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Assurance 



Specification and implementation 
(review) 

For any system: 

• Specification: What is it supposed to do? 

• Implementation: How does it do it? 

• Correctness: Does it really work? 

In security: 

• Specification: Policy 

• Implementation: Mechanism 

• Correctness: Assurance 



Assurance vs. security by obscurity 

• In many systems, obscurity (not correctness) is 
a goal. E.g., 

– spam filters, 

– censorship systems, 

– computer games, 

– military systems. 

• Obscurity may sometimes help, at least for a 
while, in combination with other precautions. 



The enemy knows the system.  
[C. Shannon] 

For example, motivated attackers typically can 
learn how cryptosystems work.  
It is much easier to protect only the keys. 
(See Kerckhoff’s principle in cryptography.) 

 

 The security of a system cannot depend on  
  secrecy of specification or implementation. 

 Policies must be appropriate,  
  mechanisms must actually be correct. 

 



Assurance 

Some strategies and techniques: 

• open design (maybe open source?), 

• specifications and proofs, 

• testing, 

• processes, 

• certification, 

• economy of mechanism, and  
the trusted computing base (TCB). 



The TCB 

Trusted Computing Base: the collection of 
hardware, software, and set-up information on 
which the security of the system depends.  
 
Also: 

• The part of the system that has to be right. 

• The part of the system that may appear to 
violate its security policy. 



The TCB (cont.) 

Ideally:  

• The TCB should be 
precisely defined, 
small, and simple. 

• The TCB should be 
specified, tested, 
and verified.  

In practice: 

• Often, lots of 
dubious code is put 
in the TCB.  

• The TCB gets big and 
not trustworthy. 





Formal models and proofs 
(in particular for security protocols) 



What is different about security (1) 

• Wish for some guarantees despite lucky, 
powerful, and persistent attackers. 

– Even if the attacker controls the network. 

– Even if a session key is compromised. 

– Even if an insider is dishonest. 

– … 



What is different about security (2) 

• Attacks that exploit the limitations of models. 

– Binary-level exploits despite “secure” languages. 

– Power analysis on “secure” cryptography. 

– … 

• Doing without full functional correctness: 

   Message authenticity and secrecy,  
not message correctness. 

 

These characteristics impact models and proofs. 



The WMF protocol (reminder) 

  

A B 

S 1. A, encrypt(KAS,(TA, B, K))   2. encrypt(KBS,(TS, A, K)) 

TA, TS are timestamps. 
Here encrypt is symmetric encryption. It may include authentication. 

3. communication of payloads  
     under the new session key K 



What the messages actually mean 

1)   K is a good key for A and B around time TA 

2)   A says that K is a good key for A and B 
   around time TS 

 

Understanding the meaning of messages is 
central to designing and analyzing protocols. 

Even imprecise, informal meanings can be 
extremely helpful. 



A first analysis in a logic of 
authentication (late 1980s) 

• Replace messages with formal representations of 
their meanings. 

• Set out assumptions: 
S believes (KAS is a good key for A and S) 
S believes fresh(TA) 
B believes (A controls (K is a good key for A and B)) 
… 

• Reason with a few general rules. 

• Conclude: 
 A believes (K is a good key for A and B)  
 B believes (K is a good key for A and B) 



Comments on  
a logic of authentication 

• Served for finding many 
subtleties and errors. 

• Explained protocols. 

• Highlighted 
assumptions and 
conclusions. 

• Used by many people, 
including protocol 
designers. 

• Lacked a clear link with 
operational models of 
protocols or clear 
cryptographic 
justification  
(but see PCL). 

• Required more 
creativity as one moved 
away from the classic 
key-exchange protocols. 



Some other approaches 
(not a complete or orthogonal list) 

• Informal but rigorous frameworks based on 
probabilities and complexity theory. 

• Theorem proving, e.g., with Coq or Isabelle. 

• Finite-state model checking, e.g., with FDR. 

• Type systems and other static analyses for 
programming languages (and process calculi). 



Some observations 

• Most security protocols have ambiguities, 
subtleties, and flaws. 

• Many of these have to do with cryptography. 

• Many of these don’t have to do with the 
details of cryptography. 

  For design, implementation, and analysis,  
       abstract views of cryptography are practical. 



Other low-hanging fruit 

An example of a mundane ambiguity: 

The simplest fix is to require that a SSL 
implementation receive a change cipher spec 
message before accepting a finished message. 
(Indeed, there is some language in the 
specification which could be interpreted to 
mandate this restriction, although it is not 
entirely clear.) [. . . ] at least one 
implementation has fallen for this pitfall.  
                                              (Wagner and Schneier) 



The WMF protocol,  
more abstractly 

A B 

S 
1. new channel c  
for A and B,  
on a long-term channel cAS  

between A and S 

3. communication of payloads  
     on new private channel c 
     (e.g., A sends M to B on c) 

2. the channel c 
on a long-term channel cBS 
between B and S 



Towards a language for protocols 

• The pi calculus is a general, simple language 
for concurrent processes that communicate by 
sending messages on named channels. 

