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INTRODUCTION

Let k be a field of characteristic p G 0, and let G be a group. If V and
W are finite-dimensional G-modules, it is known that:

Ž . Žw x .1 V and W semisimple « V m W semisimple if p s 0 2 , p. 88 , or if
Žw x .p ) 0 and dim V q dim W - p q 2 6 , Corollary 1 to Theorem 1.

Ž . 22 V semisimple « H V semisimple if p s 0 or if p ) 0 and dim V F
Ž . Ž w x .p q 3 r2 cf. 6 , Theorem 2 .

We are interested here in ‘‘converse theorems’’: proving the semisimplic-
ity of V from that of V m W or of H 2V. The results are the following
Ž .cf. Sects. 2, 3, 4, 5 :

Ž . Ž .3 V m W semisimple « V semisimple if dim W k 0 mod p .
Ž . m4 m V semisimple « V semisimple if m G 1.
Ž . 2 Ž .5 H V semisimple « V semisimple if dim V k 2 mod p .
Ž . 2 Ž .6 Sym V semisimple « V semisimple if dim V k y2 mod p .
Ž . m Ž .7 H V semisimple « V semisimple if dim V k 2, 3, . . . , m mod p .
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Ž . Ž . Ž .Examples show that the congruence conditions occurring in 3 , 5 , 6 ,
Ž . Ž . Ž . Ž .and 7 cannot be suppressed: see Sect. 7 for 3 , 5 , and 7 and the

Ž . Ž . Ž .Appendix for 5 and 6 . These examples are due to or inspired by
W. Feit.

1. NOTATION

1.1. The Category CG

Ž .As in the Introduction, G is a group and k is a field; we put char k s p.
w xThe category of k G -modules of finite dimension over k is denoted by

C . If V and W are objects of C , the k-vector space of C -morphisms ofG G G
GŽ .V into W is denoted by Hom V, W .

1.2. Split Injections

A C -morphism f : V ª W is called a split injection if there exists a leftG
inverse r : W ª V which is a C -morphism. This means that f is injective,G

w xand that its image is a direct factor of W, viewed as a k G -module. We
also say that f is split.

If f : V ª V and g : V ª V are split injections, so is g ( f. Con-1 2 2 3
versely, if g ( f is a split injection, so is f.

An object W of C is semisimple if and only if every injection V ª W isG
split.

1.3. Tensor Products

Ž .The tensor product over k of two objects V and V 9 of C is denotedG
by V m V 9.

If V ª W and V 9 ª W9 are split injections, so is V m V 9 ª W m W9.
The vector space k, with trivial action of G, is denoted by 1. We have

1 m V s V for every V.

1.4. Duality

The dual of an object V of C is denoted by V *. If W is an object ofG
Ž . Ž .C , one has W m V * s Hom V, W , the action of G on Hom V, WG k k

y1 Ž . Žbeing f ¬ sfs for s g G. An element f of Hom V, W is G-linear i.e.,k
GŽ ..belongs to Hom V, W if and only if it is fixed under the action of G.

Ž .In particular, one has V m V * s End V . The unit element 1 ofk V
Ž .End V defines a G-linear map i : 1 ª V m V *, which is injective ifk V

V / 0.
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1.5. Trace

The trace t : V m V * ª 1 is a G-linear map. The composite mapV

t ( i : 1 ª V m V * ª 1V V

GŽ .is equal to dim V, viewed as an element of k s End 1 ; it is 0 if and only
Ž . Ž .if dim V ' 0 mod p . When p s 0 this just means dim V s 0.

2. FROM V m W TO V

Let V and W be two objects of C .G

PROPOSITION 2.1. Let V 9 be a subobject of V. Assume:

i : 1 ª W m W * is a split injection, 2.1.1Ž .W

and

V 9 m W ª V m W is a split injection. 2.1.2Ž .

Then V 9 ª V is a split injection.

Proof. Consider the commutative diagram:

b9 6

V 9 V 9 m W m W *

6ga 6 b 6

V m W m W *,V

where the vertical maps come from the injection V 9 ª V and the horizon-
Ž . Ž .tal maps are b s 1 m i and b9 s 1 m i cf. Sect. 1.5 . By 2.1.1 , b9V W V 9 W

Ž .is split; by 2.1.2 , V 9 m W ª V m W is split, and the same is true for g .
Hence b ( a s g ( b9 is split, and this implies that a is split.

Ž .Remark 2.2. Assumption 2.1.1 is true in each of the following two
cases:

Ž . Ž .2.2.1 When dim W k 0 mod p , i.e., when dim W is invertible in k.
Indeed, if c denotes the inverse of dim W in k, the map

c ? t : W m W * ª 1W

Ž .is a left inverse of i cf. Sect. 1.5 .W

Ž .2.2.2 When W / 0 and W m W * is semisimple, since in that case
every injection in W m W * is split.

Ž .PROPOSITION 2.3. Assume 2.1.1 and that V m W is semisimple. Then V
is semisimple.
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Proof. Let V 9 be a subobject of V. Since V m W is semisimple, the
Ž .injection V 9 m W ª V m W is split, hence 2.1.2 is true, and Proposition

2.1 shows that V 9 ª V splits. Since this is true for every V 9, it follows that
V is semisimple.

Ž . Ž .Alternate proof sketch . One uses 2.1.1 to show that the natural map

H n G, Hom V , V ª H n G, Hom V m W , V m WŽ . Ž .Ž . Ž .k 1 2 k 1 2

Ž .is injective for every n, V , V . If V is an extension of V by V and V1 2 1 2
Ž .denotes the corresponding element of the group Ext V , V s1 2

1Ž Ž ..H G, Hom V , V , the assumption that V m W is semisimple impliesk 1 2
Ž . Ž . Ž .that V gives 0 in Ext V m W, V m W and hence V s 0. This shows1 2

that V is semisimple.

Ž .THEOREM 2.4. If V m W is semisimple and dim W k 0 mod p , then V
is semisimple.

Ž .Proof. This follows from Proposition 2.3 and Remark 2.2.1 .

Ž .Remark. The condition dim W k 0 mod p of Theorem 2.4 cannot be
suppressed. This is clear for p s 0, since it just means W / 0; for p ) 0,
see Feit’s examples in Sect. 7.2.

3. FROM T nV m T mV * TO V

Let V be an object of C .G

LEMMA 3.1. The injection j s 1 m i : V ª V m V m V * is split.V V V

Ž .Proof. If we identify V m V * with End V , the mapk

j : V ª V m End VŽ .V k

Ž .is the map x ¬ x m 1 . Let f : V m End V ª V be the ‘‘evaluationV V k
Ž . Ž Ž ..map’’ x ¬ w x x g V, w g End V . It is clear that f ( j s 1 . Hencek V V V

j is a split injection.V

If n G 0, let us write T nV for the tensor product V m V m ??? m V of n
copies of V, with the convention that T 0V s 1.

