structure of V in the exceptional case left open by Theorem 4.5 (for explicit examples, see Sect. 7.3):

THEOREM 4.6. Assume $\wedge^2 V$ is semisimple and V is not. Then V can be decomposed in C_G as a direct sum:

$$V = E \oplus W_1 \oplus \cdots \oplus W_h \qquad (h \ge \mathbf{0}), \qquad (*)$$

where:

—the W_i *are simple, and* $\dim W_i \equiv 0 \pmod{p}$;

-*E* is a nonsplit extension of two simple modules W, W' such that $\dim W \equiv \dim W' \equiv 1 \pmod{p}$.

(Note that (*) implies dim $V \equiv \dim E \equiv 2 \pmod{p}$, as in Theorem 4.5.)

Proof. Using induction on the length of a Jordan–Hölder sequence of V, we may assume that V has no simple direct factor whose dimension is 0 (mod p).

Let *W* be a simple subobject of *V*. Let us show that dim $W \equiv 1 \pmod{p}$. If not, Proposition 4.4 would imply that $W \to V$ splits, hence $V = W \oplus V'$ for some $V' \in C_G$. Clearly *V'* is not semisimple but $\bigwedge^2 V'$ is (because it is a subobject of $\bigwedge^2 V$). By Theorem 4.5, applied to *V* and *V'*, we have

$$\dim V \equiv \dim V' \equiv 2 \pmod{p},$$

hence dim $W \equiv 0 \pmod{p}$, which contradicts the hypothesis that V has no simple direct factor of dimension divisible by p.

Hence, we have dim $W \equiv 1 \pmod{p}$. Moreover, the injection $W \to V$ does not split. Indeed, if V would decompose in $W \oplus V'$, we would have dim $V' \equiv 1 \pmod{p}$, and Theorem 4.5, applied to V', would show that V' is semisimple, hence also V, which is not true. The module W is the only

is semisimple, hence also V, which is not true. The module W is *the only* simple submodule of V. Indeed, if W_1 were another one, the argument above would show that dim $W_1 \equiv 1 \pmod{p}$, hence dim $(W + W_1) \equiv 2 \pmod{p}$ since $W \cap W_1 = 0$. By Proposition 4.4, the injection $W \oplus W_1 \to V$ would split, and so would $W \to V$, contrary to what we have just seen. Now put W' = V/W. We have dim $W' \equiv 1 \pmod{p}$, and $\wedge^2 W'$ is semisimple (because it is a quotient of $\wedge^2 V$). By Theorem 4.5, W' is semisimple. At least one of the simple factors of W' has dimension $\neq 0$ (mod p). Let S be such a factor, and let V_S be its inverse image in V, so that we have $W \subset V_S \subset V$. One has dim $V_S \not\equiv 1 \pmod{p}$; by Proposition 4.4, this shows that we may write V as a direct sum $V_S \oplus V''$. If $V'' \neq 0$, it contains a simple subobject, which is distinct from W, contrary to what was proved above. Hence we have V'' = 0, i.e., S = W', which shows that W' is simple and that V is a nonsplit extension of two simple objects W, W' with dim $W \equiv \dim W' \equiv 1 \pmod{p}$.

There are similar results for $Sym^2 V$. First:

THEOREM 4.7. If $\text{Sym}^2 V$ is semisimple and $\dim V \neq -2 \pmod{p}$, then V is semisimple.

Proof (*sketch*). The argument is the same as for $\wedge^2 V$, using symmetric analogues φ_V^{σ} and ψ_V^{σ} of φ_V and ψ_V :

$$\varphi_V^{\sigma}: V \to \operatorname{Sym}^2 V \otimes V^*,$$
$$\psi_V^{\sigma}: \operatorname{Sym}^2 V \otimes V^* \to V.$$

Proposition 4.2 is replaced by

$$\psi_V^{\sigma} \circ \varphi_V^{\sigma} = (1+n)1_V$$
 where $n = \dim V$.

Hence φ_V^{σ} is a split injection if dim $V \neq -1 \pmod{p}$. Proposition 4.4 remains valid when $\bigwedge^2 V$ is replaced by $\operatorname{Sym}^2 V$ and 1 is replaced by -1.

The same is true for the proof of Theorem 4.5 (with 2 replaced by -2), with one difference:

with one difference: In the case of \wedge^2 we have used the fact that $\wedge^2 V$ and $\wedge^2 V^*$ are dual to each other. The analogous statement for $\text{Sym}^2 V$ and $\text{Sym}^2 V^*$ is true when $p \neq 2$, but *is not true* in general for p = 2; the dual of $\text{Sym}^2 V$ is the space $\mathbf{TS}^2 V^*$ of symmetric 2-tensors on V^* , which is not $\text{Sym}^2 V^*$. Fortunately, the case p = 2 does not give any trouble. Indeed:

PROPOSITION 4.8. If $\text{Sym}^2 V$ is semisimple and p = 2, then V is semisimple.

Proof. Let $F: k \to k$ be the Frobenius map $\lambda \mapsto \lambda^2$, and let V^F be the representation of G deduced from V by the base change F. The F-semilinear map $V \to \text{Sym}^2 V$ defined by $x \mapsto x \cdot x$ gives a *k*-linear embedding of V^F into $\text{Sym}^2 V$, which fits into an exact sequence:

$$\mathbf{0} \to V^F \to \operatorname{Sym}^2 V \to \wedge^2 V \to \mathbf{0}.$$

Since $\text{Sym}^2 V$ is assumed to be semisimple, so is V^F . This means that V becomes semisimple after the base change $F: k \to k$. By an elementary result ([1, §13, no. 4, Proposition 4]) this implies that V is semisimple.

Remark. More generally, the same argument shows:

Sym^{*p*} V semisimple \Rightarrow V semisimple

if the characteristic p is > 0.

The analogue of Theorem 4.6 is:

THEOREM 4.9. If $\text{Sym}^2 V$ is semisimple and V is not, then V can be decomposed as $V = E \oplus W_1 \oplus \cdots \oplus W_h$ $(h \ge 0)$, where:

—the W_i *are simple, and* dim $W_i \equiv 0 \pmod{p}$;

-*E* is a nonsplit extension of two simple modules whose dimensions are congruent to $-1 \pmod{p}$.

