Software security

Chaire Informatique et sciences numériques
College de France, cours du 6 avril 2011

Appl App2

1 (111

Inter-component communication

Pictures such as these A
ones make sense only Android middleware
if a component cannot Linux system

circumvent or hijack
other components.

(with applications as users)

Do
operation

Request

(= T
Referencel .1 Opject
monitor

Principal

Source Guard Resource/

Pictures such as these
ones make sense only
if a component cannot
circumvent or hijack
other components.

Principal

Source

Appl App2

1 (111

Inter-component communication
reference monitor

Android middleware

Linux system

(with applications as users)

/\ \
Do Referencel .1 Opject
operation monitor

Request Guard Resource/

Appl App2

1

. Inter-compo munication
Pictures such as these e o
ones make sense only Androi ware
if a component cannot Linux system

circumvent or hijack
other components.

(with applications as users)

\
Principal Do Object
P operation
Source Request Resource/

Flaws

* Circumvention and hijacking are common in
security in many realms. UJQ

— Tanks drive around fortifications. ~

— Robbers bribe bank guards. %W%
* |[n computer systems, they are sometimes the

consequence of designh weaknesses.

e But many result from implementation flaws:
small but catastrophic errors in code.

An example

An example

// Les lignes qui commencent par des barres sont des commentaires.
// Nous définissons une fonction f a deux arguments :
// un nombre entier x et un caracterey.
// La fonction donne un résultat entier.
int f(int x, chary) {
// La fonction a une variable locale :
// un tableau t de taille 16 qui contient des caractéres.
char t[16] ;
// Nous pouvons donner des valeurs initiales aux entrées du tableau.
// initialize est une fonction dont les détails ne nous intéresseront pas.
initialize(t) ;
// Puis nous donnons la valeur y a I'entrée x de t.
tix]=vy;
// Le résultat 0 indique juste que la fonction a bien tourné.
return O ;

}

An example

// Les lignes qui commencent par des barres sont des commentaires.

// Nous définissons une fonction f a deux arguments :

// un nombre entier x et un caracterey.

// La fonction donne un résultat entier.

int f(int x, chary) {
// La fonction a une variable locale :
// un tableau t de taille 16 qui contient des caractéres.
char t[16] ;
// Nous pouvons donner des valeurs initiales aux entrées du tableau.
// initialize est une fonction dont les détails ne nous intéresseront pas.
initialize(t) ;
// Puis nous donnons la valeur y a I'entrée x de t.
tix]=vy;
// Le résultat 0 indique juste que la fonction a bien tourné.
return O ;

}

So what?

* Threat model: The attacker chooses inputs.

—> The attacker can (try to) modify a location of
their choice at some offset from t’s address.

* Some possible questions:

—Cant
—Cant
—Cant
— Will t

ne attac
ne attac
ne attac

cer find the vulnerability and call f?
cer identify good target locations?

ker predict t's address?

he exploit work reliably? cause crashes?

Two examples of low-level attacks

[from Chen, Xu, Sezer, Gauriar, and lyer]

e Attack NULL-HTTPD (a Web server on Linux).

— POST commands can trigger a buffer overflow.

Change the configuration string of the CGI-BIN path:

— The mechanism of CGl:

e Server name = www.foo.com

* CGI-BIN = /usr/local/httpd/exe

e Request URL = http://www.foo.com/cgi-bin/bar

- Normally, the server runs /usr/local/httpd/exe/bar
— An attack:

* Exploiting the buffer overflow, set CGI-BIN = /bin

e Request URL = http://www.foo.com/cgi-bin/sh

= The server runs /bin/sh

—> The attacker gets a shell on the server.

e Attack SSH Communications SSH Server:

void do authentication(char *user, ...) {
int auth = 0; /* initially auth is false */

while (!auth) {

/* Get a packet from the client */
type = packet read(); /* has overflow bug */
switch (type) f{ /* can make auth true */

case SSH CMSG AUTH PASSWORD:
if (auth password(user, password))
auth = 1;
case ...
}
if (auth) break;
}

