
Protocols

Chaire Informatique et sciences numériques
Collège de France, cours du 11 mai 2011

Security protocols

• Security protocols are concerned with
properties such as authenticity and secrecy.

– Primary examples are protocols (like SSL) that
establish communication channels.

– Other examples include protocols for electronic
voting and commerce.

• In distributed systems, security protocols
invariably rely on cryptography.

Authentication protocols
(or channel-establishment protocols)

Authentication protocols

There are many authentication protocols.

They typically involve:

• two principals (hosts, users, …),

• secrets (possibly shared, usually keys),

• cryptography (shared-key or public-key),

• trusted servers,

• proofs of timeliness (nonces, timestamps).

A typical authentication protocol

A B

S

A typical authentication protocol

A B

S
1. new session key K
for A and B,
under a long-term key KAS

between A and S

A typical authentication protocol

A B

S
1. new session key K
for A and B,
under a long-term key KAS

between A and S

2. the session key K
under a long-term key KBS
between B and S

A typical authentication protocol

A B

S
1. new session key K
for A and B,
under a long-term key KAS

between A and S

3. communication of payloads
 under the session key K

2. the session key K
under a long-term key KBS
between B and S

A closer look: the WMF Protocol

A B

S 1. A, encrypt(KAS,(TA, B, K)) 2. encrypt(KBS,(TS, A, K))

TA, TS are timestamps.
Here encrypt is symmetric encryption. It may include authentication.

3. communication of payloads
 under the new session key K

Questions

• What assumptions are we making?

• Does the protocol work?

• Can we do better?

Assumptions: communication

We assume that an intruder can interpose a
computer in all communication paths, and thus
can alter or copy parts of messages, replay
messages, or emit false material. While this
may seem an extreme view, it is the only safe
one when designing authentication protocols.

 (Needham and Schroeder, 1978)

This view is sadly realistic, at least for the Internet.

It partly explains the use of timestamps in protocols.

Assumptions: end-point security

 We also assume that each principal has a
secure environment in which to compute,
such as is provided by a personal computer or
would be by a secure shared operating
system. (Needham and Schroeder, 1978)

In fact, end-points are not secure monoliths.

E.g., Web 2.0 gadgets in mashups may not be trusted, and
communicate with small protocols.

No single protocol will do...

We may want:
• few messages,
• little encryption,
• little trust of other machines,
• human users (with limited memory or smart-cards),
• asynchronous checking (for storage and e-mail),
• different cryptosystems,
• little server state,
• one-way or two-way authentication,
• client anonymity.

A WMF variant with a nonce

A B

S

1. hello

A WMF variant with a nonce

A B

S

1. hello

2. N

N are is a nonce: a quantity generated for
the purpose of being fresh.

A WMF variant with a nonce

A B

S 3. A, encrypt(KAS,(N, B, K))

1. hello

2. N

N are is a nonce: a quantity generated for
the purpose of being fresh.

A WMF variant with a nonce

A B

S 3. A, encrypt(KAS,(N, B, K)) 4. encrypt(KBS,(N, A, K))

1. hello

2. N

N are is a nonce: a quantity generated for
the purpose of being fresh.

A WMF variant with a nonce

A B

S 3. A, encrypt(KAS,(N, B, K)) 4. encrypt(KBS,(N, A, K))

5. communication of payloads
 under the new session key K

1. hello

2. N

Another authentication protocol

A B

S

Another authentication protocol

A B

S

1. A, B

Another authentication protocol

A B

S

1. A, B

2. public-key
 certificates
 for A and B

Another authentication protocol

A B

S

1. A, B

2. public-key
 certificates
 for A and B

3. new session key K, signed,
 encrypted under B’s public key
 (plus certificates)

Another authentication protocol

A B

S

1. A, B

2. public-key
 certificates
 for A and B

As usual, K can then be used for encrypting and MACing payloads.

