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INTRODUCTION

Let k be a field of characteristic p > 0, and let G be a group. If I and
W are finite-dimensional G-modules, it is known that:

(1) V and W semisimple = V @ W semisimple if p = 0 ([2], p. 88), or if
p >0 and dimV + dimW < p + 2 ([6], Corollary 1 to Theorem 1.)

(2) V semisimple = A2V semisimple if p =0 orif p > 0 and dimV <
(p + 3)/2 (cf. [6], Theorem 2).

We are interested here in *‘converse theorems”: proving the semisimplic-
ity of IV from that of V® W or of AZ2V. The results are the following
(cf. Sects. 2, 3, 4, 5):

(3) V ® W semisimple = V semisimple if dimW # 0 (mod p).

(4) ®™V semisimple =V semisimple if m > 1.

(5) A2V semisimple =V semisimple if dimV # 2 (mod p).

(6) Sym?V semisimple = V semisimple if dimV # —2 (mod p).

(7) A"V semisimple =V semisimple if dimV # 2,3,..., m (mod p).

496

0021-8693 /97 $25.00

Copyright © 1997 by Academic Press
All rights of reproduction in any form reserved.



GROUP REPRESENTATIONS 497

Examples show that the congruence conditions occurring in (3), (5), (6),
and (7) cannot be suppressed: see Sect. 7 for (3), (5), and (7) and the
Appendix for (5) and (6). These examples are due to (or inspired by)
W. Feit.

1. NOTATION

1.1. The Category C

As in the Introduction, G is a group and k is a field; we put char(k) = p.
The category of k[G]-modules of finite dimension over k is denoted by
Ci. If V and W are objects of C;, the k-vector space of C;-morphisms of
IV into W is denoted by Hom®(V, W).

1.2. Split Injections

A Cs-morphism f: V' — W is called a split injection if there exists a left
inverse r: W — V" which is a C;-morphism. This means that f is injective,
and that its image is a direct factor of W, viewed as a k[G]-module. We
also say that f is split.

If 1V, >V, and g:V, =V, are split injections, so is geo f. Con-
versely, if g o f is a split injection, so is f.

An object W of C is semisimple if and only if every injection V' — W is
split.

1.3. Tensor Products

The tensor product (over k) of two objects 1V and V' of C, is denoted
by Ve 1.

If V- Wand V' — W’ are split injections, sois Ve V' - W W'.

The vector space k, with trivial action of G, is denoted by 1. We have
1® V=1V for every V.

1.4. Duality

The dual of an object V' of C,, is denoted by IV*. If W is an object of
Cg;, one has W ® V* = Hom, (V, W), the action of G on Hom, (}/, W)
being f — sfs~! for s € G. An element f of Hom,(V, W) is G-linear (i.e.,
belongs to HomC()/, W)) if and only if it is fixed under the action of G.

In particular, one has V' ® V* = End (V). The unit element 1, of
End, (V) defines a G-linear map i,: 1 = VV ® VV*, which is injective if
V+#0.
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1.5. Trace
The trace ¢, V® V* — 1 is a G-linear map. The composite map
tyeiyil->VelV*—1

is equal to dim IV, viewed as an element of k = End“(1); it is 0 if and only
if dim 7= 0 (mod p). (When p = 0 this just means dim " = 0.)

2. FROM Ve W TO V

Let 1V and W be two objects of C;.
PrRopPOSITION 2.1.  Let V' be a subobject of V. Assume:
ip:1l->We W* is a split injection, (2.1.1)
and
V'@ W—-Ve®W isa splitinjection. (2.1.2)
Then V' — V'is a split injection.

Proof. Consider the commutative diagram:

vy e we we
aJ{ J{’Y
VL Ve wWe w,
where the vertical maps come from the injection V' — V" and the horizon-
tal mapsare B3 =1, ® iy, and B’ = 1,, ® iy, (cf. Sect. 1.5). By (2.1.1), B’

is split; by (2.1.2), V' @ W —» V@ W s split, and the same is true for v.
Hence Beo a = yo B’ is split, and this implies that « is split.

Remark 2.2. Assumption (2.1.1) is true in each of the following two
cases:

(22.1) When dimW # 0 (mod p), i.e., when dim W is invertible in k.
Indeed, if ¢ denotes the inverse of dim W in k, the map

Coty WO W* 1

is a left inverse of iy, (cf. Sect. 1.5).

(22.2) When W # 0 and W ® W* is semisimple, since in that case
every injection in W ® W* is split.

PROPOSITION 2.3.  Assume (2.1.1) and that V @ W is semisimple. Then V
is semisimple.
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Proof. Let V' be a subobject of V. Since V® W is semisimple, the
injection IV’ ® W — V.® W is split, hence (2.1.2) is true, and Proposition
2.1 shows that V' — I splits. Since this is true for every 17, it follows that
V' is semisimple.

Alternate proof (sketch). One uses (2.1.1) to show that the natural map
H"(G,Hom(V,,V,)) = H"(G,Hom(V, ® W,V, ® W))

is injective for every n,V,,V,. If V' is an extension of 1, by V, and (')
denotes the corresponding element of the group Ext(V,,V,) =
HYG,Hom (V,,V,)), the assumption that V' ® W is semisimple implies
that (1) gives 0 in Ext(V; ® W,V, ® W) and hence (V) = 0. This shows
that 17 is semisimple.

THEOREM 2.4. If V ® W is semisimple and dim W # 0 (mod p), then V
is semisimple.

Proof. This follows from Proposition 2.3 and Remark (2.2.1).

Remark. The condition dim W # 0 (mod p) of Theorem 2.4 cannot be
suppressed. This is clear for p = 0, since it just means W # 0; for p > 0,
see Feit’s examples in Sect. 7.2.

