
Software security

Chaire Informatique et sciences numériques
Collège de France, cours du 6 avril 2011

…

Linux system

(with applications as users)

Inter-component communication
reference monitor

Android middleware

App1

App2

Pictures such as these
ones make sense only
if a component cannot
circumvent or hijack
other components.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

…

Linux system

(with applications as users)

Inter-component communication
reference monitor

Android middleware

App1

App2

Pictures such as these
ones make sense only
if a component cannot
circumvent or hijack
other components.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

…

Linux system

(with applications as users)

Inter-component communication
reference monitor

Android middleware

App1

App2

Pictures such as these
ones make sense only
if a component cannot
circumvent or hijack
other components.

Reference
monitor

ObjectDo
operationPrincipal

GuardRequestSource Resource

Flaws

• Circumvention and hijacking are common in
security in many realms.

– Tanks drive around fortifications.

– Robbers bribe bank guards.

• In computer systems, they are sometimes the
consequence of design weaknesses.

• But many result from implementation flaws:
small but catastrophic errors in code.

An example

 // Les lignes qui commencent par des barres sont des commentaires.
 // Nous définissons une fonction f à deux arguments :
 // un nombre entier x et un caractère y.
 // La fonction donne un résultat entier.
 int f(int x, char y) {
 // La fonction a une variable locale :
 // un tableau t de taille 16 qui contient des caractères.
 char t[16] ;
 // Nous pouvons donner des valeurs initiales aux entrées du tableau.
 // initialize est une fonction dont les détails ne nous intéresseront pas.
 initialize(t) ;
 // Puis nous donnons la valeur y à l’entrée x de t.
 t[x] = y ;
 // Le résultat 0 indique juste que la fonction a bien tourné.
 return 0 ;
 }

An example

 // Les lignes qui commencent par des barres sont des commentaires.
 // Nous définissons une fonction f à deux arguments :
 // un nombre entier x et un caractère y.
 // La fonction donne un résultat entier.
 int f(int x, char y) {
 // La fonction a une variable locale :
 // un tableau t de taille 16 qui contient des caractères.
 char t[16] ;
 // Nous pouvons donner des valeurs initiales aux entrées du tableau.
 // initialize est une fonction dont les détails ne nous intéresseront pas.
 initialize(t) ;
 // Puis nous donnons la valeur y à l’entrée x de t.
 t[x] = y ;
 // Le résultat 0 indique juste que la fonction a bien tourné.
 return 0 ;
 }

An example

So what?

• Threat model: The attacker chooses inputs.

 The attacker can (try to) modify a location of
 their choice at some offset from t’s address.

• Some possible questions:

– Can the attacker find the vulnerability and call f?

– Can the attacker identify good target locations?

– Can the attacker predict t’s address?

– Will the exploit work reliably? cause crashes?

Two examples of low-level attacks
[from Chen, Xu, Sezer, Gauriar, and Iyer]

• Attack NULL-HTTPD (a Web server on Linux).
– POST commands can trigger a buffer overflow.

 Change the configuration string of the CGI-BIN path:
– The mechanism of CGI:

• Server name = www.foo.com
• CGI-BIN = /usr/local/httpd/exe
• Request URL = http://www.foo.com/cgi-bin/bar
 Normally, the server runs /usr/local/httpd/exe/bar

– An attack:
• Exploiting the buffer overflow, set CGI-BIN = /bin
• Request URL = http://www.foo.com/cgi-bin/sh
 The server runs /bin/sh

 The attacker gets a shell on the server.

• Attack SSH Communications SSH Server:

void do_authentication(char *user, ...) {

 int auth = 0; /* initially auth is false */

 ...

 while (!auth) {

 /* Get a packet from the client */

 type = packet_read(); /* has overflow bug */

 switch (type) { /* can make auth true */

 ...

 case SSH_CMSG_AUTH_PASSWORD:

 if (auth_password(user, password))

 auth = 1;

 case ...

 }

 if (auth) break;

 }

 /* Perform session preparation. */

 do_authenticated(…);

}
 The attacker circumvents authentication.

