
Towards
information flow

control

Chaire Informatique et sciences numériques
Collège de France, cours du 30 mars 2011

Mandatory access controls and
security levels

DAC vs. MAC

Discretionary access control

• This is the familiar case.
– E.g., the owner of a file can

make it accessible to anyone.

• This access control is
intrinsically limited in saving
principals from themselves.

• It is hard to enforce system-
wide security.

Mandatory access control

• The system assigns security
attributes (labels) to both
principals and objects.
– E.g., objects may be “work”

or “fun”, and principals may
be “trusted” or “guest”.

• These attributes constrain
accesses. (Discretionary
controls apply in addition.)
– E.g., “guest” principals cannot

modify “work” objects.

MAC (cont.)

• MAC appeared in systems since the 1960s.

• Despite difficulties and disappointments,
it also appears more recently, e.g., in

– Windows Mandatory Integrity Controls, where
there are four levels for principals and objects:

• System integrity (e.g., system services)

• High integrity (e.g., administrative processes)

• Medium integrity (the default)

• Low integrity (e.g., for documents from the Internet)

– SELinux “Security-Enhanced Linux” (richer)

A manifestation: protected view of
files that arrive by e-mail

Applications in protected mode are subject to
various restrictions.
Some of these restrictions are achieved by
running the applications at Low IL.

Multilevel security

• As in the examples, MAC is often associated
with security levels.

• The security levels can pertain to secrecy and
integrity properties in a variety of contexts.

• The levels need not be linearly ordered.

– Often, they form a partial order or a lattice.

– They may in part reflect a compartment structure.

A partial order

High IL

System IL

Low IL

Medium IL

Another partial order

Medium IL

Low IL

System IL

High IL

(Secret,
army+navy)

(Secret,
army)

(TopSecret,
army+navy)

(Secret,
navy)

(TopSecret,
navy)

Another partial order

Unclassified

(TopSecret,
army)

Another partial order

Personal User
Information

Sensitive User
Information

(Sensitive,
Bob)

(Sensitive,
Alice)

(Personal,
Bob)

(Personal,
Alice)

Public

Bell-LaPadula requirements

• No read-up:
a principal at a given security level may not
read an object at a higher security level.

• No write-down:
a principal at a given security level may not
write to an object at a lower security level.

  protects against Trojan horses
 (bad programs or other principals that
 work at high security levels)

Some difficulties: level creep,
declassification, covert channels

Level creep

• Security levels may change over time.

• Security levels tend to creep up.

Level creep

• Security levels may change over time.

• Security levels tend to creep up. E.g.:

– P is a program that may run at any level.

– blog.html is a file of initial level Public,

– AliceDiary.txt is a file of initial level
(Sensitive, Alice).

– P may start at Public and write to
blog.html, then go to (Sensitive, Alice)
and read AliceDiary.txt.

– Afterwards, P can no longer write to
blog.html unless blog.html’s level is
raised to (Sensitive, Alice).

• Security levels may change over time.

• Security levels tend to creep up. E.g.:

– P is a program that may run at any level.

– blog.html is a file of initial level Public,

– AliceDiary.txt is a file of initial level
(Sensitive, Alice).

– P may start at Public and write to
blog.html, then go to (Sensitive, Alice)
and read AliceDiary.txt.

– Afterwards, P can no longer write to
blog.html unless blog.html’s level is
raised to (Sensitive, Alice).

Level creep

Level creep

• Security levels may change over time.

• Security levels tend to creep up. E.g.:

– P is a program that may run at any level.

– blog.html is a file of initial level Public,

– AliceDiary.txt is a file of initial level
(Sensitive, Alice).

– P may start at Public and write to
blog.html, then go to (Sensitive, Alice)
and read AliceDiary.txt.

– Afterwards, P can no longer write to
blog.html unless blog.html’s level is
raised to (Sensitive, Alice).

blog.html

Level creep

• Security levels may change over time.