3. FROM T"V® T"V* TO V

Let 1V be an object of Cg.
LemmA 3.1, The injectionj, =1, ®i,: V>V &V & V* is split.
Proof.  If we identify V' ® V* with End,(V/), the map

jyi V= Ve Endy (V)

is the map x »x® 1,. Let f,: V® End,(JV) = V' be the “evaluation
map” x — ¢(x) (x € V, ¢ € End, (J)). Itis clear that f,, - j,, = 1,,. Hence
Ji is a split injection.

If n > 0, let us write T"V for the tensor product V® V'® -+ ® IV of n
copies of V, with the convention that T°V = 1.

PrRopPosITION 3.2. Let V' be a subobject of V. Assume that the natural
injection of T"V' =V' @ T"" W' in V& T" WV’ splits for some n > 1.
Then V' — V splits.
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Proof. This is clear if n = 1. Assume n > 2, and use induction on n.
We have a commutative diagram:

T — Ve Ty

| |#

T eV eV* LT 2ol @ V'™,

where the horizontal maps are the obvious injections, and the vertical ones
are of the form x - x ® 1,,, with 1, € 1" ® V'* (cf. Sect 1.4).

If we put W= T" 21, we may write y as 1, ® j,., where j,. is the
map of V' into V' ® V' ® IV'* defined in Lemma 3.1 (with V" replaced by
I"). From this lemma, and from Sect. 1.3, it follows that vy is a split
injection. On the other hand, w is the tensor product of the natural
injection T"V' > V' ® T" ')’ which is split by assumption, with the
identity map of I”'*; hence w is split and the same is true for Bo A = povy,
hence also for A. By the induction assumption this shows that ' — 1" is a
split injection.

THEOREM 3.3.  Assume that T"V ® T"V™* is semisimple for some inte-
gers n,m = 0, not both 0. Then V is semisimple.

CoroLLARY 3.4. If T"V is semisimple for some n > 1, then V is
semisimple.

Proof of Theorem 3.3. Consider first the case of Corollary 3.4, i.e.,
m=0, n>1 Let V' be a subobject of V. Then Vo T" V' is a
subobject of T"V. Since T"V is assumed to be semisimple, so is V' ®
T 11", Hence the injection T"V' —» V@ T" I’ splits. By Proposition
3.2, this implies that V' — IV splits. Since this is true for every V', it
follows that V7 is semisimple.

Since duality preserves semisimplicity, the same result holds when n = 0
and m > 1. Hence, we may assume that » > 1 and m > 1, and also that
V+ 0. If n and m are both equal to 1, then IV ® IV* is semisimple by
assumption. Put W = V'*; using (2.2.2) we see that W has property (2.1.1)
and by Proposition 2.3 this implies that 77 is semisimple (I owe this
argument to W. Feit). The remaining case n + m > 3 is handled by
induction on n + m, using the fact that T" 'V ® T™ 'I* embeds into
T"V ® T™I7*, hence is semisimple.
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4. FROM A2V AND Sym?V TO V

4.1. Notation

Let V' be an object of C, and let A, be the canonical map
VeV - AV,

Define ¢,: V- A%V ® I'* as the composite of the maps j,: V>V ® V
® V*(cf. Lemma3.l)and A, ® 1,.: V@ V® V* > A2V ® V*. Define
. NV ® V* - V as the composite

AVRV* TV eVelV* T,

where the map on the left is (x Ay) ®z—»>x®y®z—y®x ®z (for
x,y €V, z € V*) and the map on the right is the map f;, defined in the
proof of Lemma 3.1, i.e., x ® y ® z = {x, z)y. We have

py((x Ay)®z) =Xx,2)y ={y,2)x (x,y €V, zEV*).

Both ¢, and ¢, are C;-morphisms.

PrROPOSITION 4.2. The composite map
ey 2 by
V— AVeV* —V

is equal to (1 — n)1,,, where n = dimV.
Proof. Choose a k-basis (e,,) of V, and let (¢*) be the dual basis of I'*.
We have 1, = Ye, ® e¢* in V® VV*, hence:
ju(x) = Lxee, @k (xeV),
op(x) = L(xNe,) ®ef,

and

Py (p(x)) = YAx,efde, — 2 (e, ei)x

=X — nx.

CoROLLARY 4.3. If dimV # 1 (mod p), ¢, is a split injection.

PrRoPOSITION 4.4. Let p: W — V be an injection in Cg. Assume that
dimW # 1 (mod p) and that A\ %: N*W — A2V splits. Then p splits.
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Proof. Consider the commutative diagram

p

W N 1%
Pv
2
ou] NV & V*
%/
AW © W* LN A2V @ W+

where ¢, and ¢, are as above, p’ is equal to A% ® 1,. and o is the
tensor product of the identity endomorphism of A %) with the natural
projection p*: VV* — W*. By Corollary 4.3, applied to W, ¢, is split; by
assumption, p’ is split. Hence oo ¢, op=p'c gy, is split, and this
implies that p is split.

THEOREM 4.5. If A%V is semisimple and dimV # 2 (mod p), then V is
semisimple.

Proof. We have to show that every injection W — 1/ splits. Since A2V
is semisimple, the injection A 2W — A2V splits. If dimW # 1 (mod p),
Proposition 4.4 shows that W — 1/ splits. Assume now that dimW =1
(mod p). Let W° be the orthogonal complement of W in I'*, ie., the
kernel of the projection V'* — W*. We have dim W° = dim IV — 1 (mod p),
hence dimW° # 1 (mod p), since dim I/ # 2 (mod p). By duality, A 2V * is
semisimple. The first part of the argument, applied to W° — I*, shows
that W° — I7* splits, and hence W — V splits.

