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Security protocols 

• Security protocols are concerned with 
properties such as authenticity and secrecy. 

– Primary examples are protocols (like SSL) that 
establish communication channels. 

– Other examples include protocols for electronic 
voting and commerce. 

• In distributed systems, security protocols 
invariably rely on cryptography. 



Authentication protocols 
(or channel-establishment protocols) 



Authentication protocols 

There are many authentication protocols. 

They typically involve: 

• two principals (hosts, users, …), 

• secrets (possibly shared, usually keys), 

• cryptography (shared-key or public-key), 

• trusted servers, 

• proofs of timeliness (nonces, timestamps). 
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A closer look: the WMF Protocol 
  

A B 

S 1. A, encrypt(KAS,(TA, B, K))   2. encrypt(KBS,(TS, A, K)) 

TA, TS are timestamps. 
Here encrypt is symmetric encryption. It may include authentication. 

3. communication of payloads  
     under the new session key K 



Questions 

• What assumptions are we making? 

• Does the protocol work? 

• Can we do better? 



Assumptions: communication 

We assume that an intruder can interpose a 
computer in all communication paths, and thus 
can alter or copy parts of messages, replay 
messages, or emit false material. While this 
may seem an extreme view, it is the only safe 
one when designing authentication protocols. 

                             (Needham and Schroeder, 1978) 

 
This view is sadly realistic, at least for the Internet. 

It partly explains the use of timestamps in protocols. 



Assumptions: end-point security 

    We also assume that each principal has a 
secure environment in which to compute, 
such as is provided by a personal computer or 
would be by a secure shared operating 
system.       (Needham and Schroeder, 1978) 

 
In fact, end-points are not secure monoliths. 

E.g., Web 2.0 gadgets in mashups may not be trusted, and 
communicate with small protocols. 



No single protocol will do... 

We may want: 
• few messages, 
• little encryption, 
• little trust of other machines, 
• human users (with limited memory or smart-cards), 
• asynchronous checking (for storage and e-mail), 
• different cryptosystems, 
• little server state, 
• one-way or two-way authentication, 
• client anonymity. 
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A WMF variant with a nonce 
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Another authentication protocol 
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As usual, K can then be used for encrypting and MACing payloads. 

3. new session key K, signed, 
    encrypted under B’s public key 
    (plus certificates) 



A closer look: the Denning-Sacco 
public-key protocol 

  

S 

A B 

1. A, B 

2. public-key  
    certificates  
    for A and B 

3. encrypt(PKB, sign(SKA, (K, T))) 

SKA   A’s secret key 
PKB    B’s public key 
K       new symmetric key 
T       a timestamp 
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An attack 

  

A C B 

S 

A, C 
   … 

A, B 
    … 

3. encrypt(PKC , sign(SKA, (K, T))) 3. encrypt(PKB , sign(SKA, (K, T))) 

So C has K, but B believes  
that K is shared with A! 



Correction [with Needham] 

  

A B 

S 

3. encrypt(PKB, sign(SKA, (“K is a good key for A and B at time T”))) 

Every message should say what it means. 
 
If the identity of a principal is important for the 
meaning of a message, it is prudent to mention 
the principal’s name explicitly in the message. 
 
Encryption is not synonymous with security. 
 

A, B 
 … 



Other subtleties and flaws 

There are many! 

• even in recent years, 

• in both design and 
implementation. 
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Yet another protocol 
  

A B 
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1. A, B 

2. public-key  
    certificates  
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As usual, K can then be used for encrypting and MACing payloads. 
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Does this 
work??? 



An informal analysis 

If A follows the protocol then she is assured 
that the shared key [. . . ] is not know to anyone 
except B (though A does not have the 
assurance that B knows the key). And 
analogously for B.                           (H. Krawczyk) 
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An attack? 

  

A C B 

S 

A, C 
   … 

A, B 
    … 

A and B (not C) get K. 
A may believe that K is shared with C. 
B knows that K is shared with A. 