• Attack SSH Communications SSH Server:

void do_authentication(char *user, ...) {

 int auth = 0; /* initially auth is false */

 ...

 while (!auth) {

 /* Get a packet from the client */

 type = packet_read(); /* has overflow bug */

 switch (type) { /* can make auth true */

 ...

 case SSH_CMSG_AUTH_PASSWORD:

 if (auth_password(user, password))

 auth = 1;

 case ...

 }

 if (auth) break;

 }

 /* Perform session preparation. */

 do_authenticated(…);

}
 The attacker circumvents authentication.

• These are data-only attacks.

• The most classic attacks often inject code.
• Injecting code is also central in higher-level

attacks such as SQL injection and XSS.

Software security:
some approaches

• Avoiding software flaws:

– Static analysis and proofs of correctness.

– Safer programming languages and libraries.

• Reducing the impact of software flaws:

– Various run-time mitigation techniques.

– Defense in depth (e.g., use sacrificial machines).

– Software updates.

Low-level attacks and defenses

Run-time protection: the arms race

• Many attack methods:

– Buffer overflows

– Jump-to-libc exploits

– Use-after-free exploits

– Exception overwrites

– …

• Many defenses:

– Stack canaries

– Safe exception handling

– NX data

– Layout randomization

– …

• Not necessarily perfect
in a precise sense

• Nor all well understood

• But useful mitigations

• The expectation is that the contents of arg is at most
of size n.

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

• The expectation is that the contents of arg is at most
of size n.

• In memory, we would have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address … First

• The expectation is that the contents of arg is at most
of size n.

• In memory, we would have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents f’s caller address …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address … First

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents (part) …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could also have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could also have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents = … new return address … …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could also have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents = … new return address + code …

First

Later

• If this size is too big and not checked (either statically
or dynamically), there can be trouble.

• In memory, we could also have:

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

A buffer overflow

 local variable t return address

… (nothing yet) f’s caller address …

… arg contents = … new return address + code …

First

Later

• A known quantity (fixed or random) can be inserted
between the local variable and the return address so
that any corruption can be detected.

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

Stack canaries and cookies

… (nothing yet) “tweety” f’s caller address

 local variable t canary return address

First

• A known quantity (fixed or random) can be inserted
between the local variable and the return address so
that any corruption can be detected.

define function f(arg) =
 let t be a local variable of size n;
 copy contents of arg into t;
 …

Stack canaries and cookies

… (nothing yet) “tweety” f’s caller address

 local variable t canary return address

… arg contents = … new return address + code …

First

Later !!!!

There are more things

• Stack canaries and cookies can be effective in
impeding many buffer overflows on the stack.

But:

• They need to be applied consistently.

• Sometimes they are judged a little costly.

• They do not help if corrupted data (e.g., a
function pointer) is used before the return.

• And there are many kinds of overflows, and
many other kinds of vulnerabilities.

NX (aka DEP)

Many attacks rely on injecting code.

 So a defense is to require that data that
 is writable cannot be executed.

• This requirement is supported by mainstream
hardware (e.g., x86 processors).

NX (aka DEP)

Many attacks rely on injecting code.

 So a defense is to require that data that
 is writable cannot be executed.*

• This requirement is supported by mainstream
hardware (e.g., x86 processors).

* An exception must be made in order to allow
compilation (e.g., JIT compilation for JavaScript).

What bytes will the CPU interpret?

• Mainstream hardware typically places few
constraints on control flow.

• A call can lead to many places:

Safe code/data

Possible control-flow destination

x86 x86 RISC/NX RISC/NX x86/NX x86/NX

Data memory

Code memory

for function A

Code memory

for function B

Executing existing code

• With NX defenses, attackers cannot simply
inject data and then run it as code.

• But attackers can still run existing code:

– the intended code in an unintended state,

– an existing function, such as system(),

– even dead code,

– even code in the middle of a function,

– even “accidental” code (e.g., starting
half-way in a long x86 instruction).

An example of accidental x86 code
[Roemer et al.]

Two instructions in the entry point ecb_crypt are
encoded as follows:

f7 c7 07 00 00 00 test $0x00000007, %edi

0f 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the attacker instead obtains

c7 07 00 00 00 0f movl $0x0f000000, (%edi)

95 xchg %ebp, %eax

45 inc %ebp

c3 ret

Layout randomization

Attacks often depend on addresses.