The next theorem describes the structure of 17 in the exceptional case
left open by Theorem 4.5 (for explicit examples, see Sect. 7.3):

THEOREM 4.6.  Assume A %V is semisimple and V is not. Then V can be
decomposed in Cg; as a direct sum:

V=EoW & &W, (h =0), (%)
where:

—the W, are simple, and dimW, = 0 (mod p);
—FE is a nonsplit extension of two simple modules W, W' such that
dimW = dimW' = 1 (mod p).
(Note that () implies dimV = dim E = 2 (mod p), as in Theorem 4.5.)
Proof.  Using induction on the length of a Jordan—H®dlder sequence of

V, we may assume that 1V has no simple direct factor whose dimension is 0
(mod p).
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Let W be a simple subobject of V. Let us show that dim W = 1 (mod p).
If not, Proposition 4.4 would imply that W — V" splits, hence V' = W & I/
for some V' € C,. Clearly V' is not semisimple but A 2V is (because it is
a subobject of A ?V). By Theorem 4.5, applied to 1V and 1/, we have

dimV =dimV’ =2 (mod p),

hence dim W = 0 (mod p), which contradicts the hypothesis that V' has no
simple direct factor of dimension divisible by p.

Hence, we have dim W = 1 (mod p). Moreover, the injection W — V does
not split. Indeed, if ¥ would decompose in W V', we would have
dim¥”’ = 1 (mod p), and Theorem 4.5, applied to V’, would show that V"’
is semisimple, hence also 17, which is not true. The module W is the only
simple submodule of V. Indeed, if W, were another one, the argument
above would show that dimW, =1 (mod p), hence dim(W + W,) = 2
(mod p) since W N W, = 0. By Proposition 4.4, the injection W& W, - V
would split, and so would W — V, contrary to what we have just seen.

Now put W' = V/W. We have dimW’' =1 (mod p), and A2W’ is
semisimple (because it is a quotient of A ?}). By Theorem 4.5, W' is
semisimple. At least one of the simple factors of W' has dimension # 0
(mod p). Let S be such a factor, and let V be its inverse image in V, so
that we have W c IV, C V. One has dim Vg # 1 (mod p); by Proposition
4.4, this shows that we may write }" as a direct sum Vs @ V. If 1" # 0, it
contains a simple subobject, which is distinct from W, contrary to what was
proved above. Hence we have I’ = 0, i.e., § = W’, which shows that W' is
simple and that 17 is a nonsplit extension of two simple objects W, W' with
dimW = dimW’ = 1 (mod p).

There are similar results for Sym?V/. First:

THEOREM 4.7. If Sym?V is semisimple and dimV # —2 (mod p), then
V is semisimple.

Proof (sketch). The argument is the same as for A 21/, using symmetric
analogues ¢y and ¢ of ¢, and ¢, :

el V — Sym*V ® V*,
P2 SymV @ V* - V.
Proposition 4.2 is replaced by
Yloeg=(1+n)l, where n = dim V.

Hence ¢y is a split injection if dimV # —1 (mod p). Proposition 4.4
remains valid when A 2V is replaced by Sym?}” and 1 is replaced by —1.
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The same is true for the proof of Theorem 4.5 (with 2 replaced by —2),
with one difference:

In the case of A2 we have used the fact that A 2} and A 2V* are dual
to each other. The analogous statement for Sym?}) and Sym?V/'* is true
when p # 2, but is not true in general for p = 2; the dual of Sym?V is the
space TS?V'* of symmetric 2-tensors on V*, which is not Sym?}/*. Fortu-
nately, the case p = 2 does not give any trouble. Indeed:

PROPOSITION 4.8. If Sym?V is semisimple and p = 2, then V is semi-
simple.

Proof. Let F: k — k be the Frobenius map A — A%, and let V' be the
representation of G deduced from V' by the base change F. The F-semi-
linear map V' — Sym?V defined by x — x - x gives a k-linear embedding of
IV'F into Sym?V/, which fits into an exact sequence:

0 - VF = sym?V - A2V - 0.

Since Sym?V/ is assumed to be semisimple, so is V¥, This means that
becomes semisimple after the base change F: k — k. By an elementary
result ([1, 813, no. 4, Proposition 4]) this implies that I is semisimple.

Remark. More generally, the same argument shows:
Sym?V semisimple =V semisimple
if the characteristic p is > 0.

The analogue of Theorem 4.6 is:

THEOREM 4.9. If Sym?V is semisimple and V is not, then V can be
decomposed as V =E @ W, ® --- & W, (h > 0), where:

—the W, are simple, and dim W, = 0 (mod p);

—F is a nonsplit extension of two simple modules whose dimensions are
congruent to —1 (mod p).

The proof is the same.
COROLLARY 4.10. One has dimV = 2p — 2.
Indeed, it is clear that dim E > (p — 1) + (p — 1).

5. HIGHER EXTERIOR POWERS

The results of Sect. 4 can be extended to A ™V for any m > 1 (cf.
Theorem 5.2.1 below). We start with several lemmas.
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5.1. Extension Classes Associated with an Exact Sequence

Let

0->A->V->B-0 (5.1.1)
be an exact sequence in C;. We denote by (V) its class in the group
Ext(B, A) = H'(G,Hom,(B, A)) = H'(G, A ® B*).

A cocycle representing this class may be constructed as follows: select a
k-linear splitting f: B —> V, and, for every s € G, define c,(s) in
Hom,(B, A) as the map x — s f(s~'x) — f(x), for x € B. Then ¢, is a
1-cocycle on G with values in Hom (B, A4), which represents the class (}).

One has (V) = 0 if and only if f can be chosen to be G-linear, i.e., if
and only if the injection A — V splits.

5.1.2. The Filtration of A ™V Defined by A

We view A4 as a subobject of V. For every integer « with 0 < o < m, let
F, be the subspace of A ™V generated by the x; A --- A x,, such that x;
belongs to A4 for i < «; put F,,,, = 0. The F, are G-stable, and they
define a decreasing filtration of A ™V

A"V =Fy,D>F, -- DF, DF,

m+1

= 0.

One has F, = A™A. More generally, the quotient V, = F,/F,,, can be
identified with A “4 ® A PB, where B = m — «; in this identification, an
element x; A - Ax,, of F, (with x, €A for i < a, as above) corre-
sponds to

(X0 A s AXy) ® (Xyyg A AK),

where X, is the image of x; in B.
Assume now « > 1, and put V> =F,_,/F,.,. We have an exact se-
quence

0>V, > V2>V, =0, (513)

hence an extension class (V) in HY(G,V, ® V,* ).