PROPOSITION 3.2. Let V 9 be a subobject of V. Assume that the natural
injection of T nV 9 s V 9 m T ny1V 9 in V m T ny1V 9 splits for some n G 1.
Then V 9 ª V splits.
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Proof. This is clear if n s 1. Assume n G 2, and use induction on n.
We have a commutative diagram:

lny1 ny26

T V 9 V m T V 9

6 6

g b

mny1 ny26

T V 9 m V 9 m V 9* V m T V 9 m V 9 m V 9*,

where the horizontal maps are the obvious injections, and the vertical ones
Ž .are of the form x ¬ x m 1 , with 1 g V 9 m V 9* cf. Sect 1.4 .V 9 V 9

If we put W s T ny2V 9, we may write g as 1 m j , where j is theW V 9 V 9

Žmap of V 9 into V 9 m V 9 m V 9* defined in Lemma 3.1 with V replaced by
.V 9 . From this lemma, and from Sect. 1.3, it follows that g is a split

injection. On the other hand, m is the tensor product of the natural
injection T nV 9 ª V m T ny1V 9, which is split by assumption, with the
identity map of V 9*; hence m is split and the same is true for b ( l s m(g ,
hence also for l. By the induction assumption this shows that V 9 ª V is a
split injection.

THEOREM 3.3. Assume that T nV m T mV * is semisimple for some inte-
gers n, m G 0, not both 0. Then V is semisimple.

COROLLARY 3.4. If T nV is semisimple for some n G 1, then V is
semisimple.

Proof of Theorem 3.3. Consider first the case of Corollary 3.4, i.e.,
m s 0, n G 1. Let V 9 be a subobject of V. Then V m T ny1V 9 is a
subobject of T nV. Since T nV is assumed to be semisimple, so is V m
T ny1V 9. Hence the injection T nV 9 ª V m T ny1V 9 splits. By Proposition
3.2, this implies that V 9 ª V splits. Since this is true for every V 9, it
follows that V is semisimple.

Since duality preserves semisimplicity, the same result holds when n s 0
and m G 1. Hence, we may assume that n G 1 and m G 1, and also that
V / 0. If n and m are both equal to 1, then V m V * is semisimple by

Ž . Ž .assumption. Put W s V *; using 2.2.2 we see that W has property 2.1.1
Žand by Proposition 2.3 this implies that V is semisimple I owe this

.argument to W. Feit . The remaining case n q m G 3 is handled by
induction on n q m, using the fact that T ny1V m T my 1V * embeds into
T nV m T mV *, hence is semisimple.
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4. FROM H 2V AND Sym2V TO V

4.1. Notation

Let V be an object of C , and let l be the canonical mapG V

V m V ª H 2V .

Define w : V ª H 2V m V * as the composite of the maps j : V ª V m VV V
Ž . 2m V * cf. Lemma 3.1 and l m 1 : V m V m V * ª H V m V *. DefineV V *

c : H 2V m V * ª V as the compositeV

H 2V m V * ª V m V m V * ª V ,

Ž . Žwhere the map on the left is x n y m z ¬ x m y m z y y m x m z for
.x, y g V, z g V * and the map on the right is the map f defined in theV

² :proof of Lemma 3.1, i.e., x m y m z ¬ x, z y. We have

² : ² :c x n y m z s x , z y y y , z x x , y g V , z g V * .Ž . Ž .Ž .V

Both w and c are C -morphisms.V V G

PROPOSITION 4.2. The composite map

w cV V26 6

V H V m V * V

Ž .is equal to 1 y n 1 , where n s dim V.V

Ž . Ž U .Proof. Choose a k-basis e of V, and let e be the dual basis of V *.a a

We have 1 s Ýe m eU in V m V *, hence:V a a

j x s x m e m eU x g V ,Ž . Ž .ÝV a a

w x s x n e m eU ,Ž . Ž .ÝV a a

and

² U: ² U:c w x s x , e e y e , e xŽ .Ž . Ý ÝV V a a a a

s x y nx.

Ž .COROLLARY 4.3. If dim V k 1 mod p , w is a split injection.V

PROPOSITION 4.4. Let r : W ª V be an injection in C . Assume thatG
Ž . 2 2 2dim W k 1 mod p and that H r : H W ª H V splits. Then r splits.
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Proof. Consider the commutative diagram

r 6

W V

6wV

2

6

H V m V *wW

6

s

r 92 26

H W m W * H V m W *

where w and w are as above, r9 is equal to H 2r m 1 and s is theV W W *
tensor product of the identity endomorphism of H 2V with the natural
projection r*: V * ª W *. By Corollary 4.3, applied to W, w is split; byW
assumption, r9 is split. Hence s (w ( r s r9(w is split, and thisV W
implies that r is split.

2 Ž .THEOREM 4.5. If H V is semisimple and dim V k 2 mod p , then V is
semisimple.

Proof. We have to show that every injection W ª V splits. Since H 2V
2 2 Ž .is semisimple, the injection H W ª H V splits. If dim W k 1 mod p ,

Proposition 4.4 shows that W ª V splits. Assume now that dim W ' 1
Ž . 0mod p . Let W be the orthogonal complement of W in V *, i.e., the

0 Ž .kernel of the projection V * ª W *. We have dim W ' dim V y 1 mod p ,
0 Ž . Ž . 2hence dim W k 1 mod p , since dim V k 2 mod p . By duality, H V * is

semisimple. The first part of the argument, applied to W 0 ª V *, shows
that W 0 ª V * splits, and hence W ª V splits.

The next theorem describes the structure of V in the exceptional case
Ž .left open by Theorem 4.5 for explicit examples, see Sect. 7.3 :

THEOREM 4.6. Assume H 2V is semisimple and V is not. Then V can be
decomposed in C as a direct sum:G

V s E [ W [ ??? [ W h G 0 , )Ž . Ž .1 h

where:

Ž .}the W are simple, and dim W ' 0 mod p ;i i

}E is a nonsplit extension of two simple modules W, W9 such that
Ž .dim W ' dim W9 ' 1 mod p .

Ž Ž . Ž . .Note that ) implies dim V ' dim E ' 2 mod p , as in Theorem 4.5.