3. new session key K, signed,
 encrypted under B’s public key
 (plus certificates)

A closer look: the Denning-Sacco
public-key protocol

S

A B

1. A, B

2. public-key
 certificates
 for A and B

3. encrypt(PKB, sign(SKA, (K, T)))

SKA A’s secret key
PKB B’s public key
K new symmetric key
T a timestamp

An attack

A C B

S

An attack

A C B

S

A, C
 …

An attack

3. encrypt(PKC , sign(SKA, (K, T)))

A C B

S

A, C
 …

An attack

A C B

S

A, C
 …

A, B
 …

3. encrypt(PKC , sign(SKA, (K, T)))

An attack

A C B

S

A, C
 …

A, B
 …

3. encrypt(PKC , sign(SKA, (K, T))) 3. encrypt(PKB , sign(SKA, (K, T)))

An attack

A C B

S

A, C
 …

A, B
 …

3. encrypt(PKC , sign(SKA, (K, T))) 3. encrypt(PKB , sign(SKA, (K, T)))

So C has K, but B believes
that K is shared with A!

Correction [with Needham]

A B

S

3. encrypt(PKB, sign(SKA, (“K is a good key for A and B at time T”)))

Every message should say what it means.

If the identity of a principal is important for the
meaning of a message, it is prudent to mention
the principal’s name explicitly in the message.

Encryption is not synonymous with security.

A, B
 …

Other subtleties and flaws

There are many!

• even in recent years,

• in both design and
implementation.

Yet another protocol

A B

S

1. A, B

2. public-key
 certificates
 for A and B

As usual, K can then be used for encrypting and MACing payloads.

3. encrypt(PKB, KA)

4. encrypt(PKA, KB)

PKA A’s public key
PKB B’s public key
KA a fresh secret from A
KB a fresh secret from B
K = KA  KB
 a new symmetric key

Yet another protocol

A B

S

1. A, B

2. public-key
 certificates
 for A and B

As usual, K can then be used for encrypting and MACing payloads.

3. encrypt(PKB, KA)

4. encrypt(PKA, KB)

PKA A’s public key
PKB B’s public key
KA a fresh secret from A
KB a fresh secret from B
K = KA  KB
 a new symmetric key

Does this
work???

An informal analysis

If A follows the protocol then she is assured
that the shared key [. . .] is not know to anyone
except B (though A does not have the
assurance that B knows the key). And
analogously for B. (H. Krawczyk)

An attack?

A C B

S

A, C
 …

A, B
 …

3. encrypt(PKC, KA) 3. encrypt(PKB, KA)

4. encrypt(PKA, KB) 4. encrypt(PKA, KB)

An attack?

A C B

S

A, C
 …

A, B
 …

A and B (not C) get K.
A may believe that K is shared with C.
B knows that K is shared with A.

3. encrypt(PKC, KA) 3. encrypt(PKB, KA)

4. encrypt(PKA, KB) 4. encrypt(PKA, KB)

An attack? (cont.)

So:

• A should not give credit to C for messages
received under K.

• C has responsibility for messages to A under K.

• If A sends confidential data to C under K, then
B will see it, but C could divulge it to B anyway.

A and B (not C) get K.
A may believe that K is shared with C.
B knows that K is shared with A.

Perspectives

Authentication may yield responsibility, credit,
or both.

• Responsibility is essential.

– It is the basis of access control.

– It is compatible with delegation. If C says that B
speaks for C, then B does speak for C.

• Credit may be optional.

– It can be left for higher-level communication.

– But establishing credit may contribute to
robustness. (Exercise: strengthen the protocol!)

An important modern example:
Secure Socket Layer (SSL)

• SSL relies on TCP/IP and aims to provide
secure end-to-end communication.

• SSL actually includes two layers of protocols:

– SSL Record Protocol for transport,

–higher protocols for negotiation and alerts.

TCP/IP

Record Protocol

Handshake
Protocol

(negotiation)

Change Cipher
Spec Protocol
(just one message)

Alert
Protocol

(e.g., for errors)

Applications
such as HTTPS

The handshake

1. Establish security capabilities

2. Authenticate server

3. Authenticate client

4. Finish

Establish
security
capabilities

Client Server

Key exchange

Change
cipher suite,
finish handshake

A piece of the handshake
(simplified)

A
(client)

B
(server)

1. NA

2. NB

3. encrypt(PKB, K), sign(SKA, hash(A, B, NA, NB, K))

Exercise: What happens if various fields (e.g., A, B, …) are
omitted in the hash of the third message? (as they were originally!)

K: the premaster secret from which a master secret is derived,
and later encryption and MAC keys are also derived.

Sessions and connections

Peer certificate X509.v3 certificate of the peer (may be null)

Compression method Compression algorithm

Cipher spec Cryptographic algorithms and parameters

Master secret 48-byte secret shared by client and server

Is resumable? Can new connections start with session?

