
1

Usable Security

Through Isolation

Collège de France

April 6, 2011

Butler Lampson

Microsoft Research

6 April 2011 Lampson:

6 April 2011 Lampson: 2

Usable Security: Things Are Really Bad

 Users don’t know how to think about security

 User experience is terrible

 Lots of incomprehensible choices

▬ Just say ―OK‖

 A few examples:
▬ Windows Vista User Account Control

▬ Windows root certificate store

▬ User interface for access control on files

▬ Password phishing

▬ Client certificates for SSL

▬ Signed or encrypted email

 In general, more secure = less usable

The Best is the Enemy of the Good

 Security is fractal

 Each part is as complex as the whole

 There are always more things to worry about

▬ See Mitnick’s Art of Deception, ch. 16 on social engineering

 Security experts always want more—

 More options : There’s always a plausible scenario

 More defenses: There’s always a plausible threat

 Users just want to do their work

 If it’s not simple, they will ignore it or work around it

 If you force them, less useful work will get done

6 April 2011 Lampson: 3

Usable Security Is About Economics

 Security is about risk management, not an absolute

 There’s benefit, and there’s cost
▬ We don’t measure either one

▬ Compare credit cards: fraud detection, CCVs, chip-and-PIN

▬ The cost is not mostly in budgeted dollars
 If you want security, you must be prepared for inconvenience.

—General B. W. Chidlaw, 12 Dec. 1954

 Tight security → no security

 Sloppy users are doing the right thing
 With today’s poor usability, the cost of security is high

 And the benefits of better security are quite low

 Providers have no incentive for usable security
 They mostly just want to avoid bad publicity

6 April 2011 Lampson: 4

What Has Worked?

 Worked = gotten wide adoption

 SSL

 Passwords

 Firewalls

 Security life cycle

 Safe languages

6 April 2011 Lampson: 5

Technical Context

 Security is about
 Secrecy Who knows it?

 Integrity Who changed it?

 Availability Is it working?

 Accountability Who is to blame?

 Privacy is about controlling personal information

 What is known—very hard

 How it is used—mainly by regulation

 Two faces of security: Policy vs. bugs

 Policy: user’s or org’s rules for security / privacy

 Bugs : ways to avoid policy
6 April 2011 Lampson: 6

Assurance and Threats

 Assurance:

 Policy: Computer settings agree with user’s or org’s

rules for security / privacy

 Bugs : There is no way to avoid policy

 Assurance depends on the threat model—

What the adversary can do.

 This depends on the adversary.There’s a range:

 User of downloaded tools

↓
 National intelligence agency

6 April 2011 Lampson: 7

Context: The Access Control Model

1. Isolation boundary limits attacks to channels (no bugs)

2. Access Control for channel traffic

3. Policy management

Resource
/ Object

Guard /
Reference

monitor

RequestAgent /

Principal

Authorization

Audit
log

Authentication

1. Isolation boundary

2. Access control
Policy

3. Policy

SinkSource

Host (CLR, kernel, hardware, VMM, ...)
6 April 2011 Lampson: 8

Context: The Information Flow Model

0. Labeled information
1. Isolation boundary limits flows to channels (no bugs)

2. Flow control based on labels

3. Policy says what flows are allowed

Guard /
Ref mon

Sink

Data

+ Label

Source

Agent /

Principal
0. Labels

Authorization Authentication

Audit
log

Policy
1. Isolation boundaryx

2. Egress controlx

3. Policyx

Transmit

Object /

Resource

Guard /
Ref mon

RequestAgent /

Principal

Authorization

Audit

log

Authentication

1. Isolation boundary

2. Access control
Policy

3. Policy

SinkSource

Access Control:

6 April 2011 Lampson: 9

10

Access Control: The Gold Standard

 Authenticate principals: Who made a request

 Mainly people, but also channels, servers, programs
(encryption implements channels, so key is a principal)

 Authorize access: Who is trusted with a resource

 Group principals or resources, to simplify management
 Can define by a property, e.g. ―type-safe‖ or ―safe for scripting‖

 Audit: Who did what when?