/* Perform session preparation. */
do authenticated(..);

—> The attacker circumvents authentication.

e Attack SSH Communications SSH Server:

volid do authentication (char *user, ...) {
int auth = 0; /* initially auth is false */

while (!auth) {

/* Get a packet from the client */
type = packet read(); /* has overflow bug */
switch (type) { /* can make auth true * /
case / \

it | * These are data-only attacks.

case

\ The most classic attacks often inject code.
if (4 * Injecting code is also central in higher-level
) .
/% Perfom& attacks such as SQL injection and XSS. /
do authentIs= SN

}

Software security:
some approaches

* Avoiding software flaws:
— Static analysis and proofs of correctness.
— Safer programming languages and libraries.

* Reducing the impact of software flaws:
— Various run-time mitigation techniques.

— Defense in depth (e.g., use sacrificial machines).
— Software updates.

Low-level attacks and defenses

Run-time protection: the arms race

 Many attack methods: Many defenses:
— Buffer overflows — Stack canaries
— Jump-to-libc exploits — Safe exception handling
— Use-after-free exploits — NX data
— Exception overwrites — Layout randomization

* Not necessarily perfect
In a precise sense

* Nor all well understood
e But useful mitigations

New Windows zero-day surfaces as

researcher releases attack code

=MB bug could be exploited on Windows XP, Server 2003 to hijack
machines, say experts

By Gregg Keizer
February 15, 2011 02:59 PM ET

Secunia added that a buffer overflow could be triggered by sending a too-long
Server Name string in a malformed Browser Election Request packet. In this
context, "browser” does not mean a Web browser, but describes other Windows
components which access the O5' browser service.

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* The expectation is that the contents of arg is at most
of size n.

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* The expectation is that the contents of arg is at most
of size n.

* In memory, we would have:

local variablet return address

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* The expectation is that the contents of arg is at most
of size n.

* In memory, we would have:

local variablet return address

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* If this size is too big and not checked (either statically
or dynamically), there can be trouble.

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* If this size is too big and not checked (either statically
or dynamically), there can be trouble.

* In memory, we could have:

local variablet return address

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* If this size is too big and not checked (either statically
or dynamically), there can be trouble.

* In memory, we could have:

local variablet return address

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* If this size is too big and not checked (either statically
or dynamically), there can be trouble.

* In memory, we could also have:

local variablet return address

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* If this size is too big and not checked (either statically
or dynamically), there can be trouble.

* In memory, we could also have:

local variablet return address

Later _ arg contents = ... new return address ... _

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* If this size is too big and not checked (either statically
or dynamically), there can be trouble.

* In memory, we could also have:

local variablet return address

Later _ arg contents = ... new return address + code _

A buffer overflow

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* If this size is too big and not checked (either statically
or dynamically), there can be trouble.

* In memory, we could also have:

local variablet return address

N
Later _ arg contents = ... new return address + code _ .

Stack canaries and cookies ¢

L
define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* A known quantity (fixed or random) can be inserted
between the local variable and the return address so
that any corruption can be detected.

local variablet canary return address

ZCHN | (nothingyet) s caller address

Stack canaries and cookies

define function f(arg) =
let t be a local variable of size n;
copy contents of arg into t;

* A known quantity (fixed or random) can be inserted
between the local variable and the return address so
that any corruption can be detected.

local variablet canary return address

ZCHN | (nothingyet) s caller address

Later _ arg contents = ... new return address + code _ .' .’ .' .'

There are more things

e Stack canaries and cookies can be effective in
impeding many buffer overflows on the stack.

But:
* They need to be applied consistently.

 Sometimes they are judged a little costly.

 They do not help if corrupted data (e.g., a
function pointer) is used before the return.

* And there are many kinds of overflows, and
many other kinds of vulnerabilities.

NX (aka DEP)

Many attacks rely on injecting code.

—> So a defense is to require that data that
is writable cannot be executed.