Since V, = A“4 ® A PB, we may view (V?) as an element of the
cohomology group

HYG,ANA® APB® A*'A* ® A PH'B*). (5.1.4)
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5.1.5. Comparison of the Classes (V') and (V,?)

The exterior product (u, x) — u A x defines a map from A “ 4 ® 4 to
A °A4, hence a C;-morphism:

04 A= Hom (A* A, Ad)=AA® A*'4*. (5.16)
The same construction, applied to B* and to 8 + 1, gives
Op pr1: B* = APIB* @ A PB. (5.1.7)
By tensoring these two maps, and multiplying by (—1)#, we get
0, A®B* > A4 APB® AN*"4* o AP"'B*. (5.1.8)
Since @, is a C;-morphism, it defines a map
0. H(G,A®B*) > HY(G,A“A® ANPB® A*'4*® A P''B¥).
LEMMA 5.1.9. The image by O} of the class (V') of (5.1.1) is the class
(V.2) of (5.1.3).

Proof (sketch). Select a k-splitting f of (5.1.1). Using f, one may
identify the exterior algebra AV with A A ® A B. This defines a k-split-
ting £, of /2. An explicit computation (which we do not reproduce) shows
that the cocycle ¢, corresponding to f, is the image by ©, of the cocycle
¢;. Hence the lemma.

The next step is to give criteria for O} to be injective. Put

a=dimA4 and b =dimB, (5.1.10)
so that we have
dimV =a + b. (5.1.11)

LEMMA 5.1.12.  Assume (¢-1) # 0 (mod p). Then the morphism 0,

a—1
defined above is a split injection.

(Recall that () is the binomial coefficient x(x — 1)---(x —y + 1 /yYH

Proof (sketch). Consider the C;-morphism
Ope o2 A* > N°A* @ N4,
and let
O ot N°A® AN A* > 4
be its transpose. One has

0/’1*,5\(06/4,11/ = (

This identity is proved by a straightforward computation: one chooses a
k-basis of the vector space A; this gives bases of A %4, A ®4*,...; one

a—1
a—1

) ‘1, inEnd(4). (5.1.13)
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determines the corresponding matrices, etc. The details are left to the
reader.
Once (5.1.13) is checked, Lemma 5.1.12 is obvious.

LEMMA 5.1.14.  Assume (* ;1) # 0 (mod p). Then the morphism 6. 5.,
defined above is a split injection.

Proof. This follows from the preceding lemma, with A replaced by B*
and « by B+ 1.

LEmMmA 5.1.15.  Assume
(Z:i)-(b;gl) #0  (mod p).
Then:
(i) The Cs-morphism ©, defined in (5.1.8) is a split injection.
(ii) The map
0. HY(G, A®B*) »H (G, N“A® A PB® A *'A*® A P"'B¥)
is injective.
Proof. Assertion (i) follows from Lemmas 5.1.12 and 5.1.14 since the

tensor product of two split injections is a split injection. Assertion (ii)
follows from assertion (i).

LEMMA 5.1.16. Assume
a-—1 b—-1
(a—l) ( B )séo (mod p).
If the exact sequence (5.1.3) splits, then A — V is a split injection.

Proof. We have (V,?) = 0 by hypothesis. Since (V%) is the image of (1)
by ®! (cf. Lemma 5.1.9) and @} is injective (cf. Lemma 5.1.15), we have
(V)=o.

5.2. Semisimplicity Statements
Let V' be as above an object of C, and m an integer > 1.

THEOREM 5.2.1. Assume that NV is semisimple, and that the integer
dim V has the following property:

(%)  For every pair of integers a, b > 1 with a + b = dimV, there exists
an integer o, with 1 < o < m, such that

(Z:i)(rg:a)io (mod p). (52.2)

Then V is semisimple.
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Proof. Let A be a subobject of V, and let B = VV/A. We want to show
that 4 — IV splits. We may assume that 4 # 0, B # 0. Put as above
a=dimA and b =dimB.

We have a,b > 1 and a + b = dim V. Choose « as in (5.2.2). Since A"V
is semisimple, the same is true for its subquotients, and in particular for
V.2 (cf. Sect. 5.1.2). Hence the exact sequence (5.1.3) splits. By Lemma
5.1.16, this implies that 4 — 7 splits.

EXAMPLE 5.2.3. If m = 2, o may take the values 1 and 2 and (5.2.2)
means:

b —1%#0(mod p) if @ =1,
a— 1% 0 (mod p) if a=2.

If dim}V = a + b is not congruent to 2 (mod p), one of these two is true.
Hence A %V semisimple = V' semisimple, and we recover Theorem 4.5.

Here are two other examples:
THEOREM 5.2.4.  Assume A3V is semisimple and
dimV # 2,3 (mod p) if p#2,
dimV # 2,3 (mod4) if p=2.
Then V is semisimple.
Proof. Here o may take the values 1,2, 3 and (5.2.2) means
(b—1)(b—2)/2#0(mod p) if =1,
(a —1)(b—1) # 0(mod p) if =2,
(a —1)(a—2)/2# 0(mod p) if «=3.
If p # 2, these conditions mean, respectively,
b #1,2(mod p),
a#1(modp) and b # 1(modp),
a#1,2(modp).

If @ + b # 2,3 (mod p), it is clear that one of them is fulfilled.
The case p = 2 is similar; the only difference is that the congruence

(x —1)(x —2)/2 # 0 (mod2)
means that x # 1,2 (mod4).
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THEOREM 5.2.5.  Assume that A\ ™V is semisimple and
dimV #2,3,...,m (mod p).
Then V is semisimple.