Proof. Using induction on the length of a Jordan]Holder sequence of¨
V, we may assume that V has no simple direct factor whose dimension is 0
Ž .mod p .
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Ž .Let W be a simple subobject of V. Let us show that dim W ' 1 mod p .
If not, Proposition 4.4 would imply that W ª V splits, hence V s W [ V 9

2 Žfor some V 9 g C . Clearly V 9 is not semisimple but H V 9 is because it isG
2 .a subobject of H V . By Theorem 4.5, applied to V and V 9, we have

dim V ' dim V 9 ' 2 mod p ,Ž .

Ž .hence dim W ' 0 mod p , which contradicts the hypothesis that V has no
simple direct factor of dimension divisible by p.

Ž .Hence, we have dim W ' 1 mod p . Moreover, the injection W ª V does
not split. Indeed, if V would decompose in W [ V 9, we would have

Ž .dim V 9 ' 1 mod p , and Theorem 4.5, applied to V 9, would show that V 9
is semisimple, hence also V, which is not true. The module W is the only
simple submodule of V. Indeed, if W were another one, the argument1

Ž . Ž .above would show that dim W ' 1 mod p , hence dim W q W ' 21 1
Ž .mod p since W l W s 0. By Proposition 4.4, the injection W [ W ª V1 1
would split, and so would W ª V, contrary to what we have just seen.

Ž . 2Now put W9 s VrW. We have dim W9 ' 1 mod p , and H W9 is
Ž 2 .semisimple because it is a quotient of H V . By Theorem 4.5, W9 is

semisimple. At least one of the simple factors of W9 has dimension k 0
Ž .mod p . Let S be such a factor, and let V be its inverse image in V, soS

Ž .that we have W ; V ; V. One has dim V k 1 mod p ; by PropositionS S
4.4, this shows that we may write V as a direct sum V [ V 0. If V 0 / 0, itS
contains a simple subobject, which is distinct from W, contrary to what was
proved above. Hence we have V 0 s 0, i.e., S s W9, which shows that W9 is
simple and that V is a nonsplit extension of two simple objects W, W9 with

Ž .dim W ' dim W9 ' 1 mod p .

There are similar results for Sym2V. First:
2 Ž .THEOREM 4.7. If Sym V is semisimple and dim V k y2 mod p , then

V is semisimple.

Ž . 2Proof sketch . The argument is the same as for H V, using symmetric
analogues w s and c s of w and c :V V V V

w s : V ª Sym2V m V *,V

c s : Sym2V m V * ª V .V

Proposition 4.2 is replaced by

c s(w s s 1 q n 1 where n s dim V .Ž .V V V

s Ž .Hence w is a split injection if dim V k y1 mod p . Proposition 4.4V
remains valid when H 2V is replaced by Sym2V and 1 is replaced by y1.
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Ž .The same is true for the proof of Theorem 4.5 with 2 replaced by y2 ,
with one difference:

In the case of H 2 we have used the fact that H 2V and H 2V * are dual
to each other. The analogous statement for Sym2V and Sym2V * is true
when p / 2, but is not true in general for p s 2; the dual of Sym2V is the
space TS2V * of symmetric 2-tensors on V *, which is not Sym2V *. Fortu-
nately, the case p s 2 does not give any trouble. Indeed:

PROPOSITION 4.8. If Sym2V is semisimple and p s 2, then V is semi-
simple.

Proof. Let F: k ª k be the Frobenius map l ¬ l2, and let V F be the
representation of G deduced from V by the base change F. The F-semi-
linear map V ª Sym2V defined by x ¬ x ? x gives a k-linear embedding of
V F into Sym2V, which fits into an exact sequence:

0 ª V F ª Sym2V ª H 2V ª 0.

Since Sym2V is assumed to be semisimple, so is V F. This means that V
becomes semisimple after the base change F: k ª k. By an elementary

Žw x.result 1, §13, no. 4, Proposition 4 this implies that V is semisimple.

Remark. More generally, the same argument shows:

Sym pV semisimple « V semisimple

if the characteristic p is ) 0.

The analogue of Theorem 4.6 is:

THEOREM 4.9. If Sym2V is semisimple and V is not, then V can be
Ž .decomposed as V s E [ W [ ??? [ W h G 0 , where:1 h

Ž .}the W are simple, and dim W ' 0 mod p ;i i

}E is a nonsplit extension of two simple modules whose dimensions are
Ž .congruent to y1 mod p .

The proof is the same.

COROLLARY 4.10. One has dim V G 2 p y 2.

Ž . Ž .Indeed, it is clear that dim E G p y 1 q p y 1 .

5. HIGHER EXTERIOR POWERS

m ŽThe results of Sect. 4 can be extended to H V for any m G 1 cf.
.Theorem 5.2.1 below . We start with several lemmas.
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5.1. Extension Classes Associated with an Exact Sequence

Let

0 ª A ª V ª B ª 0 5.1.1Ž .

Ž .be an exact sequence in C . We denote by V its class in the groupG

Ext B , A s H 1 G, Hom B , A s H 1 G, A m B* .Ž . Ž . Ž .Ž .k

A cocycle representing this class may be constructed as follows: select a
Ž .k-linear splitting f : B ª V, and, for every s g G, define c s inf

Ž . Ž y1 . Ž .Hom B, A as the map x ¬ s ? f s x y f x , for x g B. Then c is ak f
Ž . Ž .1-cocycle on G with values in Hom B, A , which represents the class V .k

Ž .One has V s 0 if and only if f can be chosen to be G-linear, i.e., if
and only if the injection A ª V splits.

5.1.2. The Filtration of H mV Defined by A

We view A as a subobject of V. For every integer a with 0 F a F m, let
F be the subspace of H mV generated by the x n ??? n x such that xa 1 m i
belongs to A for i F a ; put F s 0. The F are G-stable, and theymq 1 a

define a decreasing filtration of H mV:

H mV s F > F ??? > F > F s 0.0 1 m mq1

One has F s H mA. More generally, the quotient V s F rF can bem a a aq1
identified with H aA m H bB, where b s m y a ; in this identification, an

Ž .element x n ??? n x of F with x g A for i F a , as above corre-1 m a i
sponds to

x n ??? n x m x n ??? n x ,Ž . Ž .1 a aq1 m

where x is the image of x in B.i i
Assume now a G 1, and put V 2 s F rF . We have an exact se-a ay1 aq1

quence

0 ª V ª V 2 ª V ª 0, 5.1.3Ž .a a ay1

Ž 2 . 1Ž U .hence an extension class V in H G, V m V .a a ay1
a b Ž 2 .Since V s H A m H B, we may view V as an element of thea a

cohomology group

H 1 G, H aA m H bB m H ay1A* m H bq1B* . 5.1.4Ž .Ž .
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Ž . Ž 2 .5.1.5. Comparison of the Classes V and Va