* This requirement is supported by mainstream
hardware (e.g., x86 processors).

NX (aka DEP)

Many attacks rely on injecting code.

—> So a defense is to require that data that
is writable cannot be executed.*

* This requirement is supported by mainstream
hardware (e.g., x86 processors).

* An exception must be made in order to allow
compilation (e.q., JIT compilation for JavaScript).

What bytes will the CPU interpret?

* Mainstream hardware typically places few
constraints on control flow.

* A call can lead to many places:

' | Possible control-flow destination
' | Safe code/data

Data memory {

(] []

Code memory |
for function A

Code memory
for function B

L | |

x86 x86/NX RISC/NX

Executing existing code

 With NX defenses, attackers cannot simply
inject data and then run it as code.

e But attackers can still run existing code:
— the intended code in an unintended state,
— an existing function, such as system(),
— even dead code,
— even code in the middle of a function,

— even “accidental” code (e.g., starting
half-way in a long x86 instruction).

An example of accidental x86 code

[Roemer et al.]

Two instructions in the entry point ecb crypt are
encoded as follows:

f7 ¢7 07 00 00 00 test SOx00000007, %edi

Of 95 45 c3 setnzb -61(%ebp)

Starting one byte later, the attacker instead obtains
c7 07 00 00 00 Of movl SOx0f000000, (%edi)
95 xchg %ebp, %eax

45 inc %ebp

c3 ret

Layout randomization

Attacks often depend on addresses.
—> Let us randomize the addresses!

— Considered for data at least since the rise of large
virtual address spaces
(e.g., [Druschel & Peterson, 1992] on fbufs).

— Present in Linux (PaX) and Windows (ASLR).

Implementations

System
* The randomization can be :;:r;::s X
performed at build, install, order)

boot, or load time.

Base of heap
Thread jﬂ
control

data

Implementations

System

. . libraries
The randomization can be (in load

performed at build, install, order)

boot, or load time.
Base of heap

Thread

control
data

Implementations

System

. . libraries
The randomization can be (in load

performed at build, install, order)

boot, or load time.
Base of heap

* |t may be at various

granularities. Thread

control
* |t need not have performance data

cost, but it may complicate
compatibility.

Layout randomization depends on
secrecy, but...

* The secrecy is not always strong.

— E.g., there cannot be much address randomness
on 32-bit machines.

— E.g., low-order address bits may be predictable.
* The secrecy is not always well-protected.

— Pointers may be disclosed.

— Functions may be recognized
by their behavior.

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space

predictably, including with JIT-compiled code.

=

-

A nice Web site

that attracts traffic
(owned by the attacker)

o)

Browser

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space

predictably, including with JIT-compiled code.

=

-

A nice Web site

that attracts traffic
(owned by the attacker)

<

Browser

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space

predictably, including with JIT-compiled code.

=

7

Web ll_1_ A nice Web site

page ,
with that attracts traffic
JavaScript (owned by the attacker)

- 2
Browser ey N %

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space

predictably, including with JIT-compiled code.

=

C AN O

page .
with that attracts traffic
JavaScript (owned by the attacker)

- &
Browser - \ B %

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space

predictably, including with JIT-compiled code.

fill

=

G
a
with that attracts traffic
JavaScript (owned by the attacker)

: 5
Browser . R %

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space

predictably, including with JIT-compiled code.

=

fill . -

NOP slide | Exploit code

Web B, e Tl ot
page =

with that attracts traffic
JavaScript (owned by the attacker)

NOP slide | Exploit code

- 2
Browser . %

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space

predictably, including with JIT-compiled code.

fill m
| |
¢ A nice Web site

that attracts traffic

=

\ (owned by the attacker)
>@0 O
Browser iump _ %

(e.g., via
buffer overflow)