 Let us randomize the addresses!

– Considered for data at least since the rise of large
virtual address spaces
(e.g., [Druschel & Peterson, 1992] on fbufs).

– Present in Linux (PaX) and Windows (ASLR).

Implementations

• The randomization can be
performed at build, install,
boot, or load time.

System

libraries

(in load

order)

Base of heap

Thread

control

data

Implementations

• The randomization can be
performed at build, install,
boot, or load time.

System

libraries

(in load

order)

Base of heap

Thread

control

data

Implementations

• The randomization can be
performed at build, install,
boot, or load time.

• It may be at various
granularities.

• It need not have performance
cost, but it may complicate
compatibility.

System

libraries

(in load

order)

Base of heap

Thread

control

data

Layout randomization depends on
secrecy, but…

• The secrecy is not always strong.

– E.g., there cannot be much address randomness
on 32-bit machines.

– E.g., low-order address bits may be predictable.

• The secrecy is not always well-protected.

– Pointers may be disclosed.

– Functions may be recognized
by their behavior.

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

A nice Web site
that attracts traffic

(owned by the attacker)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

A nice Web site
that attracts traffic

(owned by the attacker)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Heap-spray area

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Heap-spray area

NOP slide Exploit code

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

fill

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Heap-spray area

NOP slide Exploit code

NOP slide Exploit code

NOP slide Exploit code

NOP slide Exploit code

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

fill

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Browser

Heap-spray area

NOP slide Exploit code

NOP slide Exploit code

NOP slide Exploit code

NOP slide Exploit code

Web
 page
with

JavaScript

A nice Web site
that attracts traffic

(owned by the attacker)

jump

(e.g., via
buffer overflow)

fill

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Source: Ratanaworabhan, Livshits, and Zorn (2009)

Layout randomization depends on
secrecy, but…

• This secrecy is not always effective.

– “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

– “Heap feng shui” influences heap layout *Sotirov].

– …

Layout randomization: status

This is an active area, with

• variants and ongoing improvements to the
randomization and its application,

• variants of the attacks,

• techniques detecting or mitigating the attacks.

Overall, randomization is widespread and seems
quite effective but not a panacea.

Diverting control flow

• Many attacks cause some sort of subversion of
the expected control flow.

– E.g., an argument that is “too large” can cause a
function to jump to an unexpected place.

• Several techniques prevent or mitigate the
effects of many control-flow subversions.

– E.g., canaries help prevent some bad returns.

Control-flow integrity (CFI)

• CFI means that execution proceeds according
to a specified control-flow graph (CFG).

• CFI is a basic property that thwarts a large
class of attacks.

check

operation

What bytes will the CPU interpret,
with CFI?

• E.g., we may allow jumps to the start of any
function (defined in a higher-level language):

x86 x86 RISC/NX RISC/NX x86/NX x86/NX x86/CFI x86/CFI

Data memory

Code memory

for function A

Code memory

for function B

Possible control-flow destination

Safe code/data

What bytes will the CPU interpret,
with CFI? (cont.)

• Or we may allow jumps the start of B only
from a particular call site in A:

x86 x86 RISC/NX RISC/NX x86/NX x86/NX x86/CFI x86/CFI

Data memory

Code memory

for function A

Code memory

for function B

Possible control-flow destination

Safe code/data

Some implementation
strategies for CFI

1. A fast interpreter performs control-flow
checks (“Program Shepherding”).

2. A compiler emits code with control-flow
checks (as in WIT).

3. A code rewriter adds control-flow checks
(as in PittSFIeld, where all control-flow
targets are required to end with two 0s).

A rewriting-based system
[with Budiu, Erlingsson, Ligatti, Peinado, Necula, and Vrable]

• The rewriting inserts guards to be executed at
run-time, before control transfers.

• It need not be trusted, because of the verifier.