The proof is the same.

COROLLARY 4.10. One has dim $V \ge 2p - 2$.

Indeed, it is clear that dim $E \ge (p - 1) + (p - 1)$.

5. HIGHER EXTERIOR POWERS

The results of Sect. 4 can be extended to $\wedge^m V$ for any $m \ge 1$ (cf. Theorem 5.2.1 below). We start with several lemmas.

5.1. Extension Classes Associated with an Exact Sequence

Let

$$\mathbf{0} \to A \to V \to B \to \mathbf{0} \tag{5.1.1}$$

be an exact sequence in C_G . We denote by (V) its class in the group

$$\operatorname{Ext}(B, A) = H^{1}(G, \operatorname{Hom}_{k}(B, A)) = H^{1}(G, A \otimes B^{*}).$$

A cocycle representing this class may be constructed as follows: select a *k*-linear splitting $f: B \to V$, and, for every $s \in G$, define $c_f(s)$ in $\text{Hom}_k(B, A)$ as the map $x \mapsto s \cdot f(s^{-1}x) - f(x)$, for $x \in B$. Then c_f is a 1-cocycle on G with values in $\text{Hom}_k(B, A)$, which represents the class (V).

One has (V) = 0 if and only if f can be chosen to be G-linear, i.e., if and only if the injection $A \rightarrow V$ splits.

5.1.2. The Filtration of $\wedge^m V$ Defined by A

We view *A* as a subobject of *V*. For every integer α with $0 \le \alpha \le m$, let F_{α} be the subspace of $\wedge^{m}V$ generated by the $x_{1} \wedge \cdots \wedge x_{m}$ such that x_{i} belongs to A for $i \leq \alpha$; put $F_{m+1} = 0$. The F_{α} are G-stable, and they define a decreasing filtration of $\wedge^{m}V$:

$$\wedge^m V = F_0 \supset F_1 \cdots \supset F_m \supset F_{m+1} = 0.$$

One has $F_m = \bigwedge {}^m A$. More generally, the quotient $V_{\alpha} = F_{\alpha}/F_{\alpha+1}$ can be identified with $\wedge {}^{\alpha}\!A \otimes \wedge {}^{\beta}\!B$, where $\beta = m - \alpha$; in this identification, an element $x_1 \wedge \cdots \wedge x_m$ of F_{α} (with $x_i \in A$ for $i \leq \alpha$, as above) corresponds to

$$(x_1 \wedge \cdots \wedge x_{\alpha}) \otimes (\bar{x}_{\alpha+1} \wedge \cdots \wedge \bar{x}_m),$$

where \bar{x}_i is the image of x_i in *B*.

Assume now $\alpha \ge 1$, and put $V_{\alpha}^2 = F_{\alpha-1}/F_{\alpha+1}$. We have an exact sequence

$$\mathbf{0} \to V_{\alpha} \to V_{\alpha}^2 \to V_{\alpha-1} \to \mathbf{0}, \tag{5.1.3}$$

hence an extension class (V_{α}^2) in $H^1(G, V_{\alpha} \otimes V_{\alpha-1}^*)$. Since $V_{\alpha} = \bigwedge {}^{\alpha}\!A \otimes \bigwedge {}^{\beta}\!B$, we may view (V_{α}^2) as an element of the cohomology group

$$H^{1}(G, \wedge {}^{\alpha}\!A \otimes \wedge {}^{\beta}\!B \otimes \wedge {}^{\alpha-1}\!A^{*} \otimes \wedge {}^{\beta+1}\!B^{*}).$$
(5.1.4)

5.1.5. Comparison of the Classes (V) and (V_{α}^2)

The exterior product $(u, x) \mapsto u \wedge x$ defines a map from $\wedge {}^{\alpha-1}A \otimes A$ to $\wedge {}^{\alpha}A$, hence a C_G -morphism:

$$\theta_{A,\alpha}: A \to \operatorname{Hom}_{k}(\wedge^{\alpha-1}A, \wedge^{\alpha}A) = \wedge^{\alpha}A \otimes \wedge^{\alpha-1}A^{*}.$$
(5.1.6)

The same construction, applied to B^* and to $\beta + 1$, gives

$$\theta_{B^*, \beta+1} \colon B^* \to \bigwedge {}^{\beta+1}B^* \otimes \bigwedge {}^{\beta}B.$$
(5.1.7)

By tensoring these two maps, and multiplying by $(-1)^{\beta}$, we get

$$\Theta_{\alpha} \colon A \otimes B^* \to \bigwedge {}^{\alpha}\!\!A \otimes \bigwedge {}^{\beta}\!\!B \otimes \bigwedge {}^{\alpha-1}\!\!A^* \otimes \bigwedge {}^{\beta+1}\!\!B^*.$$
(5.1.8)

Since Θ_{α} is a C_G -morphism, it defines a map

$$\Theta^{1}_{\alpha} \colon H^{1}(G, A \otimes B^{*}) \to H^{1}(G, \wedge {}^{\alpha}\!A \otimes \wedge {}^{\beta}\!B \otimes \wedge {}^{\alpha-1}\!A^{*} \otimes \wedge {}^{\beta+1}\!B^{*}).$$

LEMMA 5.1.9. The image by Θ^1_{α} of the class (V) of (5.1.1) is the class (V^2_{α}) of (5.1.3).

Proof (*sketch*). Select a *k*-splitting *f* of (5.1.1). Using *f*, one may identify the exterior algebra $\wedge V$ with $\wedge A \otimes \wedge B$. This defines a *k*-splitting f_{α} of V_{α}^2 . An explicit computation (which we do not reproduce) shows that the cocycle $c_{f_{\alpha}}$ corresponding to f_{α} is the image by Θ_{α} of the cocycle c_f . Hence the lemma.

The next step is to give criteria for Θ^1_{α} to be injective. Put

 $a = \dim A$ and $b = \dim B$, (5.1.10)

so that we have

$$\dim V = a + b.$$
(5.1.11)

LEMMA 5.1.12. Assume $\binom{a-1}{\alpha-1} \neq 0 \pmod{p}$. Then the morphism $\theta_{A,\alpha}$ defined above is a split injection.