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

Date Browser Description milwOrm
11/2004 IE IFRAME Tag BO 612
04/2005 IE DHTML Objects Corruption 930
01/2005 IE ANI Remote Stack BO 753
07 /2005 IE javaprxy.dll COM Object 1079
03/2006 IE createTextRang RE 1606
09,/2006 IE VML Remote BO 2408
03/2007 IE ADODB Double Free 3577
09/2006 IE WebViewFolderlcon setSlice 2448
09/2005 FF 0OxAD Remote Heap BO 1224
12/2005 FF compareTo() RE 1369
07 /2006 FF Navigator Object RE 2082
07/2008 Safari Quicktime Content-Tyvpe BO 6013

Source: Ratanaworabhan, Livshits, and Zorn (2009)

Layout randomization depends on
secrecy, but...

* This secrecy is not always effective.

— “Heap spraying” can fill parts of the address space
predictably, including with JIT-compiled code.

— “Heap feng shui” influences heap layout [Sotirov].

Layout randomization: status

This is an active area, with

* variants and ongoing improvements to the
randomization and its application,

e variants of the attacks,
* techniques detecting or mitigating the attacks.

Overall, randomization is widespread and seems
quite effective but not a panacea.

Diverting control flow

* Many attacks cause some sort of subversion of
the expected control flow.
4

/\/\Q/\/

— E.g., an argument that is “too large” can cause a
function to jump to an unexpected place.

* Several techniques prevent or mitigate the
effects of many control-flow subversions.

— E.g., canaries help prevent some bad returns.

Control-flow integrity (CFl)

* CFl means that execution proceeds according
to a specified control-flow graph (CFG).

* CFlis a basic property that thwarts a large

class of attacks. \\ H

operation

l

What bytes will the CPU interpret,
with CFI?

* E.g., we may allow jumps to the start of any
function (defined in a higher-level language):

| | Possible control-flow destination
| Safe code/data

Data memory {

(]] []

Code memory |
for function A

Code memory
for function B

L | | |

x86 x86/NX RISC/NX x86/CFl

What bytes will the CPU interpret,
with CFI? (cont.)

* Or we may allow jumps the start of B only
from a particular call site in A:

| | Possible control-flow destination
| Safe code/data

Data memory {

(| | [
Code memory |

for function A g
\
(SHER

Code memory
for function B

L | | |

x86 x86/NX RISC/NX x86/CFl

Some implementation
strategies for CFl

1. A fastinterpreter performs control-flow
checks (“Program Shepherding”).

2. A compiler emits code with control-flow
checks (as in WIT).

3. A code rewriter adds control-flow checks
(as in PittSFleld, where all control-flow
targets are required to end with two 0s). S

Y.

A rewriting-based system

[with Budiu, Erlingsson, Ligatti, Peinado, Necula, and Vrable]

. Program
Compiler —»
P executable Program

.- Program
rewriting:)
. H execution
insert checks
Vendor or '
cructed Program in control !_oad
party graph memory

* The rewriting inserts guards to be executed at
run-time, before control transfers.

* |t need not be trusted, because of the verifier.

Example

Machine-code basic blocks

+ Code uses data and i entee
function pointers, = a4
. // ...
* susceptible to effects of "
memory corruption. Pach MenEo]
push ESP + 8
call ECX >:T>
o 1int foo(fptr pf, int* pm) { -
§ int err; /] ..
) int A[4]; Vv
§ EAX := Mem[ESP + 0x10]
o ZaEEE if EAX !'= 0 goto L
o pfCA, pm[0], pm[1]); v
EAX := Mem[ESP]
/... .
if(err) return err; L: ... and return <

return A[O];

Example (cont.)

Machine-code basic blocks

ECX := Mem[ESP + 4]
* We add guards for EDX := Mem[ESP + 8]
ESP := ESP - 0x14
checking control transfers. //v
* These guards are “inline v
. push Mem[EDX + 4]
reference monitors”. push mem [EDX]

push ESP + 8
cfiguard(ECX, pf_ID)

. . call ECX ——e{:i;]
kY int foo(fptr pf, int* pm) {
O int err; /) ... —f |
o .
o int A[4]; Vv
S // EAX := Mem[ESP + 0x10]
o e if EAX !'= 0 goto L
o pfCA, pm[0], pm[1]); v
EAX := Mem[ESP]
/] ... v
if(err) return err; L: ... and return <

return A[O];

A CFl guard

* A CFl guard matches IDs at source and target.
— |IDs are constants embedded in machine code.