Compiler Program
rewriting:
insert checks
in control
transfers

Program
execution

Program
executable

Verify
CFI

Load
into
memory

Program
control-flow

graph

Vendor or
trusted
party

 ECX := Mem[ESP + 4]
 EDX := Mem[ESP + 8]
 ESP := ESP - 0x14

 // ...

 push Mem[EDX + 4]
 push Mem[EDX]
 push ESP + 8
 call ECX

 // ...

 EAX := Mem[ESP + 0x10]
 if EAX != 0 goto L

 EAX := Mem[ESP]

L: ... and return

?

Machine-code basic blocks

Example

• Code uses data and
function pointers,

• susceptible to effects of
memory corruption.

int foo(fptr pf, int* pm) {
 int err;
 int A[4];

 // ...

 pf(A, pm[0], pm[1]);

 // ...

 if(err) return err;
 return A[0];
}

C
 s

o
u

rc
e

co
d

e

Example (cont.)

• We add guards for
checking control transfers.

• These guards are “inline
reference monitors”.

int foo(fptr pf, int* pm) {
 int err;
 int A[4];

 // ...

 pf(A, pm[0], pm[1]);

 // ...

 if(err) return err;
 return A[0];
}

C
 s

o
u

rc
e

co
d

e

 ECX := Mem[ESP + 4]
 EDX := Mem[ESP + 8]
 ESP := ESP - 0x14

 // ...

 push Mem[EDX + 4]
 push Mem[EDX]
 push ESP + 8
 cfiguard(ECX, pf_ID)
 call ECX

 // ...

 EAX := Mem[ESP + 0x10]
 if EAX != 0 goto L

 EAX := Mem[ESP]

L: ... and return

Machine-code basic blocks

 // ...

 ...
 cfiguard(ECX, pf_ID)
 call ECX …

 ret

pf

Machine code

 // ...

 ...
 EAX := 0x12345677
 EAX := EAX + 1
 if Mem[ECX-4] != EAX goto ERR
 call ECX

 ret

Machine code with 0x12345678 as CFI guard ID

0x12345678

A CFI guard

• A CFI guard matches IDs at source and target.

– IDs are constants embedded in machine code.

– IDs are not secret, but must be unique.

 pf(A, pm[0], pm[1]);

 // ...

C source code

Proving that CFI works

• Some of the recent systems come with (and
were guided by) proofs of correctness.

• The basic steps may be:

1. Define a machine language and its semantics.

2. Define when a program has appropriate
instrumentation, for a given control-flow graph.

3. Prove that all executions of programs with
appropriate instrumentation follow the
prescribed control-flow graphs.

1. A small model of a machine

• Instructions: nop, addi, movi, bgt, jd, jmp, ld, st.

• States: each state is a tuple that includes

– code memory Mc

– data memory Md

– registers R

– program counter pc

• Steps: transition relations define the possible
state changes of the machine.

1. A small model of a machine

1. A small model of a machine

Dc : instruction decoding function

1. A small model of a machine

1. A small model of a machine

+ Md could change at any time (because of attacker actions).

2. Example condition on
instrumentation

Computed jumps occur
only in context of a specific
instruction sequence:

2. Example condition on
instrumentation

Computed jumps occur
only in context of a specific
instruction sequence:

HALT is the address of a
halt instruction.

IMM is a constant that
encodes the allowed label
at the jump target.

(For this simple model,
we do not need to add 1.)

3. A result

Let S0 be a state with pc = 0 and code memoryMc that
satisfies the instrumentation condition for a given CFG.

Suppose S0 S1 S2  …
where each  transition is either a normal n step or
an attacker step that changes only data memory.

For each i, if Si n Si + 1 then pc at Si + 1 is one of the
allowed successors of pc at Si according to the CFG.

Proof: by a tedious induction.

Software-based fault isolation

• CFI does not assume memory protection.

• But it enables memory protection,
i.e., “software-based fault isolation” (SFI).

• Again, there are several possible
implementations of SFI.

– E.g., by code rewriting, with guards on
memory operations.

check

memory
operation

A recent system:
Native Client (NaCl) [Yee et al.]

Native OS

Browser
(Chrome)

Native
system
calls

Renderer (sandboxed)

IPC

Loader (sandboxed)

NaCl
executable

NaCl sandbox
system calls

Plugin API

Security in
programming languages

Security in programming languages

• Languages have long been related to security.

