Assurance and
formal models

Chaire Informatique et sciences numériques
College de France, cours du 18 mai 2011

Assurance

Specification and implementation
(review)

For any system:

* Specification: What is it supposed to do?
* Implementation: How does it do it?

* Correctness: Does it really work?

In security:

e Specification: Policy

* Implementation: Mechanism

* Correctness: Assurance

Assurance vs. security by obscurity

* |n many systems, obscurity (not correctness) is
a goal. E.g.,
— spam filters,
— censorship systems,

— computer games,
— military systemes.

e Obscurity may sometimes help, at least for a
while, in combination with other precautions.

The enemy knows the system.

[C. Shannon

-or example, motivated attac
earn how cryptosystems wor

ers typically can
k.

t is much easier to protect only the keys.

(See Kerckhoff’s principle in cryptography.)

—> The security of a system cannot depend on
secrecy of specification or implementation.

—> Policies must be appropriate,
mechanisms must actually be correct.

Assurance

Some strategies and techniques:
e open design (maybe open source?),
e specifications and proofs,
* testing,

* processes,

e certification,

* economy of mechanism, and
the trusted computing base (TCB).

The TCB

Trusted Computing Base: the collection of
hardware, software, and set-up information on
which the security of the system depends.

Also:

* The part of the system that has to be right.

* The part of the system that may appear to
violate its security policy.

The TCB (cont.)

Ideally:

In practice:

The TCB should be
precisely defined,
small, and simple.

The TCB should be
specified, tested,
and verified.

e Often, lots of

dubious code is put
in the TCB.

 The TCB gets big and
not trustworthy.

chet news

March 31, 2010 9:50 AM PDT

Vietnamese dissidents targeted by botnet
attacks

by Tom Krazit

Malware that was disguised as a popular Vietnamese-language
keyboard driver for Windows users was used to create a botnet,
according to blog posts from Google's Neel Mehta and McAfee
Chief Technical Officer George Kurtz. That botnet was then used

to target blogs rallying agamst a bauxite mining project in Vietman,
employing DDoS (Distributed Denial of Service) attacks to shut
down those blogs, according to the posts.

Formal models and proofs
(in particular for security protocols)

What is different about security (1)

* Wish for some guarantees despite lucky,
powerful, and persistent attackers.

— Even if the attacker controls the network.
— Even if a session key is compromised.
— Even if an insider is dishonest.

What is different about security (2)

e Attacks that exploit the limitations of models.
— Binary-level exploits despite “secure” languages.
— Power analysis on “secure” cryptography. | e

* Doing without full functional correctness: |

Message authenticity and secrecy,
not message correctness.

These characteristics impact models and proofs.

The WMF protocol (reminder)

1. A, encrypt(K ,,(T,, B, K)) ‘ 2. encrypt(Kgs, (T, A, K))

3. communication of payloads
under the new session key K

T,, T, are timestamps.
Here encrypt is symmetric encryption. It may include authentication.

What the messages actually mean

1) Kis a good key for A and B around time T,

2) A says that Kis a good key for A and B
around time T

Understanding the meaning of messages is
central to designing and analyzing protocols.

Even imprecise, informal meanings can be
extremely helpful.

A first analysis in a logic of
authentication (late 1980s)

Replace messages with formal representations of
their meanings.

Set out assumptions:

Reason with a few general rules.
Conclude:

Comments on
a logic of authentication

Served for finding many ¢ Lacked a clear link with

subtleties and errors. operational models of
Explained protocols. protocols or clear
Highlighted cryptographic
assumptions and justification

(but see PCL).

conclusions.
* Required more

creativity as one moved
away from the classic
key-exchange protocols.

Used by many people,
including protocol
designers.

Some other approaches

(not a complete or orthogonal list)

Informal but rigorous frameworks based on
probabilities and complexity theory.

Theorem proving, e.g., with Coq or Isabelle.
Finite-state model checking, e.g., with FDR.

Type systems and other static analyses for
programming languages (and process calculi).

Some observations

* Most security protocols have ambiguities,
subtleties, and flaws.

 Many of these have to do with cryptography.

 Many of these don’t have to do with the
details of cryptography.

= For design, implementation, and analysis,
abstract views of cryptography are practical.

Other low-hanging fruit @

An example of a mundane ambiguity:

The simplest fix is to require that a SSL
implementation receive a change cipher spec
message before accepting a finished message.
(Indeed, there is some language in the
specification which could be interpreted to
mandate this restriction, although it is not
entirely clear.) [. . .] at least one
implementation has fallen for this pitfall.
(Wagner and Schneier)

The WMF protocol,
more abstractly

‘ 2. the channel ¢

on a long-term channel ¢
between Band S

1. new channel ¢
for A and B,

on a long-term channel ¢,
between A and S

3. communication of payloads
on new private channel ¢
(e.g., Asends M to B on c)

Towards a language for protocols

* The pi calculus is a general, simple language
for concurrent processes that communicate by
sending messages on named channels.

* |tincludes an operator v(“new”) for
generating fresh channels.

(ve)(EM) | c(x)....)
“(new ¢)(send M on c and, in parallel, receive x on c...)”
— Here two processes run in parallel.
— One sends M to the other on a fresh channel c.
— x is a bound variable. @ M on channel ¢ @

M, N =
|
| n
P, Q) .=
nil
M(N).P
M (x).P
(vn)P
PlQ
| P

Syntax

terms (i.e., data)
variable

namme

processes (i.e., programs)

nil process (may be omitted)
sending

receiving

restriction (“new”)
parallelism

replication

An abstract version of the protocol

AM) = (vc)ecag(c).c{M)

“With new c, send con c,¢, send M on c.”