— |IDs are not secret, but must be unique.

pf(A, pm[0], pm[1]);
/] ...

C source code

EAX := 0x12345677
EAX := EAX + 1

if Mem[ECX-4] !'= EAX goto ERR 0x12345678
call ECX >

v
Jf oo <— ret

Machine code with 0x12345678 as CFI guard ID

Proving that CFl works

—

* Some of the recent systems come with (and
were guided by) proofs of correctness.

* The basic steps may be:
1. Define a machine language and its semantics.

2. Define when a program has appropriate
instrumentation, for a given control-flow graph.

3. Prove that all executions of programs with
appropriate instrumentation follow the
prescribed control-flow graphs.

1. A small model of a machine

* |nstructions: nop, addz, movi, bgt, 7d, 7mp, ld, st.

e States: each state is a tuple that includes
— code memory /7.
— data memory /7,
— registers
— program counter pc

e Steps: transition relations define the possible
state changes of the machine.

1. A small model of a machine

If De(M.(pc))= | then (M.|My.,R,pc) —,

nop w (M.|Mg, R, pc+ 1), when pc + 1 € dom(M,.)

add rq,71s, 74 (M Mg, R{rqg— R(rs)+ R(r¢)}, pc+ 1),
when pe + 1 € dom(M,)

addi rg,re, w (M. |Myg,R{rg— R{r,)+w},pc+1).
when pe + 1 € dom(M,.)

movi T, w (M Mg, R{rqy — w}, pc+1).
when pe + 1 € dom(M,)

bat 14,14, W (M.|My, R, w), when R(r,) > R(r;) A w € dom(M,)
(M.|Mg,R,pc+1),
when R(r.) < R(ry) A pe+1 & dom(M,.)

gd w (M.|Mg, R, w), when w € dom(M,)
Jmp T (M.|My,R,R(r,)), when R(r,) € dom(M,)
ld rg,re(w) (M. |Mg,R{rg — M(R(ry)+w)}, pc+1),

when pe +1 € rlum(M)

st rg(w), r (M. Mg{R(ry)+ww+— R(rs)}. R, pc+ 1),
when R(rg) + w e dom(My) A pe+ 1 € dom(M,)

1. A small model of a machine

If De(M.(pc))= | then (M.|My.,R,pc) —,

nop w (M.|Mg, R, pc+ 1), when pc + 1 € dom(M,.)

add rq,71s, 74 (M Mg, R{rqg— R(rs)+ R(r¢)}, pc+ 1),
when pe + 1 € dom(M,)

addi rg,re, w (M. |Myg,R{rg— R{r,)+w},pc+1).
when pe + 1 € dom(M,.)

movi T, w (M Mg, R{rqy — w}, pc+1).
when pe + 1 € dom(M,)

bat 14,14, W (M.|My, R, w), when R(r,) > R(r;) A w € dom(M,)
(M.|Mg,R,pc+1),
when R(r.) < R(ry) A pe+1 & dom(M,.)

gd w (M.|Mg, R, w), when w € dom(M,)
Jmp T (M.|My,R,R(r,)), when R(r,) € dom(M,)
ld rg,re(w) (M. |Mg,R{rg — M(R(ry)+w)}, pc+1),

when pe +1 € rlum(M)

st rg(w), r (M. Mg{R(ry)+ww+— R(rs)}. R, pc+ 1),
when R(rg) + w e dom(My) A pe+ 1 € dom(M,)

Dc : instruction decoding function

1. A small model of a machine

It De(M.(pc))=

then (M.|My, R, pc) —,,

nop w

(M. Mg, R, pc+ 1), when pc + 1 € dom(M,)

add 14,74, 7¢

(M Mg, R{rq — R(rs)+ R(r¢)}, pc +1).
when pe +1 € dom(M,.)

addi rg,re, w

(M. |Myg,R{rg— R{r,)+w},pc+1).
when pe + 1 € dom(M..)

