
Security policies and
access control

(continued)

Chaire Informatique et sciences numériques
Collège de France, cours du 23 mars 2011

Access control and programs

Programs everywhere!

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Programs everywhere!

• Programs are principals and objects.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Programs everywhere!

• Programs are principals and objects.

• Programs perform the access control.

– Often, even some of the access control policy is
baked into programs, for better or for worse.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Programs everywhere!

• Programs are principals and objects.

• Programs perform the access control.

– Often, even some of the access control policy is
baked into programs, for better or for worse.

• Programs implement the operations that are
the concern of access control.

Reference

monitor
ObjectDo

operationPrincipal

GuardRequestSource Resource

Programs everywhere!

• Programs are principals and objects.

• Programs perform the access control.

– Often, even some of the access control policy is
baked into programs, for better or for worse.

• Programs implement the operations that are
the concern of access control.

Reference

monitor
ObjectDo

operationPrincipal

GuardRequestSource Resource

Bundling operations into programs

 objects

principals

Data file Log file Program P’s

code

Alice x

auditor r r

Program P rw rw x

Conjoining users through programs

 objects

principals

Data file Program P’s

code

Alice x

Bob x

Program P rw x

where P checks that both Alice and Bob make
the same request before forwarding the request.

Conjoining users through programs
(an alternative)

where P modifies the matrix so that Alice has
access when Bob requests it, and vice versa.

 objects

principals

Data file Data file’s

ACL

Program P’s

code

Alice x

Bob x

Program P rw x

Modifying the matrix

• The access control matrix need not be static.

• It may be modified by programs like:

 command CONFER (right, user, friend, file)

 if right in matrix[user, file]

 then enter right into matrix[friend,file]

 end

How can we ensure safety?

Algorithmic analysis
[starting with Harrison, Ruzzo, and Ullman, 1976]

• A system has finite sets of rights and
commands.

• A command is of the form
“if conditions hold, then perform operations”.

– The conditions are predicates on the matrix.

– Operations add/delete rights, principals, objects.

Let A be a principal and f an object.

In general, it is undecidable whether there is a
reachable state such that A can access f.

Algorithmic analysis (cont.)
[in particular, Li, Winsborough, and Mitchell, 2003]

• Not all interesting problems are undecidable!

• Consider the containment problem:
In every reachable state, does every principal
that has one property (e.g., has access to a
resource) also have another property (e.g.,
being an employee)?

For different classes of systems, this problem is
decidable (in coNP or coNEXP).

Programs and other principals

• So, programs may be principals too.

• But then:

– we need to deal with program combinations,

– we need to connect programs to other principals

• who write them or edit them,

• who provide them or install them,

• who call them.

app1 OS app2 browser

Running programs

• What are the run-time rights of a program P?

– those of P’s caller, or

– those of some responsible user, or

– something else, e.g, because of P’s properties, or

– some combination.

• The same factors appear in deciding whether
to run a program.

app1
proved

OS app2 browser
from A

request

Bob

invoke

Running programs (cont.)

Some approaches to
combining authorities:

• setuid,

• code access security
(with stack inspection
or alternatives).

Some approaches to
intrinsic properties:

• proofs (and proof-
carrying code),

• types,

• dynamic checks (e.g., in
sandboxes),

• their combinations
(e.g., proofs about
sandboxes).

Protection and isolation

• Programs must be protected (always) and
limited to communicate on proper interfaces.

• This is often the job of the computing
platform (OS + hardware).

– It can implement address spaces so that programs
in separate spaces cannot interact directly
(e.g., cannot smash or snoop on one another).

• A language and its run-time system can
provide fine-grained control.

 More on this in a later lecture.

Examples

Access control in Unix (basics)

• Principals are users (plus root).

• Objects are files.

• Operations are read, write, and execute.

• Each file has an owner and a group.

• Each file has an ACL, which can be set by its
owner and root.

• ACLs specify rights for the owner (“user”),
group, and others (e.g., rwxrw-r--).

Access control in Unix (cont.)

• If a program file is marked as suid, then the
program executes with the privilege of its
owner (not that of the caller).

– The usage of setuid is error-prone.