Lock = Authenticate + Authorize

Deter = Authenticate + Audit
Object /

Resource

Guard/

Ref mon
RequestAgent /

Principal

Authorization

Audit

log

Authentication

1. Isolation boundary

2. Access control
Policy

3. Policy

SinkSource

6 April 2011 Lampson: 10

Accountability

 Real world security is about deterrence, not locks

 On the net, can’t find bad guys, so can’t deter them

 Fix? End nodes enforce accountability
 Refuse messages that aren’t accountable enough

▬ or strongly isolate those messages

 Senders are accountable if you can punish them
▬ With dollars, ostracism, firing, jail, ...

 All trust is local

 Need an ecosystem for
 Senders becoming accountable

 Receivers demanding accountability

 Third party intermediaries
6 April 2011 Lampson: 11

Accountability vs. Access Control

 ―In principle‖ there is no difference

but

 Accountability is about punishment, not access

 Hence audit is critical

 But coarse-grained control is OK—fix errors later

6 April 2011 Lampson: 12

 Partition world into two parts:

 Green: More safe/accountable

 Red : Less safe/unaccountable

 Red / green has two aspects, mostly orthogonal

 User experience

 Isolation mechanism

 Green world needs professional management

Freedom with Accountability?

6 April 2011 Lampson: 13

Red | Green

Less

valuable

assets

My Red Computer

N attacks/year on less

valuable assets

More

valuable

assets

More

valuable

assets

My Green Computer

m attacks/year on more

valuable assets

N attacks/yr m attacks/yr(N >> m)

Less trustworthy

Less accountable

entities

More trustworthy

More accountable

entities

Entities
- Programs

- Network hosts

- Administrators

6 April 2011 Lampson: 14

Isolation

Hosts and Channels

 Host runs Execution Environments
(EEs) and channels between EEs

 Host itself is an EE running a
resource manager

 EEs and channels are its resources
 Recursive: It has its own host

▬ Or it’s a physical machine

 If EEs are on different hosts, use
inter-host channel
 Recursive: Host is an EE
 Channel made by hosts’ host, if any

▬ Otherwise, by physical network

 No direct channel? Use middleman
 Host3/EE3 is ―host‖ for the network

▬ It decides if Host1 and Host2 can talk

Host2

EE2EE1

Host1

Host2

EE2EE1

Host1 Host3

EE3

6 April 2011 Lampson: 15

EE1

Host

EE2

Logical Actual

Definition of Isolation

 X is isolated from Y if

Y can’t make X ―go bad‖ (violate its spec)
 Not symmetric; doesn’t imply Y isolated from X

 To be isolated, you must

 Isolate yourself: You handle anything correctly

and/or

 Be isolated: Your host only passes safe stuff to you

6 April 2011 Lampson: 16

Attacks on Isolation

X is isolated from Y if Y can’t make X ―go bad‖ (violate its spec)

Attacks: How can Y make X go bad?

1. Send X some bad input

2. Use an unsafe function provided by X’s host H

3. Make X’s host H go bad

Host

X
1

3

2

Y

6 April 2011 Lampson: 17

Y Attacks X: Details

Attack Source Example

1a. Direct bad input

Y to X on a channel

Inputs trusted

too much

Buffer overflow

Malformed data

Hostile code

1b. Indirect bad input

Y to X via a service

Inputs trusted;

Bugs in service

Y writes a file, X reads it

Y corrupts shared service

2. Use unsafe host

functions

Code injection Debugging, extensibility

(e.g. windows hooks)

3. Make the host

go bad

Bugs in host Y exploits bug in hosted

EE or inter-host channel

Any of the

attack classes

Human error

(often from

complexity)

Bad configuration (admin)

Bugs (developer)

Unsafe choice (end user)

Host

X
1

3

2
Y

6 April 2011 Lampson: 18

Y Attacks X: Defense

Attack Defense

Direct bad input

Y to X on a channel

No channels from Y to X
X can’t receive bad input

X can handle all inputs from Y
No inputs are bad

Indirect bad input

Y to X via a service

Service obeys host isolation policy
If not, host forbids service to have
channels from both X and Y

Assumption: Service is isolated from Y

Assumption: Service access control
policy enforces host’s isolation policy

Unsafe host functions Host forbids Y to use these functions

Make the host go bad Host is isolated from Y

Host

X
1

3

2
Y

6 April 2011 Lampson: 19

Isolation Policy: Labels

 Each EE has a label
 The label is a principal

▬ E.g., Red & Green, Secret & TopSecret, etc.