(Recall that $\binom{x}{y}$ is the binomial coefficient $x(x-1)\cdots(x-y+1)/y!$)

Proof (*sketch*). Consider the C_G -morphism

$$\theta_{A^*,\alpha}: A^* \to \bigwedge {}^{\alpha}A^* \otimes \bigwedge {}^{\alpha-1}A,$$

and let

 $\theta'_{A^*, \alpha} \colon \bigwedge {}^{\alpha} A \otimes \bigwedge {}^{\alpha - 1} A^* \to A$

be its transpose. One has

$$\theta'_{A^*, \alpha} \circ \theta_{A, \alpha} = \begin{pmatrix} a - 1 \\ \alpha - 1 \end{pmatrix} \cdot \mathbf{1}_A \quad \text{in End}(A). \quad (5.1.13)$$

This identity is proved by a straightforward computation: one chooses a *k*-basis of the vector space *A*; this gives bases of $\wedge {}^{\alpha}A$, $\wedge {}^{\alpha}A^*$,...; one

determines the corresponding matrices, etc. The details are left to the reader.

Once (5.1.13) is checked, Lemma 5.1.12 is obvious.

LEMMA 5.1.14. Assume $\binom{b-1}{\beta} \neq 0 \pmod{p}$. Then the morphism $\theta_{B^*, \beta+1}$ defined above is a split injection.

Proof. This follows from the preceding lemma, with A replaced by B^* and α by $\beta + 1$.

LEMMA 5.1.15. Assume

$$\begin{pmatrix} a-1\\ \alpha-1 \end{pmatrix} \cdot \begin{pmatrix} b-1\\ \beta \end{pmatrix} \not\equiv 0 \pmod{p}.$$

Then:

(i) The C_G -morphism Θ_{α} defined in (5.1.8) is a split injection.

(ii) The map

$$\Theta^{1}_{\alpha}: H^{1}(G, A \otimes B^{*}) \to H^{1}(G, \wedge {}^{\alpha}A \otimes \wedge {}^{\beta}B \otimes \wedge {}^{\alpha-1}A^{*} \otimes \wedge {}^{\beta+1}B^{*})$$

is injective.

Proof. Assertion (i) follows from Lemmas 5.1.12 and 5.1.14 since the tensor product of two split injections is a split injection. Assertion (ii) follows from assertion (i).

LEMMA 5.1.16. Assume

$$\binom{a-1}{\alpha-1} \cdot \binom{b-1}{\beta} \not\equiv 0 \pmod{p}.$$

If the exact sequence (5.1.3) splits, then $A \rightarrow V$ is a split injection.

Proof. We have $(V_{\alpha}^2) = 0$ by hypothesis. Since (V_{α}^2) is the image of (V) by Θ_{α}^1 (cf. Lemma 5.1.9) and Θ_{α}^1 is injective (cf. Lemma 5.1.15), we have (V) = 0.

5.2. Semisimplicity Statements

Let V be as above an object of C_G , and m an integer ≥ 1 .

THEOREM 5.2.1. Assume that $\wedge^m V$ is semisimple, and that the integer dim V has the following property:

(*) For every pair of integers $a, b \ge 1$ with $a + b = \dim V$, there exists an integer α , with $1 \le \alpha \le m$, such that

$$\begin{pmatrix} a-1\\ \alpha-1 \end{pmatrix} \cdot \begin{pmatrix} b-1\\ m-\alpha \end{pmatrix} \not\equiv 0 \pmod{p}.$$
 (5.2.2)

Then V is semisimple.

Proof. Let A be a subobject of V, and let B = V/A. We want to show that $A \rightarrow V$ splits. We may assume that $A \neq 0$, $B \neq 0$. Put as above

$$a = \dim A$$
 and $b = \dim B$.

We have $a, b \ge 1$ and $a + b = \dim V$. Choose α as in (5.2.2). Since $\bigwedge^m V$ is semisimple, the same is true for its subquotients, and in particular for V_{α}^2 (cf. Sect. 5.1.2). Hence the exact sequence (5.1.3) splits. By Lemma 5.1.16, this implies that $A \to V$ splits.

EXAMPLE 5.2.3. If m = 2, α may take the values 1 and 2 and (5.2.2) means:

$$b - 1 \neq 0 \pmod{p}$$
 if $\alpha = 1$,
 $a - 1 \neq 0 \pmod{p}$ if $\alpha = 2$.

If dim V = a + b is not congruent to 2 (mod p), one of these two is true. Hence $\wedge^2 V$ semisimple $\Rightarrow V$ semisimple, and we recover Theorem 4.5.

Here are two other examples:

THEOREM 5.2.4. Assume $\wedge {}^{3}V$ is semisimple and

 $\dim V \neq 2, 3 \pmod{p} \qquad if \ p \neq 2,$ $\dim V \neq 2, 3 \pmod{p} \qquad if \ p = 2.$

Then V is semisimple.

Proof. Here α may take the values 1, 2, 3 and (5.2.2) means

$(b-1)(b-2)/2 \not\equiv 0 \pmod{p}$	if $\alpha = 1$
$(a-1)(b-1) \not\equiv 0 \pmod{p}$	if $\alpha = 2$
$(a-1)(a-2)/2 \not\equiv 0 \pmod{p}$	if $\alpha = 3$

If $p \neq 2$, these conditions mean, respectively,

$$b \neq 1, 2 \pmod{p},$$

$$a \neq 1 \pmod{p} \text{ and } b \neq 1 \pmod{p},$$

$$a \neq 1, 2 \pmod{p}.$$

If $a + b \neq 2, 3 \pmod{p}$, it is clear that one of them is fulfilled.

The case p = 2 is similar; the only difference is that the congruence

$$(x-1)(x-2)/2 \not\equiv 0 \pmod{2}$$

means that $x \neq 1, 2 \pmod{4}$.

THEOREM 5.2.5. Assume that $\wedge^m V$ is semisimple and

dim $V \not\equiv 2, 3, \ldots, m \pmod{p}$.

