On the values of the characters of compact Lie groups

The lecture discussed three loosely related theorems on the characters of a compact Lie group G.

1. A generalization of a theorem of Burnside

Theorem 1 – Let χ be the character of an irreducible complex representation of G. Assume $\chi(1) > 1$. Then there exists an element x of G, of finite order, with $\chi(x) = 0$.

When G is finite, this is a well-known result of Burnside.

2. Positive characters with mean value equal to 1

Let f be a virtual character of G having the following two properties :

1. f(x) is real ≥ 0 for every $x \in G$.

2. The mean value $\langle f, 1 \rangle$ of f is equal to 1.

There are many examples of such characters when G is finite (e.g. permutation characters relative to a transitive action). Not so when G is connected. More precisely :

Question – If G is connected and simply connected, is it true that every character f having properties (a) and (b) is equal to $\chi.\bar{\chi}$, where χ is an irreducible (complex) character of G?

Theorem 2 – The answer to the question above is "yes" when G is of rank 1, i.e. when $G = SU_2(\mathbf{C})$.

3. The character of the adjoint representation

Consider the adjoint representation $Ad : G \to Aut$ (Lie G).

Theorem 3 – One has Tr $Ad(x) \ge - \operatorname{rank}(G)$ for every $x \in G$.

The minimal value of Tr Ad(x) can be determined explicitly :

Choose a maximal torus T of G; let N be its normalizer and let W be the quotient N/T(so that W is the Weyl group if G is connected). For any $w \in W$, let $\operatorname{Tr}_T(w)$ be the trace of w acting on Lie T. Theorem 3 can be refined as : **Theorem 3'** – One has $\inf_{x \in G} \operatorname{Tr} \operatorname{Ad}(x) = \inf_{w \in W} \operatorname{Tr}_T(w).$

This shows in particular that $\inf \operatorname{Tr} \operatorname{Ad}(x)$ is an integer, a fact which was not a priori obvious. It also shows that $\inf \operatorname{Tr} \operatorname{Ad}(x)$ is equal to $-\operatorname{rank}(G)$ if and only if W contains an element which acts on T by $t \mapsto t^{-1}$.

When G is connected and simple, Theorem 3' gives :

$$\inf \operatorname{Tr} \operatorname{Ad}(x) = -\operatorname{rank}(G) \text{ if } G \text{ is of type } A_1, B_n, C_n, D_n (n \text{ even}), G_2, F_4, E_7, E_8,$$
$$\inf \operatorname{Tr} \operatorname{Ad}(x) = \begin{cases} -1 & \text{if } G \text{ is of type } A_n (n \ge 1) \\ 2 - n & \text{if } G \text{ is of type } D_n (n \text{ odd } \ge 3) \\ -3 & \text{if } G \text{ is of type } E_6. \end{cases}$$

4. Proofs

They are not published yet. Here are some hints for the interested reader :

Theorem 1: Use the properties of the "principal A_1 subgroup" of G.

Theorem 2 : An exercise on positive-valued trigonometric polynomials.

Theorem 3': If $w \in W$ is such that $\operatorname{Tr}_T(w)$ is minimum, any representative x of w in N is such that $\operatorname{Tr} \operatorname{Ad}(x) = \operatorname{Tr}_T(w)$; this proves the inequality inf $\operatorname{Tr} \operatorname{Ad}(x) \leq \inf \operatorname{Tr}_T(w)$. The opposite inequality can be checked by a case-by-case explicit computation. The classical groups are easy enough, but F_4, E_6, E_7 and E_8 are not (especially E_6 , which I owe to Alain Connes). I hope there is a better proof.

Bibliography

W. Burnside – On an arithmetical theorem connected with roots of unity and its application to group characteristics, Proc. London Math. Soc. 1 (1903), 112-116.