• It includes an operator  (“new”) for 
generating fresh channels. 

 

 
– Here two processes run in parallel. 

– One sends M to the other on a fresh channel c.  

– x is a bound variable. 

 

 

 “(new c )(send M on c and, in parallel, receive x on c…)” 



Syntax 

  



An abstract version of the protocol 

  

                                            “With new c, send c on cAS, send M on c.” 



An abstract version of the protocol 

  

                                            “Receive x on cAS, forward it on cSB.” 



An abstract version of the protocol 

  

                                            “Receive x on cSB, receive y on x.” 



An abstract version of the protocol 

  

                                            “With new cAS and cSB,  
                                    run S, A(M), and B in parallel.” 



Secrecy as equivalence 

• Secrecy properties can be phrased as 
equivalences between processes.  

– For example, P(M) and P(N) are equivalent,  
for all M and N. 
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Secrecy as equivalence 

• Secrecy properties can be phrased as 
equivalences between processes.  

– For example, P(M) and P(N) are equivalent,  
for all M and N. 

• Other security properties can also  
be presented and proved formally,  
as equivalences or as properties of executions. 

 

Here, many notions of 
“equivalence” will do. 



Extending the pi calculus 

• In the pure pi calculus, we can easily represent 
systems like 
 

 

• But it is much harder (or impossible) to 
represent the use of cryptography, as in: 
 

 

 

 Work with Blanchet, Fournet, Gordon, and others 



The applied pi calculus 

We add function symbols, as in: 
 
 

– Here the operator   generates a key. 

– Encryption and decryption are function symbols, 
with equations. 
 



Expressiveness 

• Representing protocols such as WMF is just “a 
matter of programming”.  

• For example, we may write: 
 
 
Here, a process reveals a term that uses a 
fresh name k without revealing k itself. 

– This does not arise in the pure pi calculus. 

– It is a source of expressiveness and complications. 



Syntax for terms 

where f is a function  
symbol of arity k 
(and optionally also with  
conditions on types) 

  



Syntax for processes 

  



Equality 

Equality is defined by an equational theory 
(basically, a set of equations). For example: 

• For pairs: 

 

 



Equality 

Equality is defined by an equational theory 
(basically, a set of equations). For example: 

• For pairs: 

 

 

• For symmetric encryption: 
 
 



Equality (cont.) 

• For asymmetric encryption: 
 
 
 



Equality (cont.) 

• For asymmetric encryption: 
 
 
and optionally with other equations, e.g., 
 
 



Equality (cont.) 

• For asymmetric encryption: 
 
 
and optionally with other equations, e.g., 
 
 

• For probabilistic encryption: 



Other examples 

• MACs 

• Digital signatures 

• One-way hash functions 

• XOR 

• Exponentiation as used in Diffie-Hellman 

• Errors 

• … 



Semantics: reduction 

  

(In addition, some other trivial rules allow rearranging processes,  
e.g., by commutativity and associativity of parallel composition.) 



Equivalence 

• Two processes P and Q are testing equivalent 
if no context R can distinguish them. 

– For a given channel n,   P | R may output on n  
                                              if and only if 
                                          Q| R may output on n. 

– The context R may represent an attacker. 



Equivalence 

• Two processes P and Q are testing equivalent 
if no context R can distinguish them. 

– For a given channel n,   P | R may output on n  
                                              if and only if 
                                          Q| R may output on n. 

– The context R may represent an attacker. 

• This equivalence is coarse enough that, for 
example, it relates the two processes: 



ProVerif demo 
(Bruno Blanchet) 



Analyzing reference 
implementations (symbolically) 

  

Run Run 

Reference 
protocol 

implementation 
(in F#) 

  Crypto, Net 
   Concrete libraries 

  Crypto, Net 
   Symbolic libraries 

Interoperability  
testing 

  Compile   Compile 

Other 
implementations  

Symbolic  
debugging 

No Attack 

 Verify (ProVerif) 

Symbolic  
verification 

Security  
goals 

Attack 

Work at MSR Cambridge and MSR-INRIA Joint Centre [Bhargavan et al.] 



Four current research directions 

1. Models, proof techniques, and tools  
(e.g., type systems). 

2. Analysis of particular protocols. 

3. Analysis of actual implementations. 

4. Relating and combining symbolic and 
computational approaches. 



Some reading 

• The chapter on assurance and evaluation in 
Anderson’s book. 

• My “Security Protocols: Principles and Calculi 
(Tutorial Notes)”, and its references. 

• “Modular Verification of Security Protocol 
Code by Typing”, by  Bhargavan, Fournet, and 
Gordon. 



Fin 