Then V is semisimple.

Proof. Consider first the case p = 0 (see also Sect. 6.1 below). By assumption we have dim $V \neq 2, 3, ..., m$. (Note that it is *a priori* obvious that these dimensions have to be excluded.) We may assume dim $V \neq 0, 1$, hence dim V > m. If $a + b = \dim V$, with $a, b \ge 1$, we put $\alpha = 1 + \sup(0, m - b)$. We have $a - 1 \ge \alpha - 1$ and $b - 1 \ge m - \alpha$ hence both $\binom{a-1}{m-\alpha}$ are $\neq 0$. Hence (5.2.2) is satisfied.

Suppose now p > 0. The hypothesis dim $V \neq 2, 3, ..., m \pmod{p}$ implies $p \ge m$. Hence condition (5.2.2) may be rewritten as

$$a \neq 1, 2, ..., \alpha - 1 \pmod{p}$$
 and $b \neq 1, 2, ..., m - \alpha \pmod{p}$. (5.2.26)

If $b \neq 1, 2, ..., m - 1 \pmod{p}$, we put $\alpha = 1$ and (5.2.6) holds. If $b \equiv i \pmod{p}$ with $1 \le i \le m - 1$, we put $\alpha = m - i + 1$. One has

$$a \not\equiv 1, 2, \ldots, \alpha - 1 \pmod{p}$$
,

because otherwise dim V would be congruent (mod p) to i + 1, ..., m, which would contradict our assumption. Hence (5.2.6) holds

5.3. Higher Symmetric Powers

We assume here that p > m (or p = 0), so that the dual of $\text{Sym}^{\alpha}V$ for $\alpha \le m$ is $\text{Sym}^{\alpha}V^*$.

THEOREM 5.3.1. If Sym^{*m*}V is semisimple and dim $V \neq -2, -3, \ldots, -m$ (mod p), then V is semisimple.

Proof (*sketch*). One rewrites the previous sections with exterior powers replaced by symmetric powers. The sign problems disappear. Moreover, the integer $\binom{a-1}{\alpha-1}$ of (5.1.13) becomes $\binom{a+\alpha-1}{\alpha-1}$. The rest of the proof is the same.

6. FURTHER REMARKS

6.1. Characteristic Zero

When p = 0, the theorems of Sects. 2–5 can be obtained more simply by the following method (essentially due to Chevalley [2]):

We want to prove that a linear representation V of G is semisimple, knowing (say) that $\bigwedge^m V$ is semisimple and dim $V \neq 2, 3, \ldots, m$. By enlarg-

ing k, we may assume it is algebraically closed; we may also assume that $G \rightarrow \mathbf{GL}(V)$ is injective and that its image is Zariski-closed; hence G may be viewed as a linear algebraic group over k (more correctly: as the group of k-points of an algebraic linear group). See [6] for these easy reduction steps. Let U be the unipotent radical of G (maximal normal unipotent subgroup). Because the characteristic is 0, an algebraic linear representation of G is semisimple if and only if its kernel contains U. Since $\bigwedge^{m} V$ is assumed to be semisimple, this shows that U is contained in the kernel of $\mathbf{GL}(V) \rightarrow \mathbf{GL}(\bigwedge^{m} V)$. If dim $V \neq 2, 3, \ldots, m$, this kernel is of order m (if dim V > m) or is a torus (if dim V < 2); such a group has no nontrivial unipotent subgroup. Hence U = 1, and the given representation $G \rightarrow \mathbf{GL}(V)$ is semisimple.

6.2. Generalizations

All the results of Sects. 2–5 extend to linear representations of *Lie* algebras, and also of *restricted Lie* algebras (if p > 0). This is easy to check.

A less obvious generalization consists of replacing C_G by a *tensor* category C over k, in the sense of Deligne [3]. Such a category is an abelian category, with the following extra structures:

(a) for every $V_1, V_2 \in ob(C)$, a k-vector space structure on $Hom^C(V_1, V_2)$;

(b) an exact bifunctor $C \times C \rightarrow C$, denoted by $(V_1, V_2) \mapsto V_1 \otimes V_2$;

- (c) a commutativity isomorphism $V_1 \otimes V_2 \rightarrow V_2 \otimes V_1$;
- (d) an associativity isomorphism $(V_1 \otimes V_2) \otimes V_3 \rightarrow V_1 \otimes (V_2 \otimes V_3)$.

These data have to fulfill several axioms mimicking what happens in C_G (cf. [3]). For instance, there should exist an object "<u>1</u>" with <u>1</u> \otimes V = V for every V, and End^C(<u>1</u>) = k; there should be a "dual" V^* with $V^{**} = V$ and Hom^C(W, V^*) = Hom^C($V \otimes W, \underline{1}$) for every $W \in ob(C)$; etc.

If $V \in ob(C)$, there are natural morphisms

$$1 \to V \otimes V^*$$
 and $V \otimes V^* \to 1$.

The *dimension* of *V* is the element of $k = \text{End}^{C}(\underline{1})$ defined by the composition

$$\underline{1} \to V \otimes V^* \to \underline{1}.$$

It is not always an integer.

All the results of Sects. 2 and 3 are true for C provided the conditions on dim V or dim W are interpreted as taking place in k. For instance, if $V \otimes W$ is semisimple and dim $W \neq 0$ (in k), then V is semisimple. The proofs

require some minor changes: e.g., in Lemma 3.1, one needs to define directly the morphisms

$$f_V: V \otimes V \otimes V^* \to V$$
 and $j_V: V \to V \otimes V \otimes V^*$.

Moreover, the basic equality $f_V \circ j_V = \mathbf{1}_V$ is one of the axioms of a tensor category, (cf. [3], (2.1.2)).

As for the results of Sect. 4 on $\wedge^2 V$ and $\text{Sym}^2 V$, they remain true at least when $p \neq 2$, but some of the proofs (e.g., that of Proposition 4.2) have to be written differently. I am not sure of what happens with Sect. 5: I have not managed to rewrite the proofs in tensor category style. Still, I feel that Theorem 5.2.5 (on $\wedge^m V$) and Theorem 5.3.1 (on Sym^{*m*}V) should remain true whenever $m! \neq 0$ in k (i.e., p = 0 or p > m).

