
Assurance and
formal models

Chaire Informatique et sciences numériques
Collège de France, cours du 18 mai 2011

Assurance

Specification and implementation
(review)

For any system:

• Specification: What is it supposed to do?

• Implementation: How does it do it?

• Correctness: Does it really work?

In security:

• Specification: Policy

• Implementation: Mechanism

• Correctness: Assurance

Assurance vs. security by obscurity

• In many systems, obscurity (not correctness) is
a goal. E.g.,

– spam filters,

– censorship systems,

– computer games,

– military systems.

• Obscurity may sometimes help, at least for a
while, in combination with other precautions.

The enemy knows the system.
[C. Shannon]

For example, motivated attackers typically can
learn how cryptosystems work.
It is much easier to protect only the keys.
(See Kerckhoff’s principle in cryptography.)

 The security of a system cannot depend on
 secrecy of specification or implementation.

 Policies must be appropriate,
 mechanisms must actually be correct.

Assurance

Some strategies and techniques:

• open design (maybe open source?),

• specifications and proofs,

• testing,

• processes,

• certification,

• economy of mechanism, and
the trusted computing base (TCB).

The TCB

Trusted Computing Base: the collection of
hardware, software, and set-up information on
which the security of the system depends.

Also:

• The part of the system that has to be right.

• The part of the system that may appear to
violate its security policy.

The TCB (cont.)

Ideally:

• The TCB should be
precisely defined,
small, and simple.

• The TCB should be
specified, tested,
and verified.

In practice:

• Often, lots of
dubious code is put
in the TCB.

• The TCB gets big and
not trustworthy.

Formal models and proofs
(in particular for security protocols)

What is different about security (1)

• Wish for some guarantees despite lucky,
powerful, and persistent attackers.

– Even if the attacker controls the network.

– Even if a session key is compromised.

– Even if an insider is dishonest.

– …

What is different about security (2)

• Attacks that exploit the limitations of models.

– Binary-level exploits despite “secure” languages.

– Power analysis on “secure” cryptography.

– …

• Doing without full functional correctness:

 Message authenticity and secrecy,
not message correctness.

These characteristics impact models and proofs.

The WMF protocol (reminder)

A B

S 1. A, encrypt(KAS,(TA, B, K)) 2. encrypt(KBS,(TS, A, K))

TA, TS are timestamps.
Here encrypt is symmetric encryption. It may include authentication.

3. communication of payloads
 under the new session key K

What the messages actually mean

1) K is a good key for A and B around time TA

2) A says that K is a good key for A and B
 around time TS

Understanding the meaning of messages is
central to designing and analyzing protocols.

Even imprecise, informal meanings can be
extremely helpful.

A first analysis in a logic of
authentication (late 1980s)

• Replace messages with formal representations of
their meanings.

• Set out assumptions:
S believes (KAS is a good key for A and S)
S believes fresh(TA)
B believes (A controls (K is a good key for A and B))
…

• Reason with a few general rules.

• Conclude:
 A believes (K is a good key for A and B)
 B believes (K is a good key for A and B)

Comments on
a logic of authentication

• Served for finding many
subtleties and errors.

• Explained protocols.

• Highlighted
assumptions and
conclusions.

• Used by many people,
including protocol
designers.

• Lacked a clear link with
operational models of
protocols or clear
cryptographic
justification
(but see PCL).

• Required more
creativity as one moved
away from the classic
key-exchange protocols.

Some other approaches
(not a complete or orthogonal list)

• Informal but rigorous frameworks based on
probabilities and complexity theory.

• Theorem proving, e.g., with Coq or Isabelle.

• Finite-state model checking, e.g., with FDR.

• Type systems and other static analyses for
programming languages (and process calculi).

Some observations

• Most security protocols have ambiguities,
subtleties, and flaws.

• Many of these have to do with cryptography.

• Many of these don’t have to do with the
details of cryptography.

  For design, implementation, and analysis,
 abstract views of cryptography are practical.

Other low-hanging fruit

An example of a mundane ambiguity:

The simplest fix is to require that a SSL
implementation receive a change cipher spec
message before accepting a finished message.
(Indeed, there is some language in the
specification which could be interpreted to
mandate this restriction, although it is not
entirely clear.) [. . .] at least one
implementation has fallen for this pitfall.
 (Wagner and Schneier)

The WMF protocol,
more abstractly

A B

S
1. new channel c
for A and B,
on a long-term channel cAS

between A and S

3. communication of payloads
 on new private channel c
 (e.g., A sends M to B on c)

2. the channel c
on a long-term channel cBS
between B and S

Towards a language for protocols

• The pi calculus is a general, simple language
for concurrent processes that communicate by
sending messages on named channels.