Proof. Consider first the case p =0 (see also Sect. 6.1 below). By
assumption we have dimV # 2,3,..., m. (Note that it is a priori obvious
that these dimensions have to be excluded.) We may assume dim V" # 0, 1,
hence dimV >m. If a+ b =dimV, with a,b>1, we put a=1+
sup(0,m — b). We have a —1>a —1and b — 1 >m — a hence both
(e-1)and (2-1)are # 0. Hence (5.2.2) is satisfied.

Suppose now p > 0. The hypothesis dim V" # 2,3,..., m (mod p) implies
p = m. Hence condition (5.2.2) may be rewritten as

a#®1,2,...,a—=1(modp) and b#1,2,...,m—a (modp). (5.2.26)

Ifb#1,2,...,m —1(mod p), we put « = 1 and (5.2.6) holds. If b =i
(mod p)with 1 <i <m — 1, we put « = m — i + 1. One has

a#1,2,...,a—1(mod p),

because otherwise dim?” would be congruent (mod p) to i + 1,...,m,
which would contradict our assumption. Hence (5.2.6) holds

5.3. Higher Symmetric Powers

We assume here that p > m (or p = 0), so that the dual of Sym“V" for
a < m is SymeV*,

THEOREM 5.3.1. If Sym™V is semisimple and dimV # —2, =3,..., —m
(mod p), then V is semisimple.

Proof (sketch). One rewrites the previous sections with exterior powers
replaced by symmetric powers. The sign problems disappear. Moreover,

the integer (¢~ 1) of (5.1.13) becomes (¢ { « ; *). The rest of the proof is the

a—1

same.

6. FURTHER REMARKS

6.1. Characteristic Zero

When p = 0, the theorems of Sects. 2-5 can be obtained more simply
by the following method (essentially due to Chevalley [2]):

We want to prove that a linear representation IV of G is semisimple,
knowing (say) that A "'V is semisimple and dim V" # 2,3, ..., m. By enlarg-
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ing k, we may assume it is algebraically closed; we may also assume that
G — GL(V) is injective and that its image is Zariski-closed; hence G may
be viewed as a linear algebraic group over k& (more correctly: as the group
of k-points of an algebraic linear group). See [6] for these easy reduction
steps. Let U be the unipotent radical of G (maximal normal unipotent
subgroup). Because the characteristic is 0, an algebraic linear representa-
tion of G is semisimple if and only if its kernel contains U. Since A ™V is
assumed to be semisimple, this shows that U is contained in the kernel of
GL(V) » GL(A™V). If dimV # 2,3,..., m, this kernel is of order m (if
dimV > m) or is a torus (if dim}” < 2); such a group has no nontrivial
unipotent subgroup. Hence U =1, and the given representation G —
GL(V) is semisimple.

6.2. Generalizations

All the results of Sects. 2-5 extend to linear representations of Lie
algebras, and also of restricted Lie algebras (if p > 0). This is easy to check.

A less obvious generalization consists of replacing C; by a tensor
category C over k, in the sense of Deligne [3]. Such a category is an abelian
category, with the following extra structures:

(a) for every V,,V, € ob(C), a k-vector space structure on
Hom (1, V,);
(b) an exact bifunctor C X C — C, denoted by (V,,V,) = V|, ® V,;
(c) a commutativity isomorphism 1V, @ V, = V, ® V,;
(d) an associativity isomorphism (V; ® V,) @ V; =V, ® (V, ® V}).
These data have to fulfill several axioms mimicking what happens in C,
(cf. [3D. For instance, there should exist an object “1” with 1 ® V' =V for
every V, and End“(1) = k; there should be a “dual” V* with V** = IV and
HomC (W, V*) = Hom“(VV ® W, 1) for every W € ob(C); etc.
If IV € ob(C), there are natural morphisms

1-VeV* and Ve IV*—1.

The dimension of V is the element of k = End“(1) defined by the
composition

1->VelV*-—1.

It is not always an integer.

All the results of Sects. 2 and 3 are true for C provided the conditions on
dimV or dim W are interpreted as taking place in k. For instance, if V& W
is semisimple and dimW # 0 (in k), then V' is semisimple. The proofs
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require some minor changes: e.g., in Lemma 3.1, one needs to define
directly the morphisms

friVeVveVv -V and j,:V-oVelVel*

Moreover, the basic equality f;, ° j,, = 1, is one of the axioms of a tensor
category, (cf. [3], (2.1.2)).

As for the results of Sect. 4 on A2V and Sym?V, they remain true at
least when p # 2, but some of the proofs (e.g., that of Proposition 4.2)
have to be written differently. | am not sure of what happens with Sect. 5: |
have not managed to rewrite the proofs in tensor category style. Still, | feel
that Theorem 5.2.5 (on A™V) and Theorem 5.3.1 (on Sym™V) should
remain true whenever m!= 0in k (i.e., p =0o0r p > m).

Remark. An interesting feature of the tensor category point of view is
the following principle, which was pointed out to me by Deligne:

Any result on \N™ implies a result for Sym™, and conversely (here again
we assume m!= 0 in k). This is done by associating to each tensor
category C the category C’ = super(C), whose objects are the pairs
V' = (V,,V;) of objects of C; such a V' is viewed as a graded object
V' =V, ®V,, with grading group Z/2Z. The tensor structure of C’ is
defined in an obvious way, except that the commutativity isomorphism is
modified according to the Koszul sign rule: the chosen isomorphism
between (0, 17;) ® (0, W,) and (0, W) ® (0,V,) is the opposite of the obvi-
ous one. With this convention, one finds that

dimV' = dimV, — dim V.

In particular, if 77 € ob(C), one has dim(0,V) = —dim V. Moreover, one
checks that

(Sym™V,0) if m is even,
AT(0,V) = . .
(0, Sym™1") if m is odd.
Hence any general theorem on the functor A ™, when applied to C’, gives
a corresponding theorem for the functor Sym™, with a sign change in
dimensions (compare for instance Theorem 4.5 and Theorem 4.7).