MoVt T'g, W

{'ﬂ,fc ﬂi{d- R{-—rd — 'ff_?},pr' + lJ

bat 1, 7T¢, W

De(M.(pc)) = jmp rs R(rs) € dom(M,)
(ﬂ/fc‘ﬂ/fd.ﬂ R: pti‘) —7n (ﬂ/ff‘ ‘ﬂ/fd: R: R(T‘:‘))

gd w

(M,

Mg, R,w), when w € dom(M,)

gmp T

(M.|My, R, R(7s)), when P() € dom(M.,)

ld rg,rs(w)

(M. Mg, R{rqg — M(R(r, —|—ffJ} pe+ 1),
when pe +1 € (l: (M.,)

st rg(w), s

(M | Mag{R(rg)+w+— R(r]} P pe—+ 1),
when R(rg) + w < dom(My) A pe+ 1 € dom(M,)

1. A small model of a machine

If De(M.(pc))= | then (M.|My.,R,pc) —,

nop w (M.|Mg, R, pc+ 1), when pc + 1 € dom(M,.)

add rq,71s, 74 (M Mg, R{rqg— R(rs)+ R(r¢)}, pc+ 1),
when pe + 1 € dom(M,)

addi rg,re, w (M. |Myg,R{rg— R{r,)+w},pc+1).
when pe + 1 € dom(M,.)

movi T, w (M Mg, R{rqy — w}, pc+1).

bat 110,10 De(M(pc)) = jmp rs R(rs) € dom(M.)
(M.|Mg, R, pc) =, (M.|Mg, R, R(rs))

gd w (M.|Mg, R, w), when w € dom(M,)
Jmp T (M.|My,R,R(r,)), when R(r,) € dom(M,)
ld rg,re(w) (M. |Mg,R{rg — M(R(ry)+w)}, pc+1),

when pe +1 € :lum(M)

st rg(w), r (M. Mg{R(ry)+ww+— R(rs)}. R, pc+ 1),
when R(rg) + w e dom(My) A pe+ 1 € dom(M,)

+ A7, could change at any time (because of attacker actions).

2. Example condition on
Instrumentation

Computed jumps occur ddi ro 7 0
only in context of a specific aadr 7o, T's,
instruction sequence: ld 1, TO(O)

mouvt ro, IMM

bgt ri,ro, HALT
bgt ro,ri, HALT
mp o

2. Example condition on
Instrumentation

Computed jumps occur
only in context of a specific

addi ro,r,, 0

Instruction sequence: ld r1, 'T'O(O)

mouvt ro, IMM
HALT is the address of a bgt ri,ro, HALT
halt instruction. bgt ro,r1, HALT
IMM is a constant that mp 1o
encodes the allowed label

at the jump target.

(For this simple model,
we do not need to add 1.)

3. A result

Let S, be a state with pc = 0 and code memory /7 that
satisfies the instrumentation condition for a given CFG.

Suppose S,.—> S, —> S, — ...
where each — transition is either a normal — step or
an attacker step that changes only data memory.

Foreachs,if S, —,_ S.,, thenpcatls,, isoneofthe

allowed successors of pc at S; according to the CFG.

Proof: by a tedious induction.

Software-based fault isolation

* CFl does not assume memory protection.

* But it enables memory protection,
i.e., “software-based fault isolation” (SFl).

* Again, there are several possible @
implementations of SFI. \\

— E.g., by code rewriting, with guards on
memory operations.

memory
operation

l

A recent system:
Native Client (NaCl) [vee et al.]