An abstract version of the protocol

AM) = (vc)ecag(c).c{M)

N
|

cas(x).csp(x)

o : : ”
Receive x on c ¢, forward it on cgp.

An abstract version of the protocol

AM) = (vc)ecag(c).c{M)

N
|

cas(x).csp(x)

Sy
|

csp(x).x(y).nil

o H H ”
Recelve x on Cgp, receive y on x.

An abstract version of the protocol

AM) = (vc)cag(c).c(M)
S = cas(z).csplx)
B = cgp(x).x(y).nil

P(M) = (veas)(vess)(S | A(M) | B)

“With new c,qand cgp,
run S, A(M), and B in parallel.”

Secrecy as equivalence

* Secrecy properties can be phrased as
equivalences between processes.

— For example, P(M) and P(N) are equivalent,
for all M and V.

Secrecy as equivalence

* Secrecy properties can be phrased as
equivalences between processes.

— For example, P(M) and P(N) are equivalent,

for all M and V. _
Here, many notions of
“equivalence” will do.]

Secrecy as equivalence

* Secrecy properties can be phrased as
equivalences between processes.

— For example, P(M) and P(N) are equivalent,

for all M and N. [—’\ _
Here, many notions of]
* Other security properties can also |_®auvaence willdo.

be presented and proved formally,
as equivalences or as properties of executions.

Extending the pi calculus

* |In the pure pi calculus, we can easily represent

systems like M on channel ¢ @

e Butitis much harder (or impossible) to
represent the use of cryptography, as in:

encrypt(k, M) on channel e
(AR ©

Work with Blanchet, Fournet, Gordon, and others

The applied pi calculus

We add function symbols, as in:

(v k)(...encrypt(k,M)...decrypt(k,z)...)

— Here the operator v generates a key.

— Encryption and decryption are function symbols,
with equations.

decrypt(encrypt(z,y),z) = y

Expressiveness

e Representing protocols such as WMF is just “a
matter of programming”.

* For example, we may write:
(vk).¢{encrypt(k,0))

Here, a process reveals a term that uses a
fresh name k without revealing £ itself.

— This does not arise in the pure pi calculus.
— It is a source of expressiveness and complications.

M,N

Syntax for terms

terms
variable
name

function application

where fis a function
symbol of arity &

(and optionally also with
conditions on types)

P, Q)

Syntax for processes

nal

M(N).P

M(x).P

(vn)P

PIQ

|P

of M = N then P else ()

processes
nil process
sending
receiving
restriction
parallelism
replication

conditional

Equality

Equality is defined by an equational theory
(basically, a set of equations). For example:

* For pairs:
fst(pair(z,y)) =z
snd(pair(z,y)) =y

Equality

Equality is defined by an equational theory
(basically, a set of equations). For example:

* For pairs:
fst(pair(z,y)) =z
snd(pair(z,y)) =y

* For symmetric encryption:

decrypt(encrypt(z,y),x) = vy

Equality (cont.)

* For asymmetric encryption:

adecrypt(sk(x), aencrypt(pk(z),y)) = vy

Equality (cont.)

* For asymmetric encryption:
adecrypt(sk(x), aencrypt(pk(z),y)) = vy
and optionally with other equations, e.g.,

pdecrypt(z, pencrypt(y,2)) = pencrypt(y, pdecrypt(z, z))

Equality (cont.)

* For asymmetric encryption:
adecrypt(sk(x), aencrypt(pk(z),y)) = vy
and optionally with other equations, e.g.,
pdecrypt(z, pencrypt(y,2)) = pencrypt(y, pdecrypt(z, z))
* For probabilistic encryption:

adecrypt(sk(z), aencrypt(pk(z), v, 2)) = y

Other examples

MACs

Digital signatures

One-way hash functions

XOR

Exponentiation as used in Diffie-Hellman
Errors

Semantics: reduction

c(M).P|c(x).QQ — P|QIM/x]
where Q| M /z] is the result of
replacing x with M in @)

if M = M then P else () — P

if M = N then P else) — (@)
it Ml #N

(In addition, some other trivial rules allow rearranging processes,
e.g., by commutativity and associativity of parallel composition.)

Equivalence

* Two processes Pand () are testing equivalent
if no context R can distinguish them.

— For a given channeln, P | R may output onn

if and only if
(| R may output on n.

— The context R may represent an attacker.

Equivalence

* Two processes Pand () are testing equivalent
if no context R can distinguish them.

— For a given channeln, P | R may output onn
if and only if
()| R may output on n.

— The context R may represent an attacker.

* This equivalence is coarse enough that, for
example, it relates the two processes:

(vk).c{encrypt(k,0)) (vk).c{encrypt(k,1))

ProVerif demo
(Bruno Blanchet)

Analyzing reference

implementations (symbolically)
4 N

Reference
protocol
implementation Security
(in F#) goals
/" Other) Crypto, Net Crypto, Net
implementations Concrete libraries Symbolic libraries
<€ Verify (ProVerif)
\ Run Run Attack
‘1’ No Attack 1
Interoperability Symbolic Symbolic
testing debugging verification

Work at MSR Cambridge and MSR-INRIA Joint Centre [Bhargavan et al.]

Four current research directions

Models, proof techniques, and tools
(e.g., type systems).

2. Analysis of particular protocols.

3. Analysis of actual implementations.

Relating and combining symbolic and
computational approaches.

Some reading

* The chapter on assurance and evaluation in
Anderson’s book.

My “Security Protocols: Principles and Calculi
(Tutorial Notes)”, and its references.

* “Modular Verification of Security Protocol

Code by Typing”, by Bhargavan, Fournet, and
Gordon.

. G323 0

Source gallica.bnf.fr / Bibliotheque nationale de France

Fin