7. EXAMPLES

The aim of this section is to construct examples showing that the
congruence conditions on dim W and dim IV in Theorems 2.4, 4.5, and 5.2.5
are best possible.

We assume that p is > 0 and that k is algebraically closed
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7.1. The Group G

Let C be a cyclic group of order p, with generator s. Choose a finite
abelian group A on which C acts. Assume

(7.1.1) the order |A| of A is prime to p, and > 1.
(7.1.2) the action of C on A — {1} is free.

Let G be the semidirect product A -C of C by A. It is a Frobenius
group, with Frobenius kernel A.

Let X = Hom(A, k*) be the character group of A; we write X addi-
tively and, if a € 4 and x € X, the image of a by x is denoted by a*. The
group C acts on X by duality, and condition (7.1.2) is equivalent to:

(7.1.3)  The action of C on X — {0} is free (i.e., sx =x = x = 0).

If x € X, denote by 1* € C, the k-vector space k on which A acts via
the character x. The induced module W(x) = Ind§1* is an object of Cj,
of dimension p. One checks easily:

(7.1.4) Ifx # 0, W(x) is simple and projective (in Cg).
Moreover

(7.1.5) Every V € ob(C,) splits uniquely as V = E & P, where E is the
subspace of V fixed under A, and P is a direct sum of modules W(x), with
xe X — {0}

If we decompose V' in V= @V, where V, is the A-eigenspace relative
to x (i.e., the set of v € V' such that a - v = a*v for every a € A), one has
E=V,and P= & V.

From (7.1.5) follow:

(7.1.6) Vis semisimple if and only if the action of C on E is trivial (i.e.,
ifandonlyif E=1@ - @ D).

(7.1.7) Vs projective if and only if E is C-projective (i.e., if and only if
E is a multiple of the regular representation of C).

Note that both (7.1.6) and (7.1.7) apply when E =0, i.e., when no
element of I/, except 0, is fixed by A.

(7.1.8) Let x be an element of X —{0}. If V=1V, (i.e, if A acts
trivially on V'), then V' ® W(x) is isomorphic to the direct sum of m copies of
W(x), where m = dim V.
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Indeed, V' is a successive extension of m copies of 1, hence V' ® W(x) is
a successive extension of m copies of W(x); these extensions split since
W(x) is projective (7.1.4); hence the result.

7.2. Examples Relative to Theorem 2.4

We reproduce here an example due to W. Feit, showing that the
congruence condition “dim W # 0 (mod p)” of Theorem 2.4 is the best
possible:

ProposITION 7.2.1.  Let G be a finite group of the type in Sect. 7.1, and let
n, m be two positive integers, with m > 1 and n divisible by p. There exist
V,W € ob(C) such that:

() dimV =m and dimW = n;
(i) V' is not semisimple;
(iii) V' ® Wis semisimple.
Proof. Choose:
V' = a non-semisimple C-module of dimension m (such a module
exists since m > 1);
W=Wwkx)®- - & W(xn/p), with x;, € X — {0}.
The projection G — C makes V' into a G-module with trivial 4-action.

It is clear that (i) and (ii) are true. By (7.1.8), V' ® W is isomorphic to the
direct sum of m copies of W, hence it is semisimple.

7.3. Examples relative to Theorems 4.5 and 5.2.5

The following proposition shows that the congruence conditions of
Theorem 5.2.5 are the best possible:

ProposITION 7.3.1. Let i and n be two integers with 2 <i <p, n > 0
and n =i (mod p). There exists a finite group G of the type described in Sect.
7.1 and an object V of C; such that:

@ dimV =n;
(b) Vs not semisimple;
(©) A"V is semisimple for every m such thati < m < p.

The case i = 2 gives the following result, which shows that the condition
dim 1 # 2 (mod p) of Theorem 4.5 is the best possible:

COROLLARY 7.3.2. Ifn > 0 and n = 2 (mod p), there exist a finite group
G and a non-semisimple G-module V such that dimV =n and AZ?V is
semisimple.

(Even better: A ™V is semisimple for 2 < m < p.)
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Proof of Proposition 7.3.1. We need to choose a suitable G = 4 - C of
the type described in Sect. 7.1. To do so, write n as n =i + hp, with
h = 0.

LEMMA 7.3.3.  There exist a finite abelian group X, on which C acts, and h
elements x,, ..., x, of X, with the following properties:

(7.3.4) The action of C on X — {0} is free.

(7.3.5)  For every family (I,,...,1I,) of nonempty subsets of [0, p — 1]
the relation

h .
Y Y six,=0 (%)

a=1j€l,

implies I, =[0,p — 1] for a =1,..., h.

Proof.  Assume first that 4 = 1. In that case, (7.3.5) just means that, if /
is a subset of [0, p — 1], with 0 < |I| < p, one has X, ,;s/x; # 0. This is
easy to achieve: choose some integer e > 1, prime to p, and define X, to
be the augmentation module of the group ring Z/eZ[C], i.e., the kernel of
Z/eZ[C] —» Z/eZ; put x; = 1 — 5. It is easy to check that (X, x,) has the
required property.

If & > 1, one takes for X the direct sum of A copies of the C-module
X, defined above, and one defines x,,..., x, to be

(x,,0,...,0),...,(0,...,0,x).