Remark. An interesting feature of the tensor category point of view is the following principle, which was pointed out to me by Deligne: Any result on \wedge^m implies a result for Sym^m, and conversely (here again we assume $m! \neq 0$ in k). This is done by associating to each tensor category C the category C' = super(C), whose objects are the pairs $V' = (V_0, V_1)$ of objects of C; such a V' is viewed as a graded object $V' = V_0 \oplus V_1$, with grading group $\mathbb{Z}/2\mathbb{Z}$. The tensor structure of C' is defined in an obvious way, except that the commutativity isomorphism is modified according to the Koszul sign rule: the chosen isomorphism between $(0, V_1) \otimes (0, W_1)$ and $(0, W_1) \otimes (0, V_1)$ is the opposite of the obvi-ous one. With this convention, one finds that

 $\dim V' = \dim V_0 - \dim V_1.$

In particular, if $V \in ob(C)$, one has dim(0, V) = -dim V. Moreover, one checks that

$$\wedge^{m}(\mathbf{0}, V) = \begin{cases} (\operatorname{Sym}^{m} V, \mathbf{0}) & \text{if } m \text{ is even,} \\ (\mathbf{0}, \operatorname{Sym}^{m} V) & \text{if } m \text{ is odd.} \end{cases}$$

Hence any general theorem on the functor \wedge^{m} , when applied to C', gives a corresponding theorem for the functor Sym^{*m*}, with a sign change in dimensions (compare for instance Theorem 4.5 and Theorem 4.7).

7. EXAMPLES

The aim of this section is to construct examples showing that the congruence conditions on dim W and dim V in Theorems 2.4, 4.5, and 5.2.5 are best possible.

We assume that p is > 0 and that k is algebraically closed

7.1. The Group G

Let C be a cyclic group of order p, with generator s. Choose a finite abelian group A on which C acts. Assume

(7.1.1) the order |A| of A is prime to p, and > 1.

(7.1.2) the action of C on $A - \{1\}$ is free.

Let G be the semidirect product $A \cdot C$ of C by A. It is a Frobenius group, with Frobenius kernel A.

Let $X = \text{Hom}(A, k^{\times})$ be the character group of A; we write X additively and, if $a \in A$ and $x \in X$, the image of a by x is denoted by a^x . The group C acts on X by duality, and condition (7.1.2) is equivalent to:

(7.1.3) The action of C on $X - \{0\}$ is free (i.e., $sx = x \Rightarrow x = 0$).

If $x \in X$, denote by $\underline{1}^x \in C_A$ the *k*-vector space *k* on which *A* acts *via* the character *x*. The induced module $W(x) = \text{Ind}_A^G \underline{1}^x$ is an object of C_G , of dimension *p*. One checks easily:

(7.1.4) If $x \neq 0$, W(x) is simple and projective (in C_G).

Moreover

(7.1.5) Every $V \in ob(C_G)$ splits uniquely as $V = E \oplus P$, where E is the subspace of V fixed under A, and P is a direct sum of modules W(x), with $x \in X - \{0\}$.

If we decompose V in $V = \bigoplus V_x$, where V_x is the *A*-eigenspace relative to *x* (i.e., the set of $v \in V$ such that $a \cdot v = a^x v$ for every $a \in A$), one has $E = V_0$ and $P = \bigoplus_{y \neq 0} V_y$.

From (7.1.5) follow:

(7.1.6) *V* is semisimple if and only if the action of *C* on *E* is trivial (i.e., if and only if $E \cong \underline{1} \oplus \cdots \oplus \underline{1}$).

(7.1.7) V is projective if and only if E is C-projective (i.e., if and only if E is a multiple of the regular representation of C).

Note that both (7.1.6) and (7.1.7) apply when E = 0, i.e., when no element of *V*, except 0, is fixed by *A*.

(7.1.8) Let x be an element of $X - \{0\}$. If $V = V_0$ (i.e., if A acts trivially on V), then $V \otimes W(x)$ is isomorphic to the direct sum of m copies of W(x), where $m = \dim V$.

Indeed, V is a successive extension of m copies of 1, hence $V \otimes W(x)$ is a successive extension of m copies of W(x); these extensions split since W(x) is projective (7.1.4); hence the result.

7.2. Examples Relative to Theorem 2.4

We reproduce here an example due to W. Feit, showing that the congruence condition "dim $W \neq 0 \pmod{p}$ " of Theorem 2.4 is the best possible:

PROPOSITION 7.2.1. Let G be a finite group of the type in Sect. 7.1, and let n, m be two positive integers, with m > 1 and n divisible by p. There exist $V, W \in ob(C_G)$ such that:

(i) dim V = m and dim W = n;

(ii) V is not semisimple;

(iii) $V \otimes W$ is semisimple.

Proof. Choose:

V = a non-semisimple *C*-module of dimension *m* (such a module exists since m > 1);

 $W = W(x_1) \oplus \cdots \oplus W(x_{n/p})$, with $x_i \in X - \{0\}$.

The projection $G \rightarrow C$ makes V into a G-module with trivial A-action. It is clear that (i) and (ii) are true. By (7.1.8), $V \otimes W$ is isomorphic to the direct sum of m copies of W, hence it is semisimple.

7.3. Examples relative to Theorems 4.5 and 5.2.5

The following proposition shows that the congruence conditions of Theorem 5.2.5 are the best possible:

PROPOSITION 7.3.1. Let *i* and *n* be two integers with $2 \le i \le p$, n > 0 and $n \equiv i \pmod{p}$. There exists a finite group G of the type described in Sect. 7.1 and an object V of C_G such that:

- (a) dim V = n;
- (b) *V* is not semisimple;
- (c) $\wedge^m V$ is semisimple for every m such that $i \leq m \leq p$.

The case i = 2 gives the following result, which shows that the condition dim $V \neq 2 \pmod{p}$ of Theorem 4.5 is the best possible:

COROLLARY 7.3.2. If n > 0 and $n \equiv 2 \pmod{p}$, there exist a finite group G and a non-semisimple G-module V such that $\dim V = n$ and $\wedge^2 V$ is semisimple.