– The details are complex and vary across systems.

• And there are other complications: sgid,
capabilities in Linux, directories, …

The basic sandbox policy

• Trusted code (e.g., local code) has the full
power of the user that runs it.

• Untrusted code (e.g., foreign code) has very
limited rights, e.g.:

– no direct use of files,

– network connections only to the code’s origin.

• The sandbox is enforced at run-time:

– A reference monitor (“security manager”) is
associated with code when the code is loaded.

The basic sandbox policy

Trusted code can access
libraries and thereby the
underlying OS services.

Untrusted code mostly
cannot.

OS

 Virtual machine

Trusted
Function 1

Untrusted
Function 2

…

libraries
(e.g., I/O)

Permissions (as in Java)

Access to resources is
expressed in terms of
permissions, such as “may
perform screen I/O”.

Before execution, an
annotation on each piece
of code (e.g., function)
indicates its permissions.

A configurable policy
determines permissions
depending on code origin.

OS

 Virtual machine

Function 1 Function 2 …

libraries
(e.g., I/O)

Permissions (cont.)

Code with a variety of
origins, more or less
trusted, may call one
another or share data.

Should all of their
permissions count in
access decisions?

OS

 Virtual machine

Function 1 Function 2 …

libraries
(e.g., I/O)

One answer, on a simple example
(also as in Java)

Suppose that f(s) modifies
the file named s.

If g calls f(s), both should
have permission to write
to s.

(Otherwise, f may be used
as a confused deputy.)

OS

 Virtual machine

f g …

libraries
(e.g., file
access)

s

An example where looking at the
stack suffices

// Fully trusted but naive: has all permissions
public class NaiveApp {
 public static void Write (string s, …) {
 File.Write (s, …);
 }
}
// Untrusted: no FileIOPermission
class BadApp {
 public static void Main() {
 NaiveApp.Write (“..\\password”, …);
}

BadApp

An example where looking at the
stack suffices

// Fully trusted but naive: has all permissions
public class NaiveApp {
 public static void Write (string s, …) {
 File.Write (s, …);
 }
}
// Untrusted: no FileIOPermission
class BadApp {
 public static void Main() {
 NaiveApp.Write (“..\\password”, …);
}

NaiveApp

BadApp

An example where looking at the
stack suffices

// Fully trusted but naive: has all permissions
public class NaiveApp {
 public static void Write (string s, …) {
 File.Write (s, …);
 }
}
// Untrusted: no FileIOPermission
class BadApp {
 public static void Main() {
 NaiveApp.Write (“..\\password”, …);
}

NaiveApp

BadApp

File

A twist

Suppose that f(s) wants to
write to a log that g
should not access.

If f is a trusted function, it
can check that g’s call is
ok, assert it, and then use
its own authority for
writing to the log.

Afterwards, g’s
permissions do not
matter, only f’s.

OS

 Virtual machine

f g …

libraries
(e.g., file
access)

s Logs

An example where looking at the
stack does not suffice

// Fully trusted but naive: has all permissions
class NaiveApp {
 public static void Main() {
 string s = BadPlugIn.TempFile ();
 File.Write(s, …);
 }
}
// Untrusted: no FileIOPermission
public class BadPlugIn {
 public static string TempFile () {
 return “..\\ password”;
 }
}

NaiveApp

An example where looking at the
stack does not suffice

// Fully trusted but naive: has all permissions
class NaiveApp {
 public static void Main() {
 string s = BadPlugIn.TempFile ();
 File.Write(s, …);
 }
}
// Untrusted: no FileIOPermission
public class BadPlugIn {
 public static string TempFile () {
 return “..\\ password”;
 }
}

NaiveApp

BadPlugIn

An example where looking at the
stack does not suffice

// Fully trusted but naive: has all permissions
class NaiveApp {
 public static void Main() {
 string s = BadPlugIn.TempFile ();
 File.Write(s, …);
 }
}
// Untrusted: no FileIOPermission
public class BadPlugIn {
 public static string TempFile () {
 return “..\\ password”;
 }
}

NaiveApp

An example where looking at the
stack does not suffice

// Fully trusted but naive: has all permissions
class NaiveApp {
 public static void Main() {
 string s = BadPlugIn.TempFile ();
 File.Write(s, …);
 }
}
// Untrusted: no FileIOPermission
public class BadPlugIn {
 public static string TempFile () {
 return “..\\ password”;
 }
}

NaiveApp

File

Criticisms

• Does this technique achieve real security?
for what policy?