Ž . ay1The exterior product u, x ¬ u n x defines a map from H A m A to
H aA, hence a C -morphism:G

u : A ª Hom H ay1A , H aA s H aA m H ay1A*. 5.1.6Ž .Ž .A , a k

The same construction, applied to B* and to b q 1, gives

u : B* ª H bq1B* m H bB. 5.1.7Ž .B*, bq1

Ž . bBy tensoring these two maps, and multiplying by y1 , we get

Q : A m B* ª H aA m H bB m H ay1A* m H bq1B*. 5.1.8Ž .a

Since Q is a C -morphism, it defines a mapa G

Q1 : H 1 G, A m B* ª H 1 G, H aA m H bB m H ay1A* m H bq1B* .Ž . Ž .a

1 Ž . Ž .LEMMA 5.1.9. The image by Q of the class V of 5.1.1 is the classa

Ž 2 . Ž .V of 5.1.3 .a

Ž . Ž .Proof sketch . Select a k-splitting f of 5.1.1 . Using f , one may
identify the exterior algebra HV with H A m H B. This defines a k-split-

2 Ž .ting f of V . An explicit computation which we do not reproduce showsa a

that the cocycle c corresponding to f is the image by Q of the cocyclef a aa

c . Hence the lemma.f

The next step is to give criteria for Q1 to be injective. Puta

a s dim A and b s dim B , 5.1.10Ž .
so that we have

dim V s a q b. 5.1.11Ž .

a y 1Ž . Ž .LEMMA 5.1.12. Assume k 0 mod p . Then the morphism uA, aa y 1

defined abo¨e is a split injection.

xŽ Ž . Ž . Ž . .Recall that is the binomial coefficient x x y 1 ??? x y y q 1 ry!y

Ž .Proof sketch . Consider the C -morphismG

u : A* ª H aA* m H ay1A ,A*, a

and let
u X : H aA m H ay1A* ª AA*, a

be its transpose. One has

a y 1Xu (u s ? 1 in End A . 5.1.13Ž . Ž .A*, a A , a Až /a y 1

This identity is proved by a straightforward computation: one chooses a
k-basis of the vector space A; this gives bases of H aA, H aA*, . . . ; one
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determines the corresponding matrices, etc. The details are left to the
reader.

Ž .Once 5.1.13 is checked, Lemma 5.1.12 is obvious.

b y 1Ž . Ž .LEMMA 5.1.14. Assume k 0 mod p . Then the morphism ub B*, bq1

defined abo¨e is a split injection.

Proof. This follows from the preceding lemma, with A replaced by B*
and a by b q 1.

LEMMA 5.1.15. Assume

b y 1a y 1
? k 0 mod p .Ž .ž / ž /ba y 1

Then:

Ž . Ž .i The C -morphism Q defined in 5.1.8 is a split injection.G a

Ž .ii The map

Q1 : H 1 G, AmB* ªH 1 G, H aAmH bBmH ay1A*mH bq1B*Ž . Ž .a

is injectï e.

Ž .Proof. Assertion i follows from Lemmas 5.1.12 and 5.1.14 since the
Ž .tensor product of two split injections is a split injection. Assertion ii

Ž .follows from assertion i .

LEMMA 5.1.16. Assume

b y 1a y 1
? k 0 mod p .Ž .ž / ž /ba y 1

Ž .If the exact sequence 5.1.3 splits, then A ª V is a split injection.

Ž 2 . Ž 2 . Ž .Proof. We have V s 0 by hypothesis. Since V is the image of Va a
1 Ž . 1 Ž .by Q cf. Lemma 5.1.9 and Q is injective cf. Lemma 5.1.15 , we havea a

Ž .V s 0.

5.2. Semisimplicity Statements

Let V be as above an object of C , and m an integer G 1.G

THEOREM 5.2.1. Assume that H mV is semisimple, and that the integer
dim V has the following property:

Ž .) For e¨ery pair of integers a, b G 1 with a q b s dim V, there exists
an integer a , with 1 F a F m, such that

a y 1 b y 1? k 0 mod p . 5.2.2Ž . Ž .ž /ž / m y aa y 1

Then V is semisimple.
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Proof. Let A be a subobject of V, and let B s VrA. We want to show
that A ª V splits. We may assume that A / 0, B / 0. Put as above

a s dim A and b s dim B.

Ž . mWe have a, b G 1 and a q b s dim V. Choose a as in 5.2.2 . Since H V
is semisimple, the same is true for its subquotients, and in particular for

2 Ž . Ž .V cf. Sect. 5.1.2 . Hence the exact sequence 5.1.3 splits. By Lemmaa

5.1.16, this implies that A ª V splits.

Ž .EXAMPLE 5.2.3. If m s 2, a may take the values 1 and 2 and 5.2.2
means:

b y 1 k 0 mod p if a s 1,Ž .
a y 1 k 0 mod p if a s 2.Ž .

Ž .If dim V s a q b is not congruent to 2 mod p , one of these two is true.
Hence H 2V semisimple « V semisimple, and we recover Theorem 4.5.

Here are two other examples:

THEOREM 5.2.4. Assume H 3V is semisimple and

dim V k 2, 3 mod p if p / 2,Ž .
dim V k 2, 3 mod 4 if p s 2.Ž .

Then V is semisimple.

Ž .Proof. Here a may take the values 1, 2, 3 and 5.2.2 means

b y 1 b y 2 r2 k 0 mod p if a s 1,Ž . Ž . Ž .
a y 1 b y 1 k 0 mod p if a s 2,Ž . Ž . Ž .

a y 1 a y 2 r2 k 0 mod p if a s 3.Ž . Ž . Ž .

If p / 2, these conditions mean, respectively,

b k 1, 2 mod p ,Ž .
a k 1 mod p and b k 1 mod p ,Ž . Ž .
a k 1, 2 mod p .Ž .

Ž .If a q b k 2, 3 mod p , it is clear that one of them is fulfilled.
The case p s 2 is similar; the only difference is that the congruence

x y 1 x y 2 r2 k 0 mod 2Ž . Ž . Ž .

Ž .means that x k 1, 2 mod 4 .
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THEOREM 5.2.5. Assume that H mV is semisimple and

dim V k 2, 3, . . . , m mod p .Ž .

Then V is semisimple.