• It includes an operator  (“new”) for
generating fresh channels.

– Here two processes run in parallel.

– One sends M to the other on a fresh channel c.

– x is a bound variable.

 “(new c)(send M on c and, in parallel, receive x on c…)”

Syntax

An abstract version of the protocol

 “With new c, send c on cAS, send M on c.”

An abstract version of the protocol

 “Receive x on cAS, forward it on cSB.”

An abstract version of the protocol

 “Receive x on cSB, receive y on x.”

An abstract version of the protocol

 “With new cAS and cSB,
 run S, A(M), and B in parallel.”

Secrecy as equivalence

• Secrecy properties can be phrased as
equivalences between processes.

– For example, P(M) and P(N) are equivalent,
for all M and N.

Secrecy as equivalence

• Secrecy properties can be phrased as
equivalences between processes.

– For example, P(M) and P(N) are equivalent,
for all M and N.

Here, many notions of
“equivalence” will do.

Secrecy as equivalence

• Secrecy properties can be phrased as
equivalences between processes.

– For example, P(M) and P(N) are equivalent,
for all M and N.

• Other security properties can also
be presented and proved formally,
as equivalences or as properties of executions.

Here, many notions of
“equivalence” will do.

Extending the pi calculus

• In the pure pi calculus, we can easily represent
systems like

• But it is much harder (or impossible) to
represent the use of cryptography, as in:

 Work with Blanchet, Fournet, Gordon, and others

The applied pi calculus

We add function symbols, as in:

– Here the operator  generates a key.

– Encryption and decryption are function symbols,
with equations.

Expressiveness

• Representing protocols such as WMF is just “a
matter of programming”.

• For example, we may write:

Here, a process reveals a term that uses a
fresh name k without revealing k itself.

– This does not arise in the pure pi calculus.

– It is a source of expressiveness and complications.

Syntax for terms

where f is a function
symbol of arity k
(and optionally also with
conditions on types)

Syntax for processes

Equality

Equality is defined by an equational theory
(basically, a set of equations). For example:

• For pairs:

Equality

Equality is defined by an equational theory
(basically, a set of equations). For example:

• For pairs:

• For symmetric encryption:

Equality (cont.)

• For asymmetric encryption:

Equality (cont.)

• For asymmetric encryption:

and optionally with other equations, e.g.,

Equality (cont.)

• For asymmetric encryption:

and optionally with other equations, e.g.,

• For probabilistic encryption:

Other examples

• MACs

• Digital signatures

• One-way hash functions

• XOR

• Exponentiation as used in Diffie-Hellman

• Errors

• …

Semantics: reduction

(In addition, some other trivial rules allow rearranging processes,
e.g., by commutativity and associativity of parallel composition.)

Equivalence

• Two processes P and Q are testing equivalent
if no context R can distinguish them.

– For a given channel n, P | R may output on n
 if and only if
 Q| R may output on n.

– The context R may represent an attacker.

Equivalence

• Two processes P and Q are testing equivalent
if no context R can distinguish them.

– For a given channel n, P | R may output on n
 if and only if
 Q| R may output on n.

– The context R may represent an attacker.

• This equivalence is coarse enough that, for
example, it relates the two processes:

ProVerif demo
(Bruno Blanchet)

Analyzing reference
implementations (symbolically)

Run Run

Reference
protocol

implementation
(in F#)

 Crypto, Net
 Concrete libraries

 Crypto, Net
 Symbolic libraries

Interoperability
testing

 Compile Compile

Other
implementations

Symbolic
debugging

No Attack

 Verify (ProVerif)

Symbolic
verification

Security
goals

Attack

Work at MSR Cambridge and MSR-INRIA Joint Centre [Bhargavan et al.]

Four current research directions

1. Models, proof techniques, and tools
(e.g., type systems).

2. Analysis of particular protocols.

3. Analysis of actual implementations.

4. Relating and combining symbolic and
computational approaches.

Some reading

• The chapter on assurance and evaluation in
Anderson’s book.

• My “Security Protocols: Principles and Calculi
(Tutorial Notes)”, and its references.

• “Modular Verification of Security Protocol
Code by Typing”, by Bhargavan, Fournet, and
Gordon.

Fin

