
1

Usable Security

Through Isolation

Collège de France

April 6, 2011

Butler Lampson

Microsoft Research

6 April 2011 Lampson:

6 April 2011 Lampson: 2

Usable Security: Things Are Really Bad

 Users don’t know how to think about security

 User experience is terrible

 Lots of incomprehensible choices

▬ Just say ―OK‖

 A few examples:
▬ Windows Vista User Account Control

▬ Windows root certificate store

▬ User interface for access control on files

▬ Password phishing

▬ Client certificates for SSL

▬ Signed or encrypted email

 In general, more secure = less usable

The Best is the Enemy of the Good

 Security is fractal

 Each part is as complex as the whole

 There are always more things to worry about

▬ See Mitnick’s Art of Deception, ch. 16 on social engineering

 Security experts always want more—

 More options : There’s always a plausible scenario

 More defenses: There’s always a plausible threat

 Users just want to do their work

 If it’s not simple, they will ignore it or work around it

 If you force them, less useful work will get done

6 April 2011 Lampson: 3

Usable Security Is About Economics

 Security is about risk management, not an absolute

 There’s benefit, and there’s cost
▬ We don’t measure either one

▬ Compare credit cards: fraud detection, CCVs, chip-and-PIN

▬ The cost is not mostly in budgeted dollars
 If you want security, you must be prepared for inconvenience.

—General B. W. Chidlaw, 12 Dec. 1954

 Tight security → no security

 Sloppy users are doing the right thing
 With today’s poor usability, the cost of security is high

 And the benefits of better security are quite low

 Providers have no incentive for usable security
 They mostly just want to avoid bad publicity

6 April 2011 Lampson: 4

What Has Worked?

 Worked = gotten wide adoption

 SSL

 Passwords

 Firewalls

 Security life cycle

 Safe languages

6 April 2011 Lampson: 5

Technical Context

 Security is about
 Secrecy Who knows it?

 Integrity Who changed it?

 Availability Is it working?

 Accountability Who is to blame?

 Privacy is about controlling personal information

 What is known—very hard

 How it is used—mainly by regulation

 Two faces of security: Policy vs. bugs

 Policy: user’s or org’s rules for security / privacy

 Bugs : ways to avoid policy
6 April 2011 Lampson: 6

Assurance and Threats

 Assurance:

 Policy: Computer settings agree with user’s or org’s

rules for security / privacy

 Bugs : There is no way to avoid policy

 Assurance depends on the threat model—

What the adversary can do.

 This depends on the adversary.There’s a range:

 User of downloaded tools

↓
 National intelligence agency

6 April 2011 Lampson: 7

Context: The Access Control Model

1. Isolation boundary limits attacks to channels (no bugs)

2. Access Control for channel traffic

3. Policy management

Resource
/ Object

Guard /
Reference

monitor

RequestAgent /

Principal

Authorization

Audit
log

Authentication

1. Isolation boundary

2. Access control
Policy

3. Policy

SinkSource

Host (CLR, kernel, hardware, VMM, ...)
6 April 2011 Lampson: 8

Context: The Information Flow Model

0. Labeled information
1. Isolation boundary limits flows to channels (no bugs)

2. Flow control based on labels

3. Policy says what flows are allowed

Guard /
Ref mon

Sink

Data

+ Label

Source

Agent /

Principal
0. Labels

Authorization Authentication

Audit
log

Policy
1. Isolation boundaryx

2. Egress controlx

3. Policyx

Transmit

Object /

Resource

Guard /
Ref mon

RequestAgent /

Principal

Authorization

Audit

log

Authentication

1. Isolation boundary

2. Access control
Policy

3. Policy

SinkSource

Access Control:

6 April 2011 Lampson: 9

10

Access Control: The Gold Standard

 Authenticate principals: Who made a request

 Mainly people, but also channels, servers, programs
(encryption implements channels, so key is a principal)

 Authorize access: Who is trusted with a resource

 Group principals or resources, to simplify management
 Can define by a property, e.g. ―type-safe‖ or ―safe for scripting‖

 Audit: Who did what when?