Ž .Proof. Consider first the case p s 0 see also Sect. 6.1 below . By
Žassumption we have dim V / 2, 3, . . . , m. Note that it is a priori obvious
.that these dimensions have to be excluded. We may assume dim V / 0, 1,

hence dim V ) m. If a q b s dim V, with a, b G 1, we put a s 1 q
Ž .sup 0, m y b . We have a y 1 G a y 1 and b y 1 G m y a hence both

a y 1 b y 1Ž . Ž . Ž .and are / 0. Hence 5.2.2 is satisfied.a y 1 m y a

Ž .Suppose now p ) 0. The hypothesis dim V k 2, 3, . . . , m mod p implies
Ž .p G m. Hence condition 5.2.2 may be rewritten as

ak1, 2, . . . , ay1 mod p and bk1, 2, . . . , mya mod p . 5.2.26Ž . Ž . Ž .
Ž . Ž .If b k 1, 2, . . . , m y 1 mod p , we put a s 1 and 5.2.6 holds. If b ' i

Ž .mod p with 1 F i F m y 1, we put a s m y i q 1. One has

a k 1, 2, . . . , a y 1 mod p ,Ž .
Ž .because otherwise dim V would be congruent mod p to i q 1, . . . , m,
Ž .which would contradict our assumption. Hence 5.2.6 holds

5.3. Higher Symmetric Powers

Ž . aWe assume here that p ) m or p s 0 , so that the dual of Sym V for
a F m is Syma V *.

THEOREM 5.3.1. If SymmV is semisimple and dim V k y2, y3, . . . , ym
Ž .mod p , then V is semisimple.

Ž .Proof sketch . One rewrites the previous sections with exterior powers
replaced by symmetric powers. The sign problems disappear. Moreover,

a y 1 a q a y 1Ž . Ž . Ž .the integer of 5.1.13 becomes . The rest of the proof is thea y 1 a y 1

same.

6. FURTHER REMARKS

6.1. Characteristic Zero

When p s 0, the theorems of Sects. 2]5 can be obtained more simply
Ž w x.by the following method essentially due to Chevalley 2 :

We want to prove that a linear representation V of G is semisimple,
Ž . mknowing say that H V is semisimple and dim V / 2, 3, . . . , m. By enlarg-
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ing k, we may assume it is algebraically closed; we may also assume that
Ž .G ª GL V is injective and that its image is Zariski-closed; hence G may

Žbe viewed as a linear algebraic group over k more correctly: as the group
. w xof k-points of an algebraic linear group . See 6 for these easy reduction

Žsteps. Let U be the unipotent radical of G maximal normal unipotent
.subgroup . Because the characteristic is 0, an algebraic linear representa-

tion of G is semisimple if and only if its kernel contains U. Since H mV is
assumed to be semisimple, this shows that U is contained in the kernel of

Ž . Ž m . ŽGL V ª GL H V . If dim V / 2, 3, . . . , m, this kernel is of order m if
. Ž .dim V ) m or is a torus if dim V - 2 ; such a group has no nontrivial

unipotent subgroup. Hence U s 1, and the given representation G ª
Ž .GL V is semisimple.

6.2. Generalizations

All the results of Sects. 2]5 extend to linear representations of Lie
Ž .algebras, and also of restricted Lie algebras if p ) 0 . This is easy to check.

A less obvious generalization consists of replacing C by a tensorG
w xcategory C o¨er k, in the sense of Deligne 3 . Such a category is an abelian

category, with the following extra structures:

Ž . Ž .a for every V , V g ob C , a k-vector space structure on1 2
CŽ .Hom V , V ;1 2

Ž . Ž .b an exact bifunctor C = C ª C, denoted by V , V ¬ V m V ;1 2 1 2

Ž .c a commutativity isomorphism V m V ª V m V ;1 2 2 1

Ž . Ž . Ž .d an associativity isomorphism V m V m V ª V m V m V .1 2 3 1 2 3

These data have to fulfill several axioms mimicking what happens in CG
Ž w x.cf. 3 . For instance, there should exist an object ‘‘1’’ with 1 m V s V for

CŽ .every V, and End 1 s k; there should be a ‘‘dual’’ V * with V ** s V and
CŽ . CŽ . Ž .Hom W, V * s Hom V m W, 1 for every W g ob C ; etc.

Ž .If V g ob C , there are natural morphisms

1 ª V m V * and V m V * ª 1.

CŽ .The dimension of V is the element of k s End 1 defined by the
composition

1 ª V m V * ª 1.

It is not always an integer.
All the results of Sects. 2 and 3 are true for C pro¨ided the conditions on

dim V or dim W are interpreted as taking place in k. For instance, if V m W
Ž .is semisimple and dim W / 0 in k , then V is semisimple. The proofs
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require some minor changes: e.g., in Lemma 3.1, one needs to define
directly the morphisms

f : V m V m V * ª V and j : V ª V m V m V *.V V

Moreover, the basic equality f ( j s 1 is one of the axioms of a tensorV V V
Ž w x Ž ..category, cf. 3 , 2.1.2 .

As for the results of Sect. 4 on H 2V and Sym2V, they remain true at
Ž .least when p / 2, but some of the proofs e.g., that of Proposition 4.2

have to be written differently. I am not sure of what happens with Sect. 5: I
have not managed to rewrite the proofs in tensor category style. Still, I feel

Ž m . Ž m .that Theorem 5.2.5 on H V and Theorem 5.3.1 on Sym V should
Ž .remain true whenever m!/ 0 in k i.e., p s 0 or p ) m .

Remark. An interesting feature of the tensor category point of view is
the following principle, which was pointed out to me by Deligne:

m m ŽAny result on H implies a result for Sym , and con¨ersely here again
.we assume m!/ 0 in k . This is done by associating to each tensor

Ž .category C the category C9 s super C , whose objects are the pairs
Ž .V 9 s V , V of objects of C; such a V 9 is viewed as a graded object0 1

V 9 s V [ V , with grading group Zr2Z. The tensor structure of C9 is0 1
defined in an obvious way, except that the commutativity isomorphism is
modified according to the Koszul sign rule: the chosen isomorphism

Ž . Ž . Ž . Ž .between 0, V m 0, W and 0, W m 0, V is the opposite of the obvi-1 1 1 1
ous one. With this convention, one finds that

dim V 9 s dim V y dim V .0 1

Ž . Ž .In particular, if V g ob C , one has dim 0, V s ydim V. Moreover, one
checks that

SymmV , 0 if m is even,Ž .mH 0, V sŽ . m½ 0, Sym V if m is odd.Ž .

Hence any general theorem on the functor H m, when applied to C9, gives
a corresponding theorem for the functor Symm, with a sign change in

Ž .dimensions compare for instance Theorem 4.5 and Theorem 4.7 .