Proof of Proposition 7.3.1 (continued). Let (X, x;,...,x,) be as in
Lemma 7.3.3. Property (7.3.4) implies

IX|=1 (modp),

hence | X| is prime to p. Let A = Hom(X, k*) be the dual of X; then X
is the dual of A. The semidirect product G = A4 - C is a group of the type
described in Sect. 7.1. Define V' € ob(C,;) by

V=E&W(x) & - & W(x,), (7.3.6)

where E is a non-semisimple C-module of dimension i (viewed as a
G-module with trivial action of A), and W(x,) = Ind%1% (cf. Sect. 7.1).
We have dimV =i + hp = n, and it is clear that I is not semisimple. It
remains to check that A ™V is semisimple if i <m < p. By (7.3.6), A"V
is a direct sum of modules of type:

AE® A"W(x)) ® - ® AN"W(x,), (7.3.7)
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with a + b, + -~ +b, = m. Let us show that every such module is
semisimple. If all b, are 0, we have a = m > i, and A“E is 0 if m > i and
ANE =1 if m =i. Hence (7.3.7) is either 0 or 1 and is semisimple. We
may thus assume that one of the b, is > 0. By using induction on 4, we
may even assume that all the b, are > 0. Since

b+ +b,=m—a<p,
the b, are < p. Suppose one of them, say b,, is equal to p. We have then
b,=--=b,=0, m=p, a=0,

and the G-module (7.3.7) is equal to A ?W(x,) = 1, hence is semisimple.
We may thus assume that 0 < b, < p for every «. Observe now that, if
x € X — {0}, the characters of 4 occurring in the A-module W(x) are
x, sx,..., s 1x, and their multiplicity is equal to 1. Hence the characters
occurring in A "W(x) are of the form ¥, _ ,s/x, for a subset I of [0, p — 1]
with || = b. By applying this remark to the W(x,), one sees that the
characters of A4 occurring in (7.3.7) are of the form

i Y six,

a=1jel,

with |I,| = b,. Since 0 < b, < p for every «, it follows from (7.3.5) that
such a character is # 0. Hence no element of (7.3.7), except 0, is fixed
under A. By (7.1.6), this implies that (7.3.7) is semisimple. This concludes
the proof.

APPENDIX
by Walter Feit

Al

Let G be a finite group, let p be a prime and let k£ be a field of
characteristic p > 0. If V is a k[G]-module of dimension # such that A ?1V/
is semisimple, then 7 is semisimple unless n = 2 (mod p) by Theorem 4.5.
Similarly, Theorem 4.6 asserts that if Sym?(}/) is semisimple then so is I/
unless n = —2 (mod p).

Corollary 7.3.2 implies that, for odd p, Theorem 4.5 is the best possible
result. In Theorem A2 below, it is shown that for p = 2, for infinitely many
but not all even n, there exists a non-semisimple module V' of dimension n
with A 2V semisimple.
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Furthermore, Theorem Al(ii) shows that if p is a prime such that
pl2™ + 1) for some natural number m, then there exist infinitely many
integers n and non-semisimple modules 1V of dimension n with Sym?}/
semisimple.

If p is odd there always exist infinitely many natural numbers m such
that pl(2™ — 1). The situation is more complicated in case (ii) of Theorem
Al. By quadratic reciprocity pl(2™ + 1) for some m if p = 3 or 5 (mod 8),
and p + (2" + 1) for any m if p =7 (mod8). In case p = 1 (mod 8), such
an m may or may not exist, the smallest value in this case where no such
m exists is p = 73. It is not known whether a non-semisimple 17 exists with
Sym?l/ semisimple in case p is a prime such as 7,23,... which does not
divide 2™ + 1 for any natural number m.

If p =2" + 1isaFermat prime, Corollary 4.10 implies that the module
IV constructed in Theorem Al(ii) has the smallest possible dimension
2m*1 = 2p — 2. For no other primes is it known to us whether there exists
a non-semisimple module V' with Sym?) semisimple of the smallest
possible dimension 2p — 2.

The method of proof of Theorem Al also yields some additional
examples for all odd primes, of non-semisimple modules V' with A%V
semisimple.

Basic results from modular representation theory are used freely below.
See, e.g., [4]. The following notation is used, where p is a prime and G is a
finite group:

F is a finite extension of Q,, the p-adic numbers;
R is the ring of integers in F;
7 is a prime element in R.

From now on it will be assumed that k = R/#R is the residue class
field. Moreover both F and k are splitting fields of G in all cases that
arise.

ProposiTiION A.1.l. Let a = a; + a, be a Brauer character of G, where
a, is the sum of irreducible Brauer characters which are afforded by projective
modules, and «, is the sum of irreducible Brauer characters ¢, no two of
which are in the same p-block. Then any k| Gl-module W which affords a is
semisimple.

Proof. Since a projective submodule of any module is a direct sum-
mand, W = W, @ W,, where W, affords «;,. Furthermore, W, is the direct
sum of irreducible projective modules, and so is semisimple. W, is
semisimple as all the constituents of an indecomposable module lie in the
same block.
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An immediate consequence of Proposition A.1.1 is

CoROLLARY A.ll. Let 6 =3y + 2{1- be a character of G, where each
X; and {; is irreducible. Let U be an R-free RIG]-module which affords 6.
Suppose that the following hold.:

() x; has defect 0 for each i.
(i) ¢ is irreducible as a Brauer character for each j.
(iii) Ifj #j' then { and {; are in distinct blocks.

Then U = U/wU is semisimple.

Corollary A.1.1 yields a criterion to determine when a module is
semisimple, which depends only on the computation of ordinary charac-
ters. To construct a non-semisimple k[G]-module the following result is
helpful.

ProrosITION A.1.2 (Thompson, see [4, 1.17.12]). Let U be a projective
indecomposable RIGl-module. Let V be an F[Gl-module which is a sum-
mand of F ® U. Then there exists an R-free RIGl-module Wwith F @ W =V
and W = W /7 W indecomposable.

CoROLLARY A.1.2. Let 6 = m + ¢ be the character afforded by a projec-
tive indecomposable R[G];module, where m and i are characters. Then there
exists an indecomposable R[ G -module which affords n as a Brauer character.

A2

See [5, pp. 355—-357] for the results below.

Let D denote a dihedral group of order 8 and let Q be a quaternion
group of order 8.

Let m be a natural number. Up to isomorphism there are two extra-spe-
cial groups of order 22" %!, T(m, &) for £ = +1. The first, T(m, 1), is the
central product of m copies of D, while T(m, —1) is the central product of
Q with m — 1 copies of D. Let T = T(m, &), let Z be the center of T and
let T=T/Z. The map q =q(m, ). T » Z with g(y) =y? defines a
nondegenerate quadratic form on 7', where Z is identified with the field of
two elements. 7(m, 1) has a maximal isotropic subspace of dimension m,
while T(m, —1) has a maximal isotropic subspace of dimension m — 1.
Furthermore the orthogonal group O,,(q, ) acts as a group of automor-
phisms of T(m, &).