Lock = Authenticate + Authorize

Deter = Authenticate + Audit
Object /

Resource

Guard/

Ref mon
RequestAgent /

Principal

Authorization

Audit

log

Authentication

1. Isolation boundary

2. Access control
Policy

3. Policy

SinkSource

6 April 2011 Lampson: 10

Accountability

 Real world security is about deterrence, not locks

 On the net, can’t find bad guys, so can’t deter them

 Fix? End nodes enforce accountability
 Refuse messages that aren’t accountable enough

▬ or strongly isolate those messages

 Senders are accountable if you can punish them
▬ With dollars, ostracism, firing, jail, ...

 All trust is local

 Need an ecosystem for
 Senders becoming accountable

 Receivers demanding accountability

 Third party intermediaries
6 April 2011 Lampson: 11

Accountability vs. Access Control

 ―In principle‖ there is no difference

but

 Accountability is about punishment, not access

 Hence audit is critical

 But coarse-grained control is OK—fix errors later

6 April 2011 Lampson: 12

 Partition world into two parts:

 Green: More safe/accountable

 Red : Less safe/unaccountable

 Red / green has two aspects, mostly orthogonal

 User experience

 Isolation mechanism

 Green world needs professional management

Freedom with Accountability?

6 April 2011 Lampson: 13

Red | Green

Less

valuable

assets

My Red Computer

N attacks/year on less

valuable assets

More

valuable

assets

More

valuable

assets

My Green Computer

m attacks/year on more

valuable assets

N attacks/yr m attacks/yr(N >> m)

Less trustworthy

Less accountable

entities

More trustworthy

More accountable

entities

Entities
- Programs

- Network hosts

- Administrators

6 April 2011 Lampson: 14

Isolation

Hosts and Channels

 Host runs Execution Environments
(EEs) and channels between EEs

 Host itself is an EE running a
resource manager

 EEs and channels are its resources
 Recursive: It has its own host

▬ Or it’s a physical machine

 If EEs are on different hosts, use
inter-host channel
 Recursive: Host is an EE
 Channel made by hosts’ host, if any

▬ Otherwise, by physical network

 No direct channel? Use middleman
 Host3/EE3 is ―host‖ for the network

▬ It decides if Host1 and Host2 can talk

Host2

EE2EE1

Host1

Host2

EE2EE1

Host1 Host3

EE3

6 April 2011 Lampson: 15

EE1

Host

EE2

Logical Actual

Definition of Isolation

 X is isolated from Y if

Y can’t make X ―go bad‖ (violate its spec)
 Not symmetric; doesn’t imply Y isolated from X

 To be isolated, you must

 Isolate yourself: You handle anything correctly

and/or

 Be isolated: Your host only passes safe stuff to you

6 April 2011 Lampson: 16

Attacks on Isolation

X is isolated from Y if Y can’t make X ―go bad‖ (violate its spec)

Attacks: How can Y make X go bad?

1. Send X some bad input

2. Use an unsafe function provided by X’s host H

3. Make X’s host H go bad

Host

X
1

3

2

Y

6 April 2011 Lampson: 17

Y Attacks X: Details

Attack Source Example

1a. Direct bad input

Y to X on a channel

Inputs trusted

too much

Buffer overflow

Malformed data

Hostile code

1b. Indirect bad input

Y to X via a service

Inputs trusted;

Bugs in service

Y writes a file, X reads it

Y corrupts shared service

2. Use unsafe host

functions

Code injection Debugging, extensibility

(e.g. windows hooks)

3. Make the host

go bad

Bugs in host Y exploits bug in hosted

EE or inter-host channel

Any of the

attack classes

Human error

(often from

complexity)

Bad configuration (admin)

Bugs (developer)

Unsafe choice (end user)

Host

X
1

3

2
Y

6 April 2011 Lampson: 18

Y Attacks X: Defense

Attack Defense

Direct bad input

Y to X on a channel

No channels from Y to X
X can’t receive bad input

X can handle all inputs from Y
No inputs are bad

Indirect bad input

Y to X via a service

Service obeys host isolation policy
If not, host forbids service to have
channels from both X and Y

Assumption: Service is isolated from Y

Assumption: Service access control
policy enforces host’s isolation policy

Unsafe host functions Host forbids Y to use these functions

Make the host go bad Host is isolated from Y

Host

X
1

3

2
Y

6 April 2011 Lampson: 19

Isolation Policy: Labels

 Each EE has a label
 The label is a principal

▬ E.g., Red & Green, Secret & TopSecret, etc.

