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Flaws 

• Circumvention and hijacking are common in 
security in many realms. 

– Tanks drive around fortifications. 

– Robbers bribe bank guards. 

• In computer systems, they are sometimes the 
consequence of design weaknesses. 

• But many result from implementation flaws: 
small but catastrophic errors in code. 

 



        

An example 



       // Les lignes qui commencent par des barres sont des commentaires. 
       // Nous définissons une fonction f à deux arguments :  
       //     un nombre entier x et un caractère y. 
       // La fonction donne un résultat entier. 
       int f(int x, char y)  { 
            // La fonction a une variable locale :  
            // un tableau t de taille 16 qui contient des caractères. 
            char t[16] ; 
            // Nous pouvons donner des valeurs initiales aux entrées du tableau. 
            // initialize est une fonction dont les détails ne nous intéresseront pas. 
            initialize(t) ; 
            // Puis nous donnons la valeur y à l’entrée x de t. 
           t[x] = y ; 
            // Le résultat 0 indique juste que la fonction a bien tourné. 
           return 0 ; 
           } 

An example 



       // Les lignes qui commencent par des barres sont des commentaires. 
       // Nous définissons une fonction f à deux arguments :  
       //     un nombre entier x et un caractère y. 
       // La fonction donne un résultat entier. 
       int f(int x, char y)  { 
            // La fonction a une variable locale :  
            // un tableau t de taille 16 qui contient des caractères. 
            char t[16] ; 
            // Nous pouvons donner des valeurs initiales aux entrées du tableau. 
            // initialize est une fonction dont les détails ne nous intéresseront pas. 
            initialize(t) ; 
            // Puis nous donnons la valeur y à l’entrée x de t. 
           t[x] = y ; 
            // Le résultat 0 indique juste que la fonction a bien tourné. 
           return 0 ; 
           } 

An example 



So what? 

• Threat model: The attacker chooses inputs. 

 The attacker can (try to) modify a location of  
      their choice at some offset from t’s address. 

• Some possible questions: 

– Can the attacker find the vulnerability and call f? 

– Can the attacker identify good target locations? 

– Can the attacker predict t’s address? 

– Will the exploit work reliably? cause crashes? 

 

 

 

 



Two examples of low-level attacks  
[from Chen, Xu, Sezer, Gauriar, and Iyer] 

• Attack NULL-HTTPD (a Web server on Linux). 
– POST commands can trigger a buffer overflow. 

     Change the configuration string of the CGI-BIN path:  
– The mechanism of CGI: 

• Server name = www.foo.com 
• CGI-BIN = /usr/local/httpd/exe 
• Request URL = http://www.foo.com/cgi-bin/bar 
 Normally, the server runs /usr/local/httpd/exe/bar 

– An attack: 
• Exploiting the buffer overflow, set CGI-BIN = /bin 
• Request URL = http://www.foo.com/cgi-bin/sh 
 The server runs /bin/sh 

  The attacker gets a shell on the server. 



• Attack SSH Communications SSH Server: 

void do_authentication(char *user, ...) { 

    int auth = 0;           /* initially auth is false  */ 

    ... 

    while (!auth) { 

   /* Get a packet from the client */ 

      type = packet_read(); /* has overflow bug         */  

      switch (type) {       /* can make auth true       */  

      ... 

      case SSH_CMSG_AUTH_PASSWORD: 

       if (auth_password(user, password)) 

            auth = 1; 

      case ... 

    } 

    if (auth) break;  

   } 

 /* Perform session preparation. */ 

 do_authenticated(…); 

}  
  The attacker circumvents authentication. 



• Attack SSH Communications SSH Server: 

void do_authentication(char *user, ...) { 

    int auth = 0;           /* initially auth is false  