• Modern languages should contribute to security:

– Constructs for protection (e.g., objects).

– Techniques for static analysis,
in particular for ensuring safety by typechecking.

– A tractable theory, with sophisticated methods.

• Several security techniques rely on language
ideas, with static and dynamic checks.

A class with a secret field

class C {

 // the field
 private int x;

 // a constructor
 public C(int v) { x = v; }

}

// two instances of C

C c1 = new C(17);

C c2 = new C(28);

• A possible conjecture:
Any two instances of this
class are observationally
equivalent (that is, they
cannot be distinguished
within the language).

• More realistic examples
use constructs similarly.

• Objects are unforgeable.
E.g., integers cannot be
cast into objects.

Mediated access [example from A. Kennedy]

 class Widget {// No checking of argument
 virtual void Operation(string s) {…};
}
class SecureWidget : Widget {
 // Validate argument and pass on
 // Could also authenticate the caller
 override void Operation(string s) {
 Validate(s);
 base.Operation(s);
 }
}
…
SecureWidget sw = new SecureWidget();

 sw.Operation(“Nice string”);
// Can’t avoid validation of argument

Caveats

Mismatch in characteristics:

• Security requires simplicity
and minimality.

• Common programming
languages are complex.

Mismatch in scope:

• Language descriptions
rarely specify security.
Implementations may or
may not be secure.

• Security is a property of
systems (not languages).
Systems typically include
much security machinery
beyond what is given in
language definitions.

.NET CLR
(Common Language Runtime)

JVM
(Java Virtual Machine)

“Secure” programming platforms

Java

JVML (bytecodes)

C# C++ Visual Basic

Java compiler C# compiler
C++

compiler
VB

compiler

…

IL

.NET CLR
(Common Language Runtime)

JVM
(Java Virtual Machine)

“Secure” programming platforms

Java

JVML (bytecodes)

C# C++ Visual Basic

Java compiler C# compiler
C++

compiler
VB

compiler

…

IL

But JVML or IL may be written by
hand, or with other tools.

.NET CLR
(Common Language Runtime)

JVM
(Java Virtual Machine)

“Secure” programming platforms

Java

JVML (bytecodes)

C# C++ Visual Basic

Java compiler C# compiler
C++

compiler
VB

compiler

…

IL

But JVML or IL may be written by
hand, or with other tools.

Mediated access

 class Widget {// No checking of argument
 virtual void Operation(string s) {…};
}
class SecureWidget : Widget {
 // Validate argument and pass on
 // Could also authenticate the caller
 override void Operation(string s) {
 Validate(s);
 base.Operation(s);
 }
}
…
SecureWidget sw = new SecureWidget();

 sw.Operation(…);
// Can’t avoid validation of argument

// In IL (pre-2.0), make a direct call
// on the superclass:
ldloc sw
ldstr “Invalid string”
call void Widget::Operation(string)

Other examples

There are many more examples,
for Java, C#, and other languages.

• In each case, some observational
equivalence that holds in
the source language does
not hold in implementations.

• We may say that the translations
are not fully abstract.

• Typechecking helps,
but it does not suffice.

High-level language

Implementation language

T

Alternatives

• One may ignore the security of translations

– when low-level code is signed by a trusted party,

– if one analyzes low-level code.

 These alternatives are not always satisfactory.

• In other cases, translations should preserve at
least some security properties; for example:

– limited versions of full abstraction
(e.g., for certain programming idioms),

– the secrecy of pieces of data labelled as secret,

– fundamental guarantees about control flow.

Closing comments

Abstractions and security

Abstractions are common
in computing, e.g.:

– function calls,

– objects with private
components,

– secure channels.

Clever implementation
techniques abound too:

– stacks,

– static and dynamic
access checks,

– cryptography.

Implementations often need to work in interaction with
(malicious?) systems that do not use the abstractions.

Some reading

• Úlfar Erlingsson’s tutorial paper “Low-level
Software Security: Attacks and Defenses”
(2007).

• “Protection in Programming Languages”, by
Jim Morris (1973).

• “Securing the .NET Programming Model”, by
Andrew Kennedy (2006).