3. encrypt(PKC, KA) 3. encrypt(PKB, KA) 

4. encrypt(PKA, KB) 4. encrypt(PKA, KB) 



An attack? (cont.) 

 

 

So: 

• A should not give credit to C for messages 
received under K. 

• C has responsibility for messages to A under K.  

• If A sends confidential data to C under K, then 
B will see it, but C could divulge it to B anyway. 

A and B (not C) get K. 
A may believe that K is shared with C. 
B knows that K is shared with A. 



Perspectives 

Authentication may yield responsibility, credit, 
or both. 

• Responsibility is essential. 

– It is the basis of access control. 

– It is compatible with delegation. If C says that B 
speaks for C, then B does speak for C. 

• Credit may be optional. 

– It can be left for higher-level communication. 

– But establishing credit may contribute to 
robustness.      (Exercise: strengthen the protocol!) 



An important modern example:  
Secure Socket Layer (SSL) 

• SSL relies on TCP/IP and aims to provide 
secure end-to-end communication. 

• SSL actually includes two layers of protocols: 

– SSL Record Protocol for transport, 

–higher protocols for negotiation and alerts. 

TCP/IP 

Record Protocol 

Handshake 
Protocol 

(negotiation) 

Change Cipher 
Spec Protocol 
(just one message) 

Alert 
Protocol 

(e.g., for errors) 

Applications 
such as HTTPS 



The handshake 

 

 

 

1. Establish security capabilities 

2. Authenticate server 

3. Authenticate client 

4. Finish 

Establish 
security 
capabilities 

Client Server 

Key exchange 

Change 
cipher suite, 
finish handshake 



A piece of the handshake  
(simplified) 

A 
(client) 

B 
(server) 

1. NA 

2. NB 

3. encrypt(PKB, K), sign(SKA, hash(A, B, NA, NB, K)) 

Exercise: What happens if various fields (e.g., A, B, …) are  
omitted in the hash of the third message? (as they were originally!) 

K: the premaster secret from which a master secret is derived, 
and later encryption and MAC keys are also derived. 



Sessions and connections 

Peer certificate X509.v3 certificate of the peer (may be null) 

Compression method Compression algorithm 

Cipher spec Cryptographic algorithms and parameters 

Master secret 48-byte secret shared by client and server 

Is resumable? Can new connections start with session? 

Server and client random Byte sequences chosen by server and client 

Server and client write MAC secrets Keys used in MAC operations 

Server and client write keys Encryption keys 

Initialization vectors Initialization vectors for CBC encryption 

Sequence numbers Maintained by each party for each direction 

SSL session: a client-server association. 

SSL connection: a stream within a session. 



SSL Record Protocol 

Application data (e.g., Web page contents) 

Fragment Fragment 

Compressed fragment 

Compressed fragment MAC 

Encrypted fragment + MAC 

Encrypted fragment + MAC Header 

… 



SSL status 

• Evolution and deployment:  

– various improvements in the TLS protocol, 

– widespread deployment,  

– but typically without client authentication 
  so users still rely on passwords, etc., 

– and with users checking server certificates 
  so users are victims of phishing attacks. 
  
  Still a challenge:  strong mutual authentication 
        in practice. 



SSL status (cont.) 

• Analysis:  

– several informal analyses; 

– automated formal proofs of secrecy and integrity 
properties (for big fragments); 

– some vulnerabilities found over time. 
 
  Still a challenge:  a complete analysis,  
        of actual implementations,  
        from solid cryptographic assumptions. 

 

 

 



Other concerns 

• SSL slows down servers. 

• SSL breaks caching and complicates virtual 
hosting (multiple identities for the same host). 

• SSL protects data in transit, but not at rest. 



From SSL to SSL Double Layer 

tous les fichiers étaient encryptés – un code 
sérieux, SSL Double Layer, 128 bits. Bref, j’ai 
rien pu faire, je l’ai envoyé à la BEFTI. C’était 
quoi le type, un parano ? 
                                 (de La carte et le territoire de M. Houellebecq) 

 

There is no SSL Double Layer (not yet), and it 
would probably not be a storage technique. 