• Looking at chains of calls is not satisfactory.

– Some other constructs require careful treatment.

– A standard formulation (“stack inspection”) is tied
to a particular stack implementation.
 It rules out or complicates optimizations.

• It can get hard to understand security.

Access control in Android

Applications are principals.

Each application comes with
fixed permissions

– declared by developer;

– accepted by user at
installation time;

– checked at run-time;

– some standard,
e.g., access network;

– others defined by
developers;

– over 100.

Linux system

(with applications as users)

Inter-component communication
reference monitor

Android middleware

App1
(e.g., radio)

App2
(e.g., alarm)

…

(There are many other aspects to Android security.)

Languages and logics
for access control policies

From matrices to rules

• An access control matrix may be represented
with a ternary predicate symbol may-access.

• Other predicates may represent groups, etc..

• We may use standard logical operators.

• We may then write formulas such as:
 may-access(Alice, Foo.txt, Rd)
and rules such as:
 may-access(p, o, Wr) may-access(p, o, Rd)
 good(p) may-access(p, o, Rd)
 (see XACML and the like)

Going further: policies for
distributed systems

• In distributed systems, there are multiple
sources of assertions, trusted differently.

• This is reflected in some proposed public-key
infrastructures, policy languages, and logics.

• One idea is to represent explicitly the
principals that make assertions and to reason
about them…

Says

export

import

Alice

statement

Bob

Certificate

export

import

Alice

statement

Bob

Alice says

statement

Channel

statement

(from Alice)

• “says”
represents
communication
across contexts.

• It abstracts from
the details of
authentication.

• The statement
may be atomic
or a more
complex rule.

Alice says

statement

statement

(signed Alice)

• A simple notation for assertions:

– A says s

– A speaks for B

• With logical rules, for example:

⊢ A says (s t) (A says s) (A says t)

⊢ s (A says s) ⊢ (A says A says s) (A says s)

A calculus for access control
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008]

• A simple notation for assertions:

– A says s

– A speaks for B

• With logical rules, for example:

⊢ A says (s t) (A says s) (A says t)

⊢ s (A says s) ⊢ (A says A says s) (A says s)

⊢ A speaks for B (A says s) (B says s)

⊢ A speaks for A

⊢ A speaks for B ∧ B speaks for C A speaks for C

⊢ (B says (A speaks for B)) (A speaks for B)

A calculus for access control
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008]

• A simple notation for assertions:

– A says s

– A speaks for B for all X. ((A says X) (B says X))

• With logical rules, for example:

⊢ A says (s t) (A says s) (A says t)

⊢ s (A says s) ⊢ (A says A says s) (A says s)

⊢ A speaks for B (A says s) (B says s)

⊢ A speaks for A

⊢ A speaks for B ∧ B speaks for C A speaks for C

⊢ (B says (A speaks for B)) (A speaks for B)

A calculus for access control
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008]

• A simple notation for assertions:

– A says s

– A speaks for B for all X. ((A says X) (B says X))

• With logical rules, for example:

⊢ A says (s t) (A says s) (A says t)

⊢ s (A says s) ⊢ (A says A says s) (A says s)

⊢ A speaks for B (A says s) (B says s)

⊢ A speaks for A

⊢ A speaks for B ∧ B speaks for C A speaks for C

⊢ (B says (A speaks for B)) (A speaks for B)

A calculus for access control
[with Burrows, Lampson, Plotkin, and Wobber 1991; and Garg, 2008]

“same
consequences”

An example

• Let good-to-delete-file1 be a proposition.

• Let B controls s stand for (B says s) s

• Assume that

– B says (A speaks for B)

– B controls good-to-delete-file1

– A says good-to-delete-file1

• We can derive:

– B says good-to-delete-file1

– good-to-delete-file1

Applications

Several languages rely on logics for access control:

• D1LP and RT [Li, Mitchell, et al.]