• Security levels tend to creep up. E.g.:

– P is a program that may run at any level.

– blog.html is a file of initial level Public,

– AliceDiary.txt is a file of initial level
(Sensitive, Alice).

– P may start at Public and write to
blog.html, then go to (Sensitive, Alice)
and read AliceDiary.txt.

– Afterwards, P can no longer write to
blog.html unless blog.html’s level is
raised to (Sensitive, Alice).

AliceDiary.txt

blog.html

Level creep

• Security levels may change over time.

• Security levels tend to creep up. E.g.:

– P is a program that may run at any level.

– blog.html is a file of initial level Public,

– AliceDiary.txt is a file of initial level
(Sensitive, Alice).

– P may start at Public and write to
blog.html, then go to (Sensitive, Alice)
and read AliceDiary.txt.

– Afterwards, P can no longer write to
blog.html unless blog.html’s level is
raised to (Sensitive, Alice).

blog.html

P
AliceDiary.txt

Level creep

• Security levels may change over time.

• Security levels tend to creep up. E.g.:

– P is a program that may run at any level.

– blog.html is a file of initial level Public,

– AliceDiary.txt is a file of initial level
(Sensitive, Alice).

– P may start at Public and write to
blog.html, then go to (Sensitive, Alice)
and read AliceDiary.txt.

– Afterwards, P can no longer write to
blog.html unless blog.html’s level is
raised to (Sensitive, Alice).

P
AliceDiary.txt

blog.html

Declassification

• Reclassification consists in changing the
security attributes. Declassification is the case
in which this is not automatically ok.

• Declassification is needed sometimes.
E.g., the password-checking program reads a
secret database and says yes/no to a user.

Declassification

• Reclassification consists in changing the
security attributes. Declassification is the case
in which this is not automatically ok.

• Declassification is needed sometimes.
E.g., the password-checking program reads a
secret database and says yes/no to a user.

• It is difficult

– because of hidden messages
(in text, in pictures, …)

Declassification

• Reclassification consists in changing the
security attributes. Declassification is the case
in which this is not automatically ok.

• Declassification is needed sometimes.
E.g., the password-checking program reads a
secret database and says yes/no to a user.

• It is difficult

– because of hidden messages
(in text, in pictures, …)

A boat, beneath a sunny sky
Lingering onward dreamily
In an evening of July -
Children three that nestle near,
Eager eye and willing ear,

Declassification

• Reclassification consists in changing the
security attributes. Declassification is the case
in which this is not automatically ok.

• Declassification is needed sometimes.
E.g., the password-checking program reads a
secret database and says yes/no to a user.

• It is difficult

– because of hidden messages
(in text, in pictures, …)

A
L
I
C
E

Declassification

• Reclassification consists in changing the
security attributes. Declassification is the case
in which this is not automatically ok.

• Declassification is needed sometimes.
E.g., the password-checking program reads a
secret database and says yes/no to a user.

• It is difficult

– because of hidden messages
(in text, in pictures, …)

Declassification

• Reclassification consists in changing the
security attributes. Declassification is the case
in which this is not automatically ok.

• Declassification is needed sometimes.
E.g., the password-checking program reads a
secret database and says yes/no to a user.

• It is difficult

– because of hidden messages
(in text, in pictures, …)

Declassification

• Reclassification consists in changing the
security attributes. Declassification is the case
in which this is not automatically ok.

• Declassification is needed sometimes.
E.g., the password-checking program reads a
secret database and says yes/no to a user.

• It is difficult

– because even the act of declassification may
reveal some information

Declassification

• Reclassification consists in changing the
security attributes. Declassification is the case
in which this is not automatically ok.

• Declassification is needed sometimes.
E.g., the password-checking program reads a
secret database and says yes/no to a user.

• It is difficult.

 It is a special process, often manual.

Mutual distrust

Consider a Web service S that
offers information to users
(e.g., advice or ads).
S relies on proprietary
information and user data
(e.g., financial data,
preferences, email, clicks).
What is a reasonable policy?
Who can declassify what?