IPC

—o>

Renderer (sandboxed)
Browser Plugin AP
(Chrome)

system Loader (sandboxed)

NaCl sandbox
‘NaCI /[system calls
executable €
NativeI

s Native OS

Security in
programming languages

Security in programming languages

* Languages have long been related to security.
* Modern languages should contribute to security:

— Constructs for protection (e.g., objects).

— Techniques for static analysis,
in particular for ensuring safety by typechecking.

— A tractable theory, with sophisticated methods.

e Several security techniques rely on language
ideas, with static and dynamic checks.

A class with a secret field

class C{ A possible conjecture:
// the field Any two instances of this
class are observationally

private Iint x; equivalent (that is, they

// a constructor cannot be distinguished
public C(intv) {x=v; } withinthe language).
) * More realistic examples

use constructs similarly.

* Objects are unforgeable.
E.g., integers cannot be
cast into objects.

// two instances of C
Ccl=new C(17);
Cc2 = new C(28);

Mediated dCCeSS [example from A. Kennedy]

class widget {// No checking of argument
virtual void Operation(string s) {..};
¥
class Securewidget : widget {
// VvValidate argument and pass on
// Could also authenticate the caller
override void Operation(string s) {
Validate(s);
base.Operation(s);

¥
¥

Securewidget sw = new Securewidget();

sw.Operation(“Nice string”);
// Can’t avoid validation of argument

Caveats

Mismatch in characteristics: Mismatch in scope:

e Security requires simplicity * Language descriptions
and minimality. rarely specify security.

« Common programming Implementations may or
languages are complex. may not be secure.

e Security is a property of
systems (not languages).
Systems typically include
much security machinery
beyond what is given in
language definitions.

“Secure” programming platforms

C++ VB
Java compller C# compller complle compiler

JVM

@va Virtual Machinw

-

.NET CLR
(Common Language Runtime) /

“Secure” programming platforms

C++ VB
Java compiler C# compiler compile compiler

JVM
&ava Virtual Machine)

.NET CLR
(Common Language Runtime) /

But JVML or IL may be written by
hand, or with other tools.

“Secure” programming platforms

C++ VB
Java compiler C# compiler compile compiler

JVM
&ava Virtual Machine)

‘ But JVML or IL may be written by
hand, or with other tools.

.NET CLR
(Common Language Runtime) /

Mediated access

class widget {// No checking of argument
virtual void Operation(string s) {..};
¥
class Securewidget : widget {
// VvValidate argument and pass on
// Could also authenticate the caller
override void Operation(string s) {
Validate(s);

haca Onaration(c) -

/}/ In IL (pre-2.0), make a direct call N
// on the superclass:
Tdloc sw
ldstr “Invalid string”

\Sa11 void Widget: :Operation(string) J

Other examples

There are many more examples,
for Java, C#, and other languages.

High-level language

* |n each case, some observational P~
. . /
equivalence that holds in
the source language does T
not hold in implementations. Implementation Ianguage\
* We may say that the translations T(P) £ T(Q)
are not fully abstract. y

* Typechecking helps,
but it does not suffice.

Alternatives

* One may ignore the security of translations

— when low-level code is signed by a trusted party,
— if one analyzes low-level code.

These alternatives are not always satisfactory.

* |n other cases, translations should preserve at
least some security properties; for example:

— limited versions of full abstraction
(e.g., for certain programming idioms),

— the secrecy of pieces of data labelled as secret,
— fundamental guarantees about control flow.

Closing comments

Abstractions and security

Abstractions are common Clever implementation

in computing, e.g.: techniques abound too:
— function calls, — stacks,
— objects with private — static and dynamic
components, access checks,
— secure channels. — cryptography.

Implementations often need to work in interaction with
(malicious?) systems that do not use the abstractions.

Some reading

e Ulfar Erlingsson’s tutorial paper “Low-level
Software Security: Attacks and Defenses”

(2007).
* “Protection in Programming Languages”, by
Jim Morris (1973).

e “Securing the .NET Programming Model”, by
Andrew Kennedy (2006).