(Even better: $\wedge^m V$ is semisimple for $2 \le m \le p$.)

Proof of Proposition 7.3.1. We need to choose a suitable $G = A \cdot C$ of the type described in Sect. 7.1. To do so, write n as n = i + hp, with $h \ge 0$.

LEMMA 7.3.3. There exist a finite abelian group X, on which C acts, and h elements x_1, \ldots, x_h of X, with the following properties:

(7.3.4) The action of C on $X - \{0\}$ is free.

(7.3.5) For every family (I_1, \ldots, I_h) of nonempty subsets of [0, p - 1] the relation

$$\sum_{\alpha=1}^{h} \sum_{j \in I_{\alpha}} s^{j} x_{\alpha} = \mathbf{0}$$
 (*)

implies $I_{\alpha} = [0, p - 1]$ for $\alpha = 1, \ldots, h$.

Proof. Assume first that h = 1. In that case, (7.3.5) just means that, if I is a subset of [0, p - 1], with 0 < |I| < p, one has $\sum_{j \in I} s^j x_1 \neq 0$. This is easy to achieve: choose some integer e > 1, prime to p, and define X_1 to be the augmentation module of the group ring $\mathbf{Z}/e\mathbf{Z}[C]$, i.e., the kernel of $\mathbf{Z}/e\mathbf{Z}[C] \rightarrow \mathbf{Z}/e\mathbf{Z}$; put $x_1 = 1 - s$. It is easy to check that (X_1, x_1) has the required property.

If h > 1, one takes for X the direct sum of h copies of the C-module X_1 defined above, and one defines x_1, \ldots, x_h to be

$$(x_1, 0, \ldots, 0), \ldots, (0, \ldots, 0, x_1).$$

Proof of Proposition 7.3.1 (*continued*). Let $(X, x_1, ..., x_h)$ be as in Lemma 7.3.3. Property (7.3.4) implies

$$|X| \equiv 1 \pmod{p},$$

hence |X| is prime to p. Let $A = \text{Hom}(X, k^{\times})$ be the dual of X; then X is the dual of A. The semidirect product $G = A \cdot C$ is a group of the type described in Sect. 7.1. Define $V \in ob(C_G)$ by

$$V = E \oplus W(x_1) \oplus \cdots \oplus W(x_h), \tag{7.3.6}$$

where *E* is a non-semisimple *C*-module of dimension *i* (viewed as a *G*-module with trivial action of *A*), and $W(x_{\alpha}) = \text{Ind}_{C}^{G} \underline{1}^{x_{\alpha}}$ (cf. Sect. 7.1). We have dim V = i + hp = n, and it is clear that *V* is not semisimple. It remains to check that $\bigwedge^{m} V$ is semisimple if $i \leq m \leq p$. By (7.3.6), $\bigwedge^{m} V$ is a direct sum of modules of type:

$$\wedge^{a} E \otimes \wedge^{b_{1}} W(x_{1}) \otimes \cdots \otimes \wedge^{b_{h}} W(x_{h}), \qquad (7.3.7)$$

with $a + b_1 + \dots + b_h = m$. Let us show that every such module is semisimple. If all b_{α} are 0, we have $a = m \ge i$, and $\wedge^{a}E$ is 0 if m > i and $\wedge^{a}E = \underline{1}$ if m = i. Hence (7.3.7) is either 0 or $\underline{1}$ and is semisimple. We may thus assume that one of the b_{α} is > 0. By using induction on h, we may even assume that all the b_{α} are > 0. Since

$$b_1 + \dots + b_h = m - a \le p,$$

the b_{α} are $\leq p$. Suppose one of them, say b_1 , is equal to p. We have then

$$b_2 = \cdots = b_h = \mathbf{0}, \qquad m = p, \qquad a = \mathbf{0},$$

and the *G*-module (7.3.7) is equal to $\wedge {}^{p}W(x_{1}) = \underline{1}$, hence is semisimple. We may thus assume that $0 < b_{\alpha} < p$ for every α . Observe now that, if $x \in X - \{0\}$, the characters of *A* occurring in the *A*-module W(x) are $x, sx, \ldots, s^{p-1}x$, and their multiplicity is equal to 1. Hence the characters occurring in $\wedge {}^{b}W(x)$ are of the form $\sum_{j \in I} s^{j}x$, for a subset *I* of [0, p - 1] with |I| = b. By applying this remark to the $W(x_{\alpha})$, one sees that the characters of *A* occurring in (7.3.7) are of the form

$$\sum_{\alpha=1}^{h} \sum_{j \in I_{\alpha}} s^{j} x,$$

with $|I_{\alpha}| = b_{\alpha}$. Since $0 < b_{\alpha} < p$ for every α , it follows from (7.3.5) that such a character is $\neq 0$. Hence no element of (7.3.7), except 0, is fixed under *A*. By (7.1.6), this implies that (7.3.7) is semisimple. This concludes the proof.

APPENDIX

by Walter Feit

A.1

Let G be a finite group, let p be a prime and let k be a field of characteristic p > 0. If V is a k[G]-module of dimension n such that $\wedge^2 V$ is semisimple, then V is semisimple unless $n \equiv 2 \pmod{p}$ by Theorem 4.5. Similarly, Theorem 4.6 asserts that if $\text{Sym}^2(V)$ is semisimple then so is V unless $n \equiv -2 \pmod{p}$.

Corollary 7.3.2 implies that, for odd p, Theorem 4.5 is the best possible result. In Theorem A2 below, it is shown that for p = 2, for infinitely many but not all even n, there exists a non-semisimple module V of dimension n with $\wedge^2 V$ semisimple.

Furthermore, Theorem A1(ii) shows that if p is a prime such that $p|(2^m + 1)$ for some natural number m, then there exist infinitely many integers n and non-semisimple modules V of dimension n with $\text{Sym}^2 V$ semisimple.