However, secure storage and publication do rely 
on some of the same ideas as security protocols. 



An example: XML access control 
[Miklau and Suciu] 

• A policy language 

• A mapping of policies to annotated XML 
documents called protections 

• A cryptographic implementation of 
protections in terms of bitstrings 

 
 
 

Policy 
XML 

document 

1010111010 

01010110101 

10101110110 

11101000101 

+ 

Protection 



A protection 

  
<hosp> 

<nurse> <phys> 

<pat id> <pat id> 
<admin> 

K1 

K4 

K3 

K2 

true 

K3 

Intended semantics: Access to the information in a node requires 
possession of the keys that guard the node.  
(Here the label “true” means no key.) 
Implementation:  By symmetric encryptions. 



A protection with disjunction () 

  
<hosp> 

<nurse> <phys> 

<pat id> <pat id> 
<admin> 

K1 

K3  K4 

K3 

K2 

true 

K3 

Intended semantics: Access to the information in a node requires 
possession of a combination of keys that satisfy the formulas that 
guard the node.  



A protection with conjunction () 

  
<hosp> 

<nurse> <phys> 

<pat id> <pat id> 
<admin> 

K1 

K2  K4 

K3 

K2 

true 

K3 

Intended semantics: Access to the information in a node requires 
possession of a combination of keys that satisfy the formulas that 
guard the node.  



Implementing disjunctions 

  
<hosp> 

<nurse> 

<phys> 

<pat id> <pat id> 

<admin> 

or 

K6 

K1 

true 

K4 
K6 

K3 K3 

true 

K2 

 is implemented using auxiliary keys,  
so that only atomic formulas guard each node. 

K3 

K6 



Implementing conjunctions 

  
<hosp> 

<nurse> 

<phys> 

<pat id> <pat id> 

<admin> 

and 

K6 K5
1 K5

2 

K1 

true 

K2 K5 
K6 

K3 K3 

true 

K2 

K4 

 is implemented using secret sharing,  
so that only atomic formulas guard each node. 

K5
1  K5

2 = K5 



Protocols for  
secure multiparty computation 



Other security protocols 

• Payment 

• Voting 

• Multi-party computation 

• … 



Secure multiparty computation 

The problem: 

How can A1, …, An,  
who know M1, …, Mn respectively,  
cooperate to compute functions of M1, …, Mn 

and share the results 
without revealing their inputs or anything else? 
 

We assume that A1, …, An don’t lie on M1, …, Mn.   



“Secure Multiparty Computation System” 

A1 An 

M1 Mn f1(M1, …, Mn) fn(M1, …, Mn) 

… 

In general, each participant may learn the 
output of a different function f1 , …, fn: 

The problem is trivial with a trusted third party.  
The difficulty is to solve it otherwise! 



Examples 

• A and B are two millionaires who each know 
their own wealth. 

• They want to know who is richer. 

 [Yao, 1982] 



Examples (cont.) 

• Each of A1, …, An wants to buy or sell sugar 
beets, and knows how much it is willing to 
pay/charge for various quantities. 

•  Collectively, A1, …, An want to compute the 
“market clearing price”. 

[Bogetoft et al., 2008] 



Examples (cont.) 

• A and B each knows their own location. 

• They want to know if they are in the same 
location (or how far they are). 

 [Narayanan et al., 2011] 



A physical, in-person protocol for 
checking equality in a small set [Ajtai] 



A physical, in-person protocol for 
checking equality in a small set [Ajtai] 



A physical, in-person protocol for 
checking equality in a small set [Ajtai] 

1. Label cups with the names 
of the locations, say Paris, 
Rome, and Madrid. 

2. A and B each put an 
envelope with a piece of 
paper that says “yes” or 
“no” in each cup. 

3. They remove the labels. 
4. They shuffle the cups. 
5. They open the envelopes. 
They are in the same location 
if and only if one of the cups 
contains two “yeses”. 