S Web medicine service

Proprietary knowledge,
user logs, business data, …

Alice Bob

Covert channels

Covert channels are communication channels for which the model
does not account and which were not intended for communication.
E.g., programs may communicate by the use of shared resources:

By varying its ratio of computing to input/output or its paging rate, the
service can transmit information which a concurrently running process
can receive by observing the performance of the system.
 Lampson, 1973

• The “service” may be a Trojan horse, without network access.
• The “concurrently running process” may have a lower level and

send any information that it receives on the network.

Information flow

Information flow security

• Access control, of any kind, is limited to the
defined principals, objects, and operations.

• Instead, information flow control focuses on
the information being protected, end-to-end.

X
Y
Z

U

V

E.g., we may want that U do not depend on Z, that is,
that Z does not interfere with U.

Noninterference: preliminaries

• Consider a system with inputs x1,…,xm and
outputs y1,…,yn.

• Suppose yj = fj(x1,…,xm).

– Extensions deal with infinite computations,
probabilities, nondeterminism, and more.

x1

…

xm

y1

…

yn

Noninterference: independence

• So, suppose yj = fj(x1,…,xm).

• Then yj does not depend on xi if, always (for all
actual values for the inputs),
fj(v1, …, vi, …, vm) = fj(v1, …, vi’, …, vm).

 Secrecy: the value of yj reveals nothing
 about the value of xi.

 Integrity: the value of yj is not affected
 by corruptions in the value of xi.

Noninterference

• Pick some levels (e.g., Public, TopSecret, etc.)
with an order on the levels.

• Assign a level to each input x1,…,xm and to
each output y1,…,yn.

• Noninterference:
An output may depend on inputs of the same
level, or lower levels, but not on other inputs.

– So, e.g., outputs of level Public must not depend
on inputs of level Sensitive User Information.

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok (y2 does not matter)

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok (y2 does not matter)

• y1 = x2

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok (y2 does not matter)

• y1 = x2 not ok

There is an explicit flow of information.

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok (y2 does not matter)

• y1 = x2 not ok

There is an explicit flow of information.

• if x2 is odd then y1 = 1 else y1 = 0

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok (y2 does not matter)

• y1 = x2 not ok

There is an explicit flow of information.

• if x2 is odd then y1 = 1 else y1 = 0 not ok
There is an implicit flow of information.

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok (y2 does not matter)

• y1 = x2 not ok

There is an explicit flow of information.

• if x2 is odd then y1 = 1 else y1 = 0 not ok
There is an implicit flow of information.

• if x2 is odd then y1 = 1 else y1 = 1

Simple examples

• Suppose that Public  Secret.

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok (y2 does not matter)

• y1 = x2 not ok

There is an explicit flow of information.

• if x2 is odd then y1 = 1 else y1 = 0 not ok
There is an implicit flow of information.

• if x2 is odd then y1 = 1 else y1 = 1 ok

Noninterference for integrity

• The definition of noninterference
applies to integrity.

• Intuitively the levels need to be
ordered “upside-down”.
– E.g., so that System IL outputs cannot

depend on Low IL inputs.

Medium IL

Low IL

System IL

High IL

Information flow control for
private data?

Information flow control for
personal information

• Techniques for detecting the use or release of
private data:

– E.g., for Android apps with TaintDroid [Enck et al.].

Information flow is typically not wanted.

• Techniques for analysis of private data:

– In particular, computing aggregates (e.g., number
of sick people in a city) without revealing
information about individuals (e.g., Alice is sick).

Some information flow is useful and expected, so
relaxed notions of noninterference may be needed.

Approaches to analysis of
private data

• Anonymizing data.

• Restricting queries.

• Adding noise to input data or to output.

Often ad hoc, sometimes ineffective.

Approaches to analysis of
private data

• Anonymizing data.

• Restricting queries.

• Adding noise to input data or to output.