 Trusted EEs can have more than one

 If client and server have no compatible labels,

then channel isn’t allowed
 Identical labels are compatible

 Some pairs of labels allow flow in one direction only
▬ TopSecret can receive from Secret

▬ Medium Integrity can send to Low Integrity

 Compatibility is decided by policy

6 April 2011 Lampson: 20

Isolation Policy: Safety

 Don’t have to be so conservative:
Not all inputs to X will cause it to go bad
 An input to X is safe if it won’t cause X to go bad

 Y’s spec can says what type of outputs it produces
 Such outputs are its legal outputs

 X’s spec can say what input types are safe for it
 E.g., .txt is safe, something more complex isn’t

 Using safety: H allows Y → X only if
Y’s legal outputs  X’s safe inputs
 H can trust Y’s declaration of outputs

▬ H could use Y’s label to decide

 Or, H can use its own database
▬ E.g., IE Zones

 Or, H can add a filter
▬ In a trusted EE

Green
.txt
any

Red.txt

Green
.txt
any

Red
.txt

only

X Y

6 April 2011 Lampson: 21

Isolation Policy vs. AuthZ Policy

 Isolation Policy

 Non-discretionary

 Interpreted and enforced

by the Host

 Objective:

▬ Allow/disallow

creation/use of channels

based on EE attributes

 Access Control Policy

 Discretionary

 Interpreted and enforced

by the resource manager

 Objective:

▬ Allow/disallow

creation/use of resources

based upon principal

attributes

Isolation Policy is authorization policy

It is the authorization policy of the host

This pattern is repeated at every layer of host

6 April 2011 Lampson: 22

Switch Based Isolation

Network

Work Machine Play Machine

Switch

Most Trusted

Trusted

Least Trusted Firewall
Network

Attack Surface

6 April 2011 Lampson: 23

VMM Isolation

 VMM emulates multiple physical machines

 Separate virtual disks

 Communication over virtual network

 Virtual firewall in host
Most Trusted

Trusted

Least Trusted

Attack Surface:
Remote desktop, network

connectivity, VMM

APIs, Device

Virtualization…Shared VMM

Admin VM Work VM Play VM

Remote

Desktop

Kernel Kernel Kernel

Session/App Session/App Session/App

Device

Virtualization

Music

Sharing App

Lampson: 24

Browser / CLR Isolation

 Isolation mechanism in widespread use today – most
secure because we’ve invested so much

 ―Applications‖ (web pages) have very limited access to
local resources. File access by user selection.

 Functionality could be expanded, but not practical for
―full blown‖ applications

Attack Surface: APIs
exposed to the sandbox;
shared cookie state (cross-
site scripting)

Shared Kernel

Admin

Process

Other Site

AppDomain

Tax Site

AppDomain

Shared Account / Shared Session

Shared IE Process

Note: Session and
Account surfaces no
longer exposed

Most Trusted

Trusted

Least Trusted Lampson: 25

Defense in Depth

Unless there are bugs that line up at multiple levels, the

bugs are not exploitable.

Most Trusted

Trusted

Least Trusted

Sandbox

Account

VMM

Shared VMM

Admin VM Work VM Play VM

Remote

Desktop

Kernel
Kernel Kernel

Session/App Work Session Play Session

Play

Sandbox

Device

Virtualization

6 April 2011 Lampson: 26

Conclusions

 Things are really bad for usable security & privacy

 Need to focus on essentials, not on frills

 KISS: Keep It Simple, Stupid

 Isolation gives you:

 Simple policy: Labels + safe inputs

 Protection against bugs

 Need isolation at every level of host

 Including the physical machine

 There are many ways to implement it

6 April 2011 Lampson: 27