If p is odd there always exist infinitely many natural numbers m such that $p|(2^m - 1)$. The situation is more complicated in case (ii) of Theorem A1. By quadratic reciprocity $p|(2^m + 1)$ for some m if $p \equiv 3$ or 5 (mod 8), and $p \neq (2^m + 1)$ for any m if $p \equiv 7 \pmod{8}$. In case $p \equiv 1 \pmod{8}$, such an m may or may not exist, the smallest value in this case where no such m exists is p = 73. It is not known whether a non-semisimple V exists with $\operatorname{Sym}^2 V$ semisimple in case p is a prime such as 7, 23, ... which does not divide $2^m + 1$ for any natural number m.

If $p = 2^m + 1$ is a Fermat prime, Corollary 4.10 implies that the module V constructed in Theorem A1(ii) has the smallest possible dimension $2^{m+1} = 2p - 2$. For no other primes is it known to us whether there exists a non-semisimple module V with Sym²V semisimple of the smallest possible dimension 2p - 2.

The method of proof of Theorem A1 also yields some additional examples for all odd primes, of non-semisimple modules V with $\wedge^2 V$ semisimple.

Basic results from modular representation theory are used freely below. See, e.g., [4]. The following notation is used, where p is a prime and G is a finite group:

F is a finite extension of \mathbb{Q}_p , the *p*-adic numbers;

R is the ring of integers in F;

 π is a prime element in R.

From now on it will be assumed that $k = R/\pi R$ is the residue class field. Moreover both *F* and *k* are splitting fields of *G* in all cases that arise.

PROPOSITION A.1.1. Let $\alpha = \alpha_1 + \alpha_2$ be a Brauer character of G, where α_1 is the sum of irreducible Brauer characters which are afforded by projective modules, and α_2 is the sum of irreducible Brauer characters φ_i , no two of which are in the same p-block. Then any k[G]-module W which affords α is semisimple.

Proof. Since a projective submodule of any module is a direct summand, $W = W_1 \oplus W_2$, where W_i affords α_i . Furthermore, W_1 is the direct sum of irreducible projective modules, and so is semisimple. W_2 is semisimple as all the constituents of an indecomposable module lie in the same block.

An immediate consequence of Proposition A.1.1 is

COROLLARY A.1.1. Let $\theta = \Sigma \chi_i + \Sigma \zeta_j$ be a character of G, where each χ_i and ζ_j is irreducible. Let U be an R-free R[G]-module which affords θ . Suppose that the following hold:

- (i) χ_i has defect **0** for each *i*.
- (ii) ζ_i is irreducible as a Brauer character for each j.
- (iii) If $j \neq j'$ then $\zeta_{i'}$ and ζ_i are in distinct blocks.

Then $\overline{U} = U/\pi U$ is semisimple.

Corollary A.1.1 yields a criterion to determine when a module is semisimple, which depends only on the computation of ordinary characters. To construct a non-semisimple k[G]-module the following result is helpful.

PROPOSITION A.1.2 (Thompson, see [4, I.17.12]). Let U be a projective indecomposable R[G]-module. Let V be an F[G]-module which is a summand of $F \otimes U$. Then there exists an R-free R[G]-module W with $F \otimes W \approx V$ and $\overline{W} = W/\pi W$ indecomposable.

COROLLARY A.1.2. Let $\theta = \eta + \psi$ be the character afforded by a projective indecomposable R[G]-module, where η and ψ are characters. Then there exists an indecomposable $\overline{R}[G]$ -module which affords η as a Brauer character.

A.2

See [5, pp. 355-357] for the results below.

Let D denote a dihedral group of order 8 and let Q be a quaternion group of order 8.

Let *m* be a natural number. Up to isomorphism there are two extra-special groups of order 2^{2m+1} , $T(m, \varepsilon)$ for $\varepsilon = \pm 1$. The first, T(m, 1), is the central product of *m* copies of *D*, while T(m, -1) is the central product of *Q* with m - 1 copies of *D*. Let $T = T(m, \varepsilon)$, let *Z* be the center of *T* and let $\overline{T} = T/Z$. The map $q = q(m, \varepsilon)$: $T \to Z$ with $q(y) = y^2$ defines a nondegenerate quadratic form on \overline{T} , where *Z* is identified with the field of two elements. $\overline{T}(m, 1)$ has a maximal isotropic subspace of dimension *m*, while $\overline{T}(m, -1)$ has a maximal isotropic subspace of automorphisms of $T(m, \varepsilon)$.

 $O_{2m}(q, \varepsilon)$ has a cyclic subgroup of order $2^m - \varepsilon$ which acts regularly on $\overline{T}(m, \varepsilon)$. Thus if p is a prime with $p|(2^m - \varepsilon)$, then T has an automorphism σ of order p whose fixed point set is Z.

Let $P = \langle \sigma \rangle$ and let G be the semidirect product PT. Then $\overline{G} = P\overline{T}$ is a Frobenius group with Frobenius kernel \overline{T} .

Every irreducible character of \overline{G} which does not have \overline{T} in its kernel is

induced from a nonprincipal linear character of \overline{T} and so has degree p. T has one faithful irreducible character χ . Thus χ extends to an irreducible character of G in p distinct ways. The values of χ are easily computed. Hence all characters of G can be described as follows:

PROPOSITION A.2.1. (i) *G* has *p* linear characters $1 = \lambda_1, ..., \lambda_p$, whose kernels contain T

(ii) The irreducible characters of \overline{G} which do not have \overline{T} in their kernel all have degree p, and so are of p-defect 0.

(iii) There is a faithful irreducible character $\tilde{\chi}$ of G such that $\tilde{\chi}\lambda_1, \ldots, \tilde{\chi}\lambda_p$ are all the faithful irreducible characters of G. Furthermore, $\tilde{\chi}(1) = 2^m$ and $\tilde{\chi}$ vanishes on all elements of T - Z.

(iv) There are two p-blocks of G of positive defect. The sets of irreducible characters in them are $\{\lambda_i | 1 \le i \le p\}$ and $\{\tilde{\chi}\lambda_i | 1 \le i \le p\}$, respectivelv.

(v) Every irreducible character of G is irreducible as a Brauer character.

The notation of this subsection, especially of Proposition A.2.1, will be used freely below.