Server and client random Byte sequences chosen by server and client

Server and client write MAC secrets Keys used in MAC operations

Server and client write keys Encryption keys

Initialization vectors Initialization vectors for CBC encryption

Sequence numbers Maintained by each party for each direction

SSL session: a client-server association.

SSL connection: a stream within a session.

SSL Record Protocol

Application data (e.g., Web page contents)

Fragment Fragment

Compressed fragment

Compressed fragment MAC

Encrypted fragment + MAC

Encrypted fragment + MAC Header

…

SSL status

• Evolution and deployment:

– various improvements in the TLS protocol,

– widespread deployment,

– but typically without client authentication
  so users still rely on passwords, etc.,

– and with users checking server certificates
  so users are victims of phishing attacks.

 Still a challenge: strong mutual authentication
 in practice.

SSL status (cont.)

• Analysis:

– several informal analyses;

– automated formal proofs of secrecy and integrity
properties (for big fragments);

– some vulnerabilities found over time.

 Still a challenge: a complete analysis,
 of actual implementations,
 from solid cryptographic assumptions.

Other concerns

• SSL slows down servers.

• SSL breaks caching and complicates virtual
hosting (multiple identities for the same host).

• SSL protects data in transit, but not at rest.

From SSL to SSL Double Layer

tous les fichiers étaient encryptés – un code
sérieux, SSL Double Layer, 128 bits. Bref, j’ai
rien pu faire, je l’ai envoyé à la BEFTI. C’était
quoi le type, un parano ?
 (de La carte et le territoire de M. Houellebecq)

There is no SSL Double Layer (not yet), and it
would probably not be a storage technique.

However, secure storage and publication do rely
on some of the same ideas as security protocols.

An example: XML access control
[Miklau and Suciu]

• A policy language

• A mapping of policies to annotated XML
documents called protections

• A cryptographic implementation of
protections in terms of bitstrings

Policy
XML

document

1010111010

01010110101

10101110110

11101000101

+

Protection

A protection

<hosp>

<nurse> <phys>

<pat id> <pat id>
<admin>

K1

K4

K3

K2

true

K3

Intended semantics: Access to the information in a node requires
possession of the keys that guard the node.
(Here the label “true” means no key.)
Implementation: By symmetric encryptions.

A protection with disjunction ()

<hosp>

<nurse> <phys>

<pat id> <pat id>
<admin>

K1

K3  K4

K3

K2

true

K3

Intended semantics: Access to the information in a node requires
possession of a combination of keys that satisfy the formulas that
guard the node.

A protection with conjunction ()

<hosp>

<nurse> <phys>

<pat id> <pat id>
<admin>

K1

K2  K4

K3

K2

true

K3

Intended semantics: Access to the information in a node requires
possession of a combination of keys that satisfy the formulas that
guard the node.

Implementing disjunctions

<hosp>

<nurse>

<phys>

<pat id> <pat id>

<admin>

or

K6

K1

true

K4
K6

K3 K3

true

K2

 is implemented using auxiliary keys,
so that only atomic formulas guard each node.

K3

K6

Implementing conjunctions

<hosp>

<nurse>

<phys>

<pat id> <pat id>

<admin>

and

K6 K5
1 K5

2

K1

true

K2 K5
K6

K3 K3

true

K2

K4

 is implemented using secret sharing,
so that only atomic formulas guard each node.

K5
1  K5

2 = K5

Protocols for
secure multiparty computation

Other security protocols

• Payment

• Voting

• Multi-party computation

• …

Secure multiparty computation

The problem:

How can A1, …, An,
who know M1, …, Mn respectively,
cooperate to compute functions of M1, …, Mn

and share the results
without revealing their inputs or anything else?

We assume that A1, …, An don’t lie on M1, …, Mn.

“Secure Multiparty Computation System”

A1 An

M1 Mn f1(M1, …, Mn) fn(M1, …, Mn)

…

In general, each participant may learn the
output of a different function f1 , …, fn:

The problem is trivial with a trusted third party.
The difficulty is to solve it otherwise!

Examples

• A and B are two millionaires who each know
their own wealth.

• They want to know who is richer.

 [Yao, 1982]

Examples (cont.)