7. EXAMPLES

The aim of this section is to construct examples showing that the
congruence conditions on dim W and dim V in Theorems 2.4, 4.5, and 5.2.5
are best possible.

We assume that p is ) 0 and that k is algebraically closed
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7.1. The Group G

Let C be a cyclic group of order p, with generator s. Choose a finite
abelian group A on which C acts. Assume

Ž . < <7.1.1 the order A of A is prime to p, and ) 1.

Ž . � 47.1.2 the action of C on A y 1 is free.

Let G be the semidirect product A ? C of C by A. It is a Frobenius
group, with Frobenius kernel A.

Ž =.Let X s Hom A, k be the character group of A; we write X addi-
tively and, if a g A and x g X, the image of a by x is denoted by ax. The

Ž .group C acts on X by duality, and condition 7.1.2 is equivalent to:

Ž . � 4 Ž .7.1.3 The action of C on X y 0 is free i.e., sx s x « x s 0 .

If x g X, denote by 1x g C the k-vector space k on which A acts ¨iaA
Ž . G xthe character x. The induced module W x s Ind 1 is an object of C ,A G

of dimension p. One checks easily:

Ž . Ž . Ž .7.1.4 If x / 0, W x is simple and projectï e in C .G

Moreover

Ž . Ž .7.1.5 E¨ery V g ob C splits uniquely as V s E [ P, where E is theG
Ž .subspace of V fixed under A, and P is a direct sum of modules W x , with

� 4x g X y 0 .

If we decompose V in V s [V , where V is the A-eigenspace relativex x
Ž x .to x i.e., the set of ¨ g V such that a ? ¨ s a ¨ for every a g A , one has

E s V and P s [ V .0 yy / 0
Ž .From 7.1.5 follow:

Ž . Ž7.1.6 V is semisimple if and only if the action of C on E is trï ial i.e.,
.if and only if E ( 1 [ ??? [ 1 .

Ž . Ž7.1.7 V is projectï e if and only if E is C-projectï e i.e., if and only if
.E is a multiple of the regular representation of C .

Ž . Ž .Note that both 7.1.6 and 7.1.7 apply when E s 0, i.e., when no
element of V, except 0, is fixed by A.

Ž . � 4 Ž7.1.8 Let x be an element of X y 0 . If V s V i.e., if A acts0
. Ž .trivially on V , then V m W x is isomorphic to the direct sum of m copies of

Ž .W x , where m s dim V.
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Ž .Indeed, V is a successive extension of m copies of 1, hence V m W x is
Ž .a successive extension of m copies of W x ; these extensions split since

Ž . Ž .W x is projective 7.1.4 ; hence the result.

7.2. Examples Relatï e to Theorem 2.4

We reproduce here an example due to W. Feit, showing that the
Ž .congruence condition ‘‘dim W k 0 mod p ’’ of Theorem 2.4 is the best

possible:

PROPOSITION 7.2.1. Let G be a finite group of the type in Sect. 7.1, and let
n, m be two positï e integers, with m ) 1 and n dï isible by p. There exist

Ž .V, W g ob C such that:G

Ž .i dim V s m and dim W s n;
Ž .ii V is not semisimple;
Ž .iii V m W is semisimple.

Proof. Choose:

ŽV s a non-semisimple C-module of dimension m such a module
.exists since m ) 1 ;

Ž . Ž . � 4W s W x [ ??? [ W x , with x g X y 0 .1 n r p i

The projection G ª C makes V into a G-module with trivial A-action.
Ž . Ž . Ž .It is clear that i and ii are true. By 7.1.8 , V m W is isomorphic to the

direct sum of m copies of W, hence it is semisimple.

7.3. Examples relatï e to Theorems 4.5 and 5.2.5

The following proposition shows that the congruence conditions of
Theorem 5.2.5 are the best possible:

PROPOSITION 7.3.1. Let i and n be two integers with 2 F i F p, n ) 0
Ž .and n ' i mod p . There exists a finite group G of the type described in Sect.

7.1 and an object V of C such that:G

Ž .a dim V s n;
Ž .b V is not semisimple;
Ž . mc H V is semisimple for e¨ery m such that i F m F p.

The case i s 2 gives the following result, which shows that the condition
Ž .dim V k 2 mod p of Theorem 4.5 is the best possible:

Ž .COROLLARY 7.3.2. If n ) 0 and n ' 2 mod p , there exist a finite group
G and a non-semisimple G-module V such that dim V s n and H 2V is
semisimple.

Ž m .Even better: H V is semisimple for 2 F m F p.



SERRE AND FEIT514

Proof of Proposition 7.3.1. We need to choose a suitable G s A ? C of
the type described in Sect. 7.1. To do so, write n as n s i q hp, with
h G 0.

LEMMA 7.3.3. There exist a finite abelian group X, on which C acts, and h
elements x , . . . , x of X, with the following properties:1 h

Ž . � 47.3.4 The action of C on X y 0 is free.
Ž . Ž . w x7.3.5 For e¨ery family I , . . . , I of nonempty subsets of 0, p y 11 h

the relation

h
js x s 0 )Ž .Ý Ý a

as1 jgIa

w ximplies I s 0, p y 1 for a s 1, . . . , h.a

Ž .Proof. Assume first that h s 1. In that case, 7.3.5 just means that, if I
w x < < jis a subset of 0, p y 1 , with 0 - I - p, one has Ý s x / 0. This isjg I 1

easy to achieve: choose some integer e ) 1, prime to p, and define X to1
w xbe the augmentation module of the group ring ZreZ C , i.e., the kernel of

w x Ž .ZreZ C ª ZreZ; put x s 1 y s. It is easy to check that X , x has the1 1 1
required property.

If h ) 1, one takes for X the direct sum of h copies of the C-module
X defined above, and one defines x , . . . , x to be1 1 h

x , 0, . . . , 0 , . . . , 0, . . . , 0, x .Ž . Ž .1 1

Ž . Ž .Proof of Proposition 7.3.1 continued . Let X, x , . . . , x be as in1 h
Ž .Lemma 7.3.3. Property 7.3.4 implies

< <X ' 1 mod p ,Ž .