• SD3 [Jim] and Binder [DeTreville]

• Daisy [Cirillo et al.]

• SecPAL [Becker, Fournet, and Gordon] and DKAL [Gurevich and Neeman]

“says” and “speaks for” play a role in other systems:

• SDSI and SPKI [Lampson and Rivest; Ellison et al.]

• Alpaca [Lesniewski-Laas et al.] and Aura [Vaughan et al.]

• PCFS (proof-carrying file system) [Garg and Pfenning]

• …

An example system: Grey
[Bauer, Reiter, et al., 20052008]

• Turns a cell phone into a tool for delegating
and exercising authority.

• Uses cell phones to replace physical locks and
key systems.

• Implemented in part of CMU.

• With access control based on logic and
distributed proofs.

Slide originally from Mike Reiter

D208

Phone discovers door

To prove:
Mike says

Goal(D208.open)

Open

D208

Jon

Jon’s

phone

Mike’s

phone
Mike

I can prove that with any of
1) Jon speaksfor Mike.Student

2) Jon speaksfor Mike.Admin

3) Jon speaksfor Mike.Wife

4) Delegates(Mike, Jon,

 D208.open)

Please help

Jon speaksfor

Mike.Student Proof of:
Jon says Goal(D208.open)

Mike says Goal(D208.open)

Proof of:
Mike says

Goal(D208.open)

Hmm, I can’t prove

that. I’ll ask Mike’s

phone for help.

An example of a distributed proof:

A small language: Binder

• Binder is a relative of Prolog.

• Like Datalog, it lacks function symbols.

• It also includes the special construct says.

• It does not include much else.

• Binder is not the most recent.

• Current systems (e.g., SecPAL) have similarities
with Binder, but they are more complex.

An example

• Facts

– owns(Alice, Foo.txt).

– Alice says good(Bob).

• Rules

– may_access(p, o, Rd) :- owns(q, o), blesses(q, p).

– blesses(Alice, p) :- Alice says good(p).

• Conclusions

– may_access(Bob, Foo.txt, Rd).

Proof rules

• Binder includes standard logical rules (“resolution”).

• E.g.,
may_access(p, o, Rd) :- owns(q, o), blesses(q, p).
owns(Alice, Foo.txt).
 imply
may_access(p, Foo.txt, Rd) :- Alice says good(p).

Proof rules: importing

• In addition, formulas from a context F can be
imported to a context D.

– This adds “F says” in front of all atoms without a
“says”.

– It applies only to clauses where the head atom
does not have “says”.

Importing by example

• Suppose F has the rules

– may_access(p, o, Rd) :- owns(q, o), blesses(q, p).

– blesses(Alice, p) :- Alice says good(p).

– Alice says good(Bob).

• D may import the first two as:

– F says may_access(p, o, Rd) :-
 F says owns(q, o), F says blesses(q, p).

– F says blesses(Alice, p) :- Alice says good(p).

• D may import good(Bob) directly from Alice.

Importing by example (cont.)

• Suppose F has the rule

– blesses(Alice, p) :- Alice says good(p).

• D may import it as:

– F says blesses(Alice, p) :- Alice says good(p).

• D and F should agree on Alice’s identity.

• But the meaning of predicates may vary, and it
typically will.
For example, F may also have:

– blesses(Bob, p) :- Bob says excellent(p).

Important properties

• Policies can use application-specific predicates.

• Statements can be read declaratively.

• Queries are decidable (typically in PTime).

Issues and research directions

• What about algorithmic problems?

• What about more proof systems? Semantics?

• Can all reasonable policies be expressed?
Can the simple ones be expressed simply?

• Is this a way of explaining other approaches?
or something for direct use (e.g., as XACML)?

Some reading

• “Setuid Demystified”, by Chen, Wagner, and
Dean.

• “Stack Inspection: Theory and Variants”, by
Fournet and Gordon.

• “Understanding Android Security”, by Enck,
Ongtang, and McDaniel.

• My “Logic in Access Control (Tutorial Notes)”
and its references.