 Trusted EEs can have more than one

 If client and server have no compatible labels,

then channel isn’t allowed
 Identical labels are compatible

 Some pairs of labels allow flow in one direction only
▬ TopSecret can receive from Secret

▬ Medium Integrity can send to Low Integrity

 Compatibility is decided by policy

6 April 2011 Lampson: 20

Isolation Policy: Safety

 Don’t have to be so conservative:
Not all inputs to X will cause it to go bad
 An input to X is safe if it won’t cause X to go bad

 Y’s spec can says what type of outputs it produces
 Such outputs are its legal outputs

 X’s spec can say what input types are safe for it
 E.g., .txt is safe, something more complex isn’t

 Using safety: H allows Y → X only if
Y’s legal outputs X’s safe inputs
 H can trust Y’s declaration of outputs

▬ H could use Y’s label to decide

 Or, H can use its own database
▬ E.g., IE Zones

 Or, H can add a filter
▬ In a trusted EE

Green
.txt
any

Red.txt

Green
.txt
any

Red
.txt

only

X Y

6 April 2011 Lampson: 21

Isolation Policy vs. AuthZ Policy

 Isolation Policy

 Non-discretionary

 Interpreted and enforced

by the Host

 Objective:

▬ Allow/disallow

creation/use of channels

based on EE attributes

 Access Control Policy

 Discretionary

 Interpreted and enforced

by the resource manager

 Objective:

▬ Allow/disallow

creation/use of resources

based upon principal

attributes

Isolation Policy is authorization policy

It is the authorization policy of the host

This pattern is repeated at every layer of host

6 April 2011 Lampson: 22

Switch Based Isolation

Network

Work Machine Play Machine

Switch

Most Trusted

Trusted

Least Trusted Firewall
Network

Attack Surface

6 April 2011 Lampson: 23

VMM Isolation

 VMM emulates multiple physical machines

 Separate virtual disks

 Communication over virtual network

 Virtual firewall in host
Most Trusted

Trusted

Least Trusted

Attack Surface:
Remote desktop, network

connectivity, VMM

APIs, Device

Virtualization…Shared VMM

Admin VM Work VM Play VM

Remote

Desktop

Kernel Kernel Kernel

Session/App Session/App Session/App

Device

Virtualization

Music

Sharing App

Lampson: 24

Browser / CLR Isolation

 Isolation mechanism in widespread use today – most
secure because we’ve invested so much

 ―Applications‖ (web pages) have very limited access to
local resources. File access by user selection.

 Functionality could be expanded, but not practical for
―full blown‖ applications

Attack Surface: APIs
exposed to the sandbox;
shared cookie state (cross-
site scripting)

Shared Kernel

Admin

Process

Other Site

AppDomain

Tax Site

AppDomain

Shared Account / Shared Session

Shared IE Process

Note: Session and
Account surfaces no
longer exposed

Most Trusted

Trusted

Least Trusted Lampson: 25

Defense in Depth

Unless there are bugs that line up at multiple levels, the

bugs are not exploitable.

Most Trusted

Trusted

Least Trusted

Sandbox

Account

VMM

Shared VMM

Admin VM Work VM Play VM

Remote

Desktop

Kernel
Kernel Kernel

Session/App Work Session Play Session

Play

Sandbox

Device

Virtualization

6 April 2011 Lampson: 26

Conclusions

 Things are really bad for usable security & privacy

 Need to focus on essentials, not on frills

 KISS: Keep It Simple, Stupid

 Isolation gives you:

 Simple policy: Labels + safe inputs

 Protection against bugs

 Need isolation at every level of host

 Including the physical machine

 There are many ways to implement it

6 April 2011 Lampson: 27