 

Paris Rome Madrid 



A physical, in-person protocol for 
checking equality in a small set [Ajtai] 

1. Label cups with the names 
of the locations, say Paris, 
Rome, and Madrid. 

2. A and B each put an 
envelope with a piece of 
paper that says “yes” or 
“no” in each cup. 

3. They remove the labels. 
4. They shuffle the cups. 
5. They open the envelopes. 
They are in the same location 
if and only if one of the cups 
contains two “yeses”. 

 

Paris Rome Madrid 



A physical, in-person protocol for 
checking equality in a small set [Ajtai] 

1. Label cups with the names 
of the locations, say Paris, 
Rome, and Madrid. 

2. A and B each put an 
envelope with a piece of 
paper that says “yes” or 
“no” in each cup. 

3. They remove the labels. 
4. They shuffle the cups. 
5. They open the envelopes. 
They are in the same location 
if and only if one of the cups 
contains two “yeses”. 

 



A physical, in-person protocol for 
checking equality in a small set [Ajtai] 

1. Label cups with the names 
of the locations, say Paris, 
Rome, and Madrid. 

2. A and B each put an 
envelope with a piece of 
paper that says “yes” or 
“no” in each cup. 

3. They remove the labels. 
4. They shuffle the cups. 
5. They open the envelopes. 
They are in the same location 
if and only if one of the cups 
contains two “yeses”. 

 



no 

A physical, in-person protocol for 
checking equality in a small set [Ajtai] 

1. Label cups with the names 
of the locations, say Paris, 
Rome, and Madrid. 

2. A and B each put an 
envelope with a piece of 
paper that says “yes” or 
“no” in each cup. 

3. They remove the labels. 
4. They shuffle the cups. 
5. They open the envelopes. 
They are in the same location 
if and only if one of the cups 
contains two “yeses”. 

 

yes 

no yes 

no 

no 



no 

A physical, in-person protocol for 
checking equality in a small set [Ajtai] 

1. Label cups with the names 
of the locations, say Paris, 
Rome, and Madrid. 

2. A and B each put an 
envelope with a piece of 
paper that says “yes” or 
“no” in each cup. 

3. They remove the labels. 
4. They shuffle the cups. 
5. They open the envelopes. 
They are in the same location 
if and only if one of the cups 
contains two “yeses”. 

 

yes 

no yes 

no 

no 



A cryptographic protocol 
[Narayanan et al.] 

Recall Diffie-Hellman: 

• Let p be a prime and g a generator of Zp
* 

(chosen with a little care). 

• A invents x and publishes gx.  
B invents y and publishes gy. 

– x and y serve as secret keys. 

– gx and gy serve as public keys. 

All this is “mod p” implicitly. 



A cryptographic protocol (cont.) 
[Narayanan et al.] 

• A (at location a) invents r and publishes  
(gr, gx(a + r)).   

• B (at location b) invents s and t and publishes  
(grsgt, gx(a + r)sgx(t - sb)), i.e., (grs + t, gx(s(a - b) + (rs + t))) 

• From this and x, A can compute gx(rs + t) and 
then gxs(a - b). 

• The locations are equal iff gxs(a - b) = 1. 

(Cf. “ElGamal encryption”.) 



Perspectives 

• There are many clever, surprising protocols! 

• Some of them explore trade-offs between 
generality and efficiency. 

• There are (still) few actual applications for 
cryptographic multi-party computation. 



Some reading 

• “Using Encryption for Authentication in Large 
Networks of Computers”, by Needham and 
Schroeder. 

• The TLS protocol, as an example, from 
http://datatracker.ietf.org/wg/tls/. 

• “Comparing Information Without Leaking It”, 
by Fagin, Naor, and Winkler. 

 

http://datatracker.ietf.org/wg/tls/
http://datatracker.ietf.org/wg/tls/