A.3

THEOREM A1. Assume that $p \neq 2$.

(i) Let *m* be a natural number such that $p|(2^m - 1)$. Then there exists a finite group G and a non-semisimple k[G]-module V of dimension $2^{m+1} \equiv 2$ (mod p) such that $\wedge^2 V$ is semisimple.

(ii) If $p|(2^m + 1)$ for a natural number m, then there exists a finite group G and a non-semisimple k[G]-module V of dimension $2^{m+1} \equiv -2$ (mod p) such that Sym²V is semisimple.

Proof. Let G be as in the previous subsection. As a Brauer character, $\tilde{\chi}\lambda_i$ is Q-valued for all *i*. As the induced character $\chi^G = \Sigma \tilde{\chi}\lambda_i$, it is the character afforded by a projective indecomposable k[G]-module. Hence by Corollary A.1.2 there exists an indecomposable k[G]-module V which affords the Brauer character $\theta = 2\tilde{\chi}$, since $\tilde{\chi} + \tilde{\chi}\lambda_i$ agrees with $2\tilde{\chi}$ as a Brauer character. Since χ is irreducible, θ^2 restricted to *T* contains the principal character of *T* with multiplicity 4. Thus θ^2 is the sum of four linear Brauer characters and irreducible Brauer characters of p-defect 0.

V is a k[G]-module, and hence also a k[T]-module. As *T* is a p'-group, Brauer characters of *T* are ordinary characters. Let skew be the character

of T afforded by $\wedge^2 V$ and let sym denote the character of T afforded by $Sym^2 V$. Then for y in T

skew
$$(y) = (\theta(y)^2 - \theta(y^2))/2,$$

sym $(y) = (\theta(y)^2 + \theta(y^2))/2.$

Let $\nu = \pm 1$ denote the Frobenius–Schur index of χ . Then $\sum_{y \in T} \chi(y^2) = \nu |T|$. Hence $\sum_{y \in T} \theta(y^2) = 2\nu |T|$. Therefore

$$\frac{1}{|T|} \sum_{y \in T} \operatorname{skew}(y) = 2 - \nu,$$
$$\frac{1}{|T|} \sum_{y \in T} \operatorname{sym}(y) = 2 + \nu.$$

In particular, both skew and sym contain the principal character as a constituent.

Therefore the Brauer characters *sy*, *sk* of *G* afforded by $Sym^2 V$ and by $\wedge^2 V$, respectively, both contain at least one linear constituent. Hence each contains at most three linear constituents as $V \otimes V$ has exactly four linear constituents.

(i) $sk(1) = (2^{m+1}(2^{m+1} - 1))/2$, hence $sk(1) \equiv 1 \pmod{p}$. As $p \ge 3$ this implies that $sk = 1 + \beta$, where β is the sum of irreducible projective Brauer characters. Thus $\bigwedge^2 V$ is semisimple.

(ii) $sy(1) = (2^{m+1}(2^{m+1} + 1))/2$, hence $sy(1) \equiv 1 \pmod{p}$. As $p \ge 3$ this implies that $sy = 1 + \beta$, where β is the sum of irreducible projective Brauer characters. Thus Sym^2V is semisimple.

Remark. The argument in the proof of Theorem A1 involving the Frobenius–Schur index is only needed for p = 3. If p > 3, then the last two statements in the proof are clear.

Serre has pointed out that V can be defined directly as $E \otimes X$, where E is an indecomposable two-dimensional module of P = G/T and X is the irreducible *G*-module afforded by $\tilde{\chi}$ as a Brauer character.

A.4

THEOREM A2. Suppose that p = 2. Let $q \equiv 3 \pmod{8}$ be a prime power and let G = SL(2, q). Then there exists a non-semisimple k[G]-module V of dimension (q + 1)/2 such that $\bigwedge^2 V$ is semisimple.

Proof. The irreducible characters in the principal 2-block of PSL(2, q) are 1, St, ψ_1 , and ψ_2 , where $\psi_i(1) = (q - 1)/2$ for i = 1, 2. The restriction

of ψ_i to a Borel subgroup is irreducible and so ψ_i is irreducible as a Brauer character. The remaining 2-blocks of PSL(2, q) are either of defect 0 or 1.

There are (q - 3)/8 2-blocks B_i of PSL(2, q) of defect 1. The Brauer tree of each B_i has two vertices and one edge, and so every irreducible character in B_i is irreducible as a Brauer character.

Let χ_{i1} and χ_{i2} be the irreducible characters in B_i . The notation can be chosen so that $\chi_{i1}(u) = 2$ and $\chi_{i2}(u) = -2$ for an involution u.

SL(2, q) has a faithful irreducible character η of degree (q + 1)/2whose values lie in $\mathbb{Q}(\sqrt{-q})$ with $\eta = 1 + \psi_1$ as a Brauer character. By Corollary A.1.2 there exists an *R*-free *R*[*G*]-module *W* which affords η such that $V = W/\pi W$ is indecomposable. The center of *G* acts trivially on $\wedge^2 W$ and so $\wedge^2 W$ is an *R*[PSL(2, q)]-module. Direct computation shows that $\wedge^2 W$ affords $\psi_1 + \Sigma \chi_{i1}$. By Corollary A.1.1, $\wedge^2 V$ is semisimple.

REFERENCES

- N. Bourbaki, Modules et anneaux semi-simples, in "Algèbre," Chap. VIII, Hermann, Paris, 1958.
- 2. C. Chevalley, "Théorie des Groupes de Lie," Vol. III, Hermann, Paris, 1954.
- 3. P. Deligne, Catégories tannakiennes, *in* "The Grothendieck Festschrift," Vol. II, pp. 111–195, Birkhäuser, Boston, 1990.
- 4. W Feit, "The Representation Theory of Finite Groups," North-Holland, Amsterdam, 1982.
- 5. B. Huppert, "Endliche Gruppen" I, Springer-Verlag, Berlin/New York, 1967.
- 6. J.-P. Serre, Sur la semi-simplicité des produits tensoriels de représentations de groupes, Invent. Math. 116 (1994), 513-530.