< < Ž =.hence X is prime to p. Let A s Hom X, k be the dual of X ; then X
is the dual of A. The semidirect product G s A ? C is a group of the type

Ž .described in Sect. 7.1. Define V g ob C byG

V s E [ W x [ ??? [ W x , 7.3.6Ž . Ž . Ž .1 h

Žwhere E is a non-semisimple C-module of dimension i viewed as a
. Ž . G xa Ž .G-module with trivial action of A , and W x s Ind 1 cf. Sect. 7.1 .a C

We have dim V s i q hp s n, and it is clear that V is not semisimple. It
m Ž . mremains to check that H V is semisimple if i F m F p. By 7.3.6 , H V

is a direct sum of modules of type:

H aE m H b1W x m ??? m H bhW x , 7.3.7Ž . Ž . Ž .1 h
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with a q b q ??? qb s m. Let us show that every such module is1 h
semisimple. If all b are 0, we have a s m G i, and H aE is 0 if m ) i anda

a Ž .H E s 1 if m s i. Hence 7.3.7 is either 0 or 1 and is semisimple. We
may thus assume that one of the b is ) 0. By using induction on h, wea

may even assume that all the b are ) 0. Sincea

b q ??? qb s m y a F p ,1 h

the b are F p. Suppose one of them, say b , is equal to p. We have thena 1

b s ??? s b s 0, m s p , a s 0,2 h

Ž . p Ž .and the G-module 7.3.7 is equal to H W x s 1, hence is semisimple.1
We may thus assume that 0 - b - p for every a . Observe now that, ifa

� 4 Ž .x g X y 0 , the characters of A occurring in the A-module W x are
x, sx, . . . , s py1 x, and their multiplicity is equal to 1. Hence the characters

b Ž . j w xoccurring in H W x are of the form Ý s x, for a subset I of 0, p y 1jg I
< < Ž .with I s b. By applying this remark to the W x , one sees that thea

Ž .characters of A occurring in 7.3.7 are of the form

h
js x ,Ý Ý

as1 jgIa

< < Ž .with I s b . Since 0 - b - p for every a , it follows from 7.3.5 thata a a

Ž .such a character is / 0. Hence no element of 7.3.7 , except 0, is fixed
Ž . Ž .under A. By 7.1.6 , this implies that 7.3.7 is semisimple. This concludes

the proof.

APPENDIX

by Walter Feit

A.1

Let G be a finite group, let p be a prime and let k be a field of
w x 2characteristic p ) 0. If V is a k G -module of dimension n such that H V

Ž .is semisimple, then V is semisimple unless n ' 2 mod p by Theorem 4.5.
2Ž .Similarly, Theorem 4.6 asserts that if Sym V is semisimple then so is V

Ž .unless n ' y2 mod p .
Corollary 7.3.2 implies that, for odd p, Theorem 4.5 is the best possible

result. In Theorem A2 below, it is shown that for p s 2, for infinitely many
but not all even n, there exists a non-semisimple module V of dimension n
with H 2V semisimple.
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Ž .Furthermore, Theorem A1 ii shows that if p is a prime such that
<Ž m .p 2 q 1 for some natural number m, then there exist infinitely many

integers n and non-semisimple modules V of dimension n with Sym2V
semisimple.

If p is odd there always exist infinitely many natural numbers m such
<Ž m . Ž .that p 2 y 1 . The situation is more complicated in case ii of Theorem

<Ž m . Ž .A1. By quadratic reciprocity p 2 q 1 for some m if p ' 3 or 5 mod 8 ,
Ž m . Ž . Ž .and p ¦ 2 q 1 for any m if p ' 7 mod 8 . In case p ' 1 mod 8 , such

an m may or may not exist, the smallest value in this case where no such
m exists is p s 73. It is not known whether a non-semisimple V exists with
Sym2V semisimple in case p is a prime such as 7, 23, . . . which does not
divide 2 m q 1 for any natural number m.

If p s 2 m q 1 is a Fermat prime, Corollary 4.10 implies that the module
Ž .V constructed in Theorem A1 ii has the smallest possible dimension

2 mq 1 s 2 p y 2. For no other primes is it known to us whether there exists
a non-semisimple module V with Sym2V semisimple of the smallest
possible dimension 2 p y 2.

The method of proof of Theorem A1 also yields some additional
examples for all odd primes, of non-semisimple modules V with H 2V
semisimple.

Basic results from modular representation theory are used freely below.
w xSee, e.g., 4 . The following notation is used, where p is a prime and G is a

finite group:

F is a finite extension of Q , the p-adic numbers;p

R is the ring of integers in F;

p is a prime element in R.

From now on it will be assumed that k s Rrp R is the residue class
field. Moreover both F and k are splitting fields of G in all cases that
arise.

PROPOSITION A.1.1. Let a s a q a be a Brauer character of G, where1 2
a is the sum of irreducible Brauer characters which are afforded by projectï e1
modules, and a is the sum of irreducible Brauer characters w , no two of2 i

w xwhich are in the same p-block. Then any k G -module W which affords a is
semisimple.

Proof. Since a projective submodule of any module is a direct sum-
mand, W s W [ W , where W affords a . Furthermore, W is the direct1 2 i i 1
sum of irreducible projective modules, and so is semisimple. W is2
semisimple as all the constituents of an indecomposable module lie in the
same block.
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An immediate consequence of Proposition A.1.1 is

COROLLARY A.1.1. Let u s Sx q Sz be a character of G, where eachi j
w xx and z is irreducible. Let U be an R-free R G -module which affords u .i j

Suppose that the following hold:

Ž .i x has defect 0 for each i.i

Ž .ii z is irreducible as a Brauer character for each j.j

Ž .iii If j / j9 then z and z are in distinct blocks.j9 j

Then U s Urp U is semisimple.

Corollary A.1.1 yields a criterion to determine when a module is
semisimple, which depends only on the computation of ordinary charac-

w xters. To construct a non-semisimple k G -module the following result is
helpful.

Ž w x.PROPOSITION A.1.2 Thompson, see 4, I.17.12 . Let U be a projectï e
w x w xindecomposable R G -module. Let V be an F G -module which is a sum-

w xmand of F m U. Then there exists an R-free R G -module W with F m W f V
and W s WrpW indecomposable.

COROLLARY A.1.2. Let u s h q c be the character afforded by a projec-
w xtï e indecomposable R G -module, where h and c are characters. Then there

w xexists an indecomposable R G -module which affords h as a Brauer character.