0,,,(q, ) has a cyclic subgroup of order 2" — & which acts regularly on
T(m, £). Thus if p is a prime with p{2” — &), then T has an automor-
phism o of order p whose fixed point set is Z.

Let P = (o) and let G be the semidirect product PT. Then G = PT is
a Frobenius group with Frobenius kernel 7.
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Every irreducible character of G which does not have T in its kernel is
induced from a nonprincipal linear character of T and so has degree p.

T has one faithful irreducible character y. Thus y extends to an
irreducible character of G in p distinct ways. The values of y are easily
computed. Hence all characters of G can be described as follows:

ProrosITIoON A.2.1. (i) G has p linear characters 1 = Ay, ..., Ay whose
kernels contain T.

(i) The irreducible characters of G which do not have T in their kernel
all have degree p, and so are of p-defect 0.

(iii) There is a faithful irreducible character X of G such that
XA1, -y XA, are all the faithful irreducible characters of G. Furthermore,
Y1) = 2™ and X vanishes on all elements of T — Z.

(iv) There are two p-blocks of G of positive defect. The sets of irre-
ducible characters in them are {\J1 < i < p} and { X\l <i < p}, respec-
tively.

(v)  Every irreducible character of G is irreducible as a Brauer charac-
ter.

The notation of this subsection, especially of Proposition A.2.1, will be
used freely below.

A3
THEOREM Al. Assume that p # 2.

(i) Let m be a natural number such that p|(2™ — 1). Then there exists a
finite group G and a non-semisimple k[ G]-module V of dimension 2"** = 2
(mod p) such that A2V is semisimple.

(i) If pl2™ + 1) for a natural number m, then there exists a finite
group G and a non-semisimple k[Gl-module V of dimension 2™*' = —2
(mod p) such that Sym?V is semisimple.

Proof. Let G be as in the previous subsection. As a Brauer character,
XA; is Q-valued for all i. As the induced character y“ = Y YA, it is the
character afforded by a projective indecomposable k[G]-module. Hence by
Corollary A.1.2 there exists an indecomposable k[G]-module V' which
affords the Brauer character # = 2, since ¥ + XxA; agrees with 2y as a
Brauer character. Since y is irreducible, 82 restricted to 7 contains the
principal character of 7 with multiplicity 4. Thus 62 is the sum of four
linear Brauer characters and irreducible Brauer characters of p-defect 0.

IV is a k[G]-module, and hence also a k[T ]-module. As T is a p’-group,
Brauer characters of T are ordinary characters. Let skew be the character
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of T afforded by A 2V and let sym denote the character of T afforded by
Sym?V. Then for y in T

skew(y) = (6(y)* - 6(y?))/2,
sym(y) = (6()* + 6(y?))/2.

Let v = +1 denote the Frobenius—Schur index of y.
Then £, ., x(y*) = »|T|. Hence £, 6(y®) = 2v|T|. Therefore

1
— ) skew(y) =2 — v,
|T|yET

1
Tl Y. osym(y) =2+ v.
yeT

In particular, both skew and sym contain the principal character as a
constituent.

Therefore the Brauer characters sy, sk of G afforded by Sym?} and by
A 2V, respectively, both contain at least one linear constituent. Hence
each contains at most three linear constituents as 1V ® I has exactly four
linear constituents.

(i) sk() =@m*Y@2m*t - 1))/2, hence sk(1) = 1 (mod p).
As p > 3 this implies that sk = 1 + B, where B is the sum of irreducible
projective Brauer characters. Thus A 21/ is semisimple.

(i) sy(1) = " 1 2™m* 1 + 1)) /2, hence sy(1) = 1 (mod p).
As p > 3 this implies that sy = 1 + B, where B is the sum of irreducible
projective Brauer characters. Thus Sym?} is semisimple.

Remark. The argument in the proof of Theorem Al involving the
Frobenius—Schur index is only needed for p = 3. If p > 3, then the last
two statements in the proof are clear.

Serre has pointed out that 1V can be defined directly as £ ® X, where E
is an indecomposable two-dimensional module of P = G/T and X is the
irreducible G-module afforded by ¥ as a Brauer character.

A4

THEOREM A2. Suppose that p = 2. Let g = 3 (mod 8) be a prime power
and let G = SL(2, q). Then there exists a non-semisimple k[Gl-module V of
dimension (q + 1)/2 such that A*V is semisimple.

Proof. The irreducible characters in the principal 2-block of PSL(2, ¢)
are 1, St, ¢;, and ,, where ¢,(1) = (¢ — 1)/2 for i = 1,2. The restriction
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of ¢, to a Borel subgroup is irreducible and so ; is irreducible as a
Brauer character. The remaining 2-blocks of PSL(2, ¢) are either of defect
O0orl.

There are (¢ — 3)/8 2-blocks B, of PSL(2, ¢q) of defect 1. The Brauer
tree of each B, has two vertices and one edge, and so every irreducible
character in B, is irreducible as a Brauer character.

Let x;; and x;, be the irreducible characters in B;. The notation can be
chosen so that yx;,(u) = 2 and y;,(u) = —2 for an involution u.

SL(2,g) has a faithful irreducible character n of degree (¢ + 1)/2
whose values lie in Q(y/ — ¢ ) with n = 1 + ; as a Brauer character. By
Corollary A.1.2 there exists an R-free R[G]-module W which affords n
such that V= W /=W is indecomposable. The center of G acts trivially on
A2W and so A2W is an R[PSL(2, ¢)l-module. Direct computation shows
that A 2W affords ¢, + X x;,. By Corollary A.1.1, A *V is semisimple.
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