Often ad hoc, sometimes ineffective.

A framework for adding noise to
outputs [Dwork, McSherry, Nissim, and Smith]

• Algorithm K (e.g., counting of sick people)
gives  differential privacy if, for all DB and
DB’ that differ in at most one record, for all v,
Prob[K(DB) = v]  Prob[K(DB’) = v]  e

A framework for adding noise to
outputs [Dwork, McSherry, Nissim, and Smith]

• Algorithm K (e.g., counting of sick people)
gives  differential privacy if, for all DB and
DB’ that differ in at most one record, for all v,
Prob[K(DB) = v]  Prob[K(DB’) = v]  e

• Differential privacy can be achieved by adding
noise to outputs.

A framework for adding noise to
outputs [Dwork, McSherry, Nissim, and Smith]

• Algorithm K (e.g., counting of sick people)
gives  differential privacy if, for all DB and
DB’ that differ in at most one record, for all v,
Prob[K(DB) = v]  Prob[K(DB’) = v]  e

• Differential privacy can be achieved by adding
noise to outputs.

Source: F. McSherry Laplace distribution: probability density at x proportional to e-|x|.

Dynamic information flow control

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

attacker
process

password
file

adduser
alice

admin
shell

time

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

attacker
process

password
file

adduser
alice

admin
shell

write

time

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

attacker
process

password
file

adduser
alice

admin
shell

write exec

time

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

attacker
process

password
file

adduser
alice

admin
shell

write

read

exec

time

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

attacker
process

password
file

adduser
alice

admin
shell

write

write

read

exec

time

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

attacker
process

password
file

adduser
alice

admin
shell

write

write

read

exec

exit

time

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

attacker
process

password
file

adduser
alice

admin
shell

write

write

read

exec

exit

block
time

Dynamic information flow control

• Detect information flows dynamically.

– A very old idea.

– In use, e.g., in Perl taint propagation.

– Often expensive, imprecise, but useful.

– Still an active research subject, e.g.,

• for JavaScript in browsers,

• in operating systems
such Asbestos or HiStar,

• for selective re-execution
in “undo computing”
(loosely) [Kim et al.].

attacker
process

password
file

adduser
alice

admin
shell

write

write

read

exec

exit

block
time

undo
and
redo

Tracking levels: simple examples

Propagate security levels at run-time:

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok, allowed

• y1 = x2 not ok, easily blocked

• temp = x1; y1 = temp ok, allowed

• temp = x2; y1 = temp not ok, easily blocked

Tracking levels: simple examples

Propagate security levels at run-time:

• Input x1 and output y1 have level Public.

• Input x2 and output y2 have level Secret.

• y1 = x1 ok, allowed

• y1 = x2 not ok, easily blocked

• temp = x1; y1 = temp ok, allowed

• temp = x2; y1 = temp not ok, easily blocked

• if x2 is odd then y1 = 1 else y1 = 0 blocked?

• if x2 is odd then y1 = 1 else y1 = 1 blocked?

A more challenging example

y2 = x2;

y1 = 1;

temp = 1;

if y2 = 1 then temp = 0;

if temp = 1 then y1 = 0;

A more challenging example

y2 = x2;

y1 = 1;

temp = 1;

if y2 = 1 then temp = 0;

if temp = 1 then y1 = 0;

At the end, if x2 = 1
then y1 = 0, and y1 = 1
otherwise.

A more challenging example

y2 = x2;

y1 = 1;

temp = 1;

if y2 = 1 then temp = 0;

if temp = 1 then y1 = 0;

At the end, if x2 = 1
then y1 = 0, and y1 = 1
otherwise.

 So there is a flow.

A more challenging example

y2 = x2;

y1 = 1;

temp = 1;

if y2 = 1 then temp = 0;

if temp = 1 then y1 = 0;

At the end, if x2 = 1
then y1 = 0, and y1 = 1
otherwise.

 So there is a flow.

When x2 = 1, dynamic
taint propagation may
suggest that temp is of
level Secret.