A.2

w xSee 5, pp. 355]357 for the results below.
Let D denote a dihedral group of order 8 and let Q be a quaternion

group of order 8.
Let m be a natural number. Up to isomorphism there are two extra-spe-

2 mq1 Ž . Ž .cial groups of order 2 , T m, « for « s "1. The first, T m, 1 , is the
Ž .central product of m copies of D, while T m, y1 is the central product of

Ž .Q with m y 1 copies of D. Let T s T m, « , let Z be the center of T and
2Ž . Ž .let T s TrZ. The map q s q m, « : T ª Z with q y s y defines a

nondegenerate quadratic form on T , where Z is identified with the field of
Ž .two elements. T m, 1 has a maximal isotropic subspace of dimension m,

Ž .while T m, y1 has a maximal isotropic subspace of dimension m y 1.
Ž .Furthermore the orthogonal group O q, « acts as a group of automor-2 m

Ž .phisms of T m, « .
Ž . mO q, « has a cyclic subgroup of order 2 y « which acts regularly on2 m

mŽ . <Ž .T m, « . Thus if p is a prime with p 2 y « , then T has an automor-
phism s of order p whose fixed point set is Z.

² :Let P s s and let G be the semidirect product PT. Then G s PT is
a Frobenius group with Frobenius kernel T.
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Every irreducible character of G which does not have T in its kernel is
induced from a nonprincipal linear character of T and so has degree p.

T has one faithful irreducible character x . Thus x extends to an
irreducible character of G in p distinct ways. The values of x are easily
computed. Hence all characters of G can be described as follows:

Ž .PROPOSITION A.2.1. i G has p linear characters 1 s l , . . . , l , whose1 p
kernels contain T.

Ž .ii The irreducible characters of G which do not ha¨e T in their kernel
all ha¨e degree p, and so are of p-defect 0.

Ž .iii There is a faithful irreducible character x of G such that˜
xl , . . . , xl are all the faithful irreducible characters of G. Furthermore,˜ ˜1 p
Ž . mx 1 s 2 and x ¨anishes on all elements of T y Z.˜ ˜

Ž .iv There are two p-blocks of G of positï e defect. The sets of irre-
� < 4 � < 4ducible characters in them are l 1 F i F p and xl 1 F i F p , respec-˜i i

tï ely.
Ž .v E¨ery irreducible character of G is irreducible as a Brauer charac-

ter.

The notation of this subsection, especially of Proposition A.2.1, will be
used freely below.

A.3

THEOREM A1. Assume that p / 2.

Ž . <Ž m .i Let m be a natural number such that p 2 y 1 . Then there exists a
w x mq 1finite group G and a non-semisimple k G -module V of dimension 2 ' 2

Ž . 2mod p such that H V is semisimple.
Ž . <Ž m .ii If p 2 q 1 for a natural number m, then there exists a finite

w x mq 1group G and a non-semisimple k G -module V of dimension 2 ' y2
Ž . 2mod p such that Sym V is semisimple.

Proof. Let G be as in the previous subsection. As a Brauer character,
xl is Q-valued for all i. As the induced character x G s Ý xl , it is the˜ ˜i i

w xcharacter afforded by a projective indecomposable k G -module. Hence by
w xCorollary A.1.2 there exists an indecomposable k G -module V which

affords the Brauer character u s 2 x , since x q xl agrees with 2 x as a˜ ˜ ˜ ˜i
Brauer character. Since x is irreducible, u 2 restricted to T contains the
principal character of T with multiplicity 4. Thus u 2 is the sum of four
linear Brauer characters and irreducible Brauer characters of p-defect 0.

w x w xV is a k G -module, and hence also a k T -module. As T is a p9-group,
Brauer characters of T are ordinary characters. Let skew be the character
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of T afforded by H 2V and let sym denote the character of T afforded by
Sym2V. Then for y in T

2 2skew y s u y y u y r2,Ž . Ž . Ž .Ž .
2 2sym y s u y q u y r2.Ž . Ž . Ž .Ž .

Let n s "1 denote the Frobenius]Schur index of x .
Ž 2 . < < Ž 2 . < <Then Ý x y s n T . Hence Ý u y s 2n T . Thereforey g T y g T

1
skew y s 2 y n ,Ž .Ý< <T ygT

1
sym y s 2 q n .Ž .Ý< <T ygT

In particular, both skew and sym contain the principal character as a
constituent.

Therefore the Brauer characters sy, sk of G afforded by Sym2V and by
H 2V, respectively, both contain at least one linear constituent. Hence
each contains at most three linear constituents as V m V has exactly four
linear constituents.

Ž . Ž . Ž mq 1Ž mq 1 .. Ž . Ž .i sk 1 s 2 2 y 1 r2, hence sk 1 ' 1 mod p .
As p G 3 this implies that sk s 1 q b , where b is the sum of irreducible
projective Brauer characters. Thus H 2V is semisimple.

Ž . Ž . Ž mq 1Ž mq 1 .. Ž . Ž .ii sy 1 s 2 2 q 1 r2, hence sy 1 ' 1 mod p .
As p G 3 this implies that sy s 1 q b , where b is the sum of irreducible
projective Brauer characters. Thus Sym2V is semisimple.

Remark. The argument in the proof of Theorem A1 involving the
Frobenius]Schur index is only needed for p s 3. If p ) 3, then the last
two statements in the proof are clear.

Serre has pointed out that V can be defined directly as E m X, where E
is an indecomposable two-dimensional module of P s GrT and X is the
irreducible G-module afforded by x as a Brauer character.˜

A.4

Ž .THEOREM A2. Suppose that p s 2. Let q ' 3 mod 8 be a prime power
Ž . w xand let G s SL 2, q . Then there exists a non-semisimple k G -module V of

Ž . 2dimension q q 1 r2 such that H V is semisimple.

Ž .Proof. The irreducible characters in the principal 2-block of PSL 2, q
Ž . Ž .are 1, St, c , and c , where c 1 s q y 1 r2 for i s 1, 2. The restriction1 2 i
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of c to a Borel subgroup is irreducible and so c is irreducible as ai i
Ž .Brauer character. The remaining 2-blocks of PSL 2, q are either of defect

0 or 1.
Ž . Ž .There are q y 3 r8 2-blocks B of PSL 2, q of defect 1. The Braueri

tree of each B has two vertices and one edge, and so every irreduciblei
character in B is irreducible as a Brauer character.i

Let x and x be the irreducible characters in B . The notation can bei1 i2 i
Ž . Ž .chosen so that x u s 2 and x u s y2 for an involution u.i1 i2

Ž . Ž .SL 2, q has a faithful irreducible character h of degree q q 1 r2
Ž .'whose values lie in Q y q with h s 1 q c as a Brauer character. By1

w xCorollary A.1.2 there exists an R-free R G -module W which affords h
such that V s WrpW is indecomposable. The center of G acts trivially on

2 2 w Ž .xH W and so H W is an R PSL 2, q -module. Direct computation shows
that H 2W affords c q Sx . By Corollary A.1.1, H 2V is semisimple.1 i1
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