• Each of A1, …, An wants to buy or sell sugar
beets, and knows how much it is willing to
pay/charge for various quantities.

• Collectively, A1, …, An want to compute the
“market clearing price”.

[Bogetoft et al., 2008]

Examples (cont.)

• A and B each knows their own location.

• They want to know if they are in the same
location (or how far they are).

 [Narayanan et al., 2011]

A physical, in-person protocol for
checking equality in a small set [Ajtai]

A physical, in-person protocol for
checking equality in a small set [Ajtai]

A physical, in-person protocol for
checking equality in a small set [Ajtai]

1. Label cups with the names
of the locations, say Paris,
Rome, and Madrid.

2. A and B each put an
envelope with a piece of
paper that says “yes” or
“no” in each cup.

3. They remove the labels.
4. They shuffle the cups.
5. They open the envelopes.
They are in the same location
if and only if one of the cups
contains two “yeses”.

Paris Rome Madrid

A physical, in-person protocol for
checking equality in a small set [Ajtai]

1. Label cups with the names
of the locations, say Paris,
Rome, and Madrid.

2. A and B each put an
envelope with a piece of
paper that says “yes” or
“no” in each cup.

3. They remove the labels.
4. They shuffle the cups.
5. They open the envelopes.
They are in the same location
if and only if one of the cups
contains two “yeses”.

Paris Rome Madrid

A physical, in-person protocol for
checking equality in a small set [Ajtai]

1. Label cups with the names
of the locations, say Paris,
Rome, and Madrid.

2. A and B each put an
envelope with a piece of
paper that says “yes” or
“no” in each cup.

3. They remove the labels.
4. They shuffle the cups.
5. They open the envelopes.
They are in the same location
if and only if one of the cups
contains two “yeses”.

A physical, in-person protocol for
checking equality in a small set [Ajtai]

1. Label cups with the names
of the locations, say Paris,
Rome, and Madrid.

2. A and B each put an
envelope with a piece of
paper that says “yes” or
“no” in each cup.

3. They remove the labels.
4. They shuffle the cups.
5. They open the envelopes.
They are in the same location
if and only if one of the cups
contains two “yeses”.

no

A physical, in-person protocol for
checking equality in a small set [Ajtai]

1. Label cups with the names
of the locations, say Paris,
Rome, and Madrid.

2. A and B each put an
envelope with a piece of
paper that says “yes” or
“no” in each cup.

3. They remove the labels.
4. They shuffle the cups.
5. They open the envelopes.
They are in the same location
if and only if one of the cups
contains two “yeses”.

yes

no yes

no

no

no

A physical, in-person protocol for
checking equality in a small set [Ajtai]

1. Label cups with the names
of the locations, say Paris,
Rome, and Madrid.

2. A and B each put an
envelope with a piece of
paper that says “yes” or
“no” in each cup.

3. They remove the labels.
4. They shuffle the cups.
5. They open the envelopes.
They are in the same location
if and only if one of the cups
contains two “yeses”.

yes

no yes

no

no

A cryptographic protocol
[Narayanan et al.]

Recall Diffie-Hellman:

• Let p be a prime and g a generator of Zp
*

(chosen with a little care).

• A invents x and publishes gx.
B invents y and publishes gy.

– x and y serve as secret keys.

– gx and gy serve as public keys.

All this is “mod p” implicitly.

A cryptographic protocol (cont.)
[Narayanan et al.]

• A (at location a) invents r and publishes
(gr, gx(a + r)).

• B (at location b) invents s and t and publishes
(grsgt, gx(a + r)sgx(t - sb)), i.e., (grs + t, gx(s(a - b) + (rs + t)))

• From this and x, A can compute gx(rs + t) and
then gxs(a - b).

• The locations are equal iff gxs(a - b) = 1.

(Cf. “ElGamal encryption”.)

Perspectives

• There are many clever, surprising protocols!

• Some of them explore trade-offs between
generality and efficiency.

• There are (still) few actual applications for
cryptographic multi-party computation.

Some reading

• “Using Encryption for Authentication in Large
Networks of Computers”, by Needham and
Schroeder.

• The TLS protocol, as an example, from
http://datatracker.ietf.org/wg/tls/.

• “Comparing Information Without Leaking It”,
by Fagin, Naor, and Winkler.

http://datatracker.ietf.org/wg/tls/
http://datatracker.ietf.org/wg/tls/