A more challenging example

At the end, if x2 = 1
then y1 = 0, and y1 = 1
otherwise.

 So there is a flow.

When x2 = 0, dynamic
taint propagation may
suggest that temp is of
level Public.

y2 = x2;

y1 = 1;

temp = 1;

if y2 = 1 then temp = 0;

if temp = 1 then y1 = 0;

A more challenging example

At the end, if x2 = 1
then y1 = 0, and y1 = 1
otherwise.

 So there is a flow.

In each case, code that
is not executed is
crucial to the flow!
 Code analysis
 is needed.

y2 = x2;

y1 = 1;

temp = 1;

if y2 = 1 then temp = 0;

if temp = 1 then y1 = 0;

Another dynamic technique:
multiple executions

• Run multiple copies with
different “high” inputs.

• Compare the “low” outputs.

– If they are equal, then
release them.

– If they are different, then
there is information flow,
so stop with an error.

f f

?
=

Do low
output

error

Yes No

True value of
all inputs

Other value of
“high” input
True value of
“low” input

Low
outputs

Do high
output

High
output

Another dynamic technique:
multiple executions (cont.)

• This technique encounters difficulties.

– Choice of inputs.

– Efficiency of running multiple copies.

– Dealing with deliberate nondeterminism.

• But there is research progress.

– ML2 [Simonet and Pottier et al.]

– Self-composition [Barthe et al.]

– TightLip [Yumerefendi et al.]

– Secure Multiexecution [Devriese and Piessens]

Static information flow control

Static information flow control

• Analyze programs before execution.

– An old idea too.

– Also with applications to current problems
(e.g., finding bugs in Javascript browser extensions
with Vex [Bandhakavi et al.]).

– In recent years, relying on programming-language
research (e.g., type systems).

Example of a static approach

• We treat only simple language constructs
(following a “monadic” approach).

• One security level (“High”) is explicit.
All the rest is implicitly of a “Low” level.

– E.g., int represents the type of (“Low”) integers.

– High int represents the type of High integers
(i.e., the secret integers, in one interpretation).

– int outputs should not depend on High int inputs.

Typing rules

• As usual, typing rules are rules for deducing
judgments (assertions) of the form:

assumptions

(e.g., free variables with
their types)

program
(aka term or
expression)

type

Example judgments and rules

• A judgment:

• Some rules:

77

The Simply Typed λ-calculus: rules

Rules for High

• High can always be added:

Rules for High

• High can always be added:

– So for example

Rules for High

• High can always be added:

– So for example

• High expressions can be used in other High
expressions:

Rules for High

• High can always be added:

– So for example

• High expressions can be used in other High
expressions:

– So for example, if
then

Rules for High

• High can always be added:

– So for example

• High expressions can be used in other High
expressions:

– So for example, if
then

– But there is no way to go from High to Low.

A simple noninterference property

A first generalization

• Consider multiple principals (Alice, Bob, ...).

• We replace the single level High with a
different level HighA for each principal A.
• HighA int may represent the type of A’s integer secrets,

• or the type of integers whose integrity A trusts.

HighBobtypes HighAlice types

Plain types

Rules for HighA

• The rules are basically those for High:

– HighA can always be added.

– HighA expressions can be used in computing other
HighA expressions (but there is no way to go from
HighA to Low or to HighB).

• (A convergence: Interpreting types as logical
propositions, and reading HighA t as A says t,
we obtain a logic for access control!)

Further work

• Theorems, in particular noninterference.

• More general versions, with more levels, etc..

• Use in languages and systems.

• Connections to access control.

• For richer, more useful and real systems,
see in particular Jif [Myers et al.].

Some reading

• Again, Ross Anderson’s book.

• The survey “Language-Based Information-Flow
Security”, by Sabelfeld and Myers (from 2003),
with many references.

• Some of the more recent research work
mentioned in this lecture, on TaintDroid,
HiStar, differential privacy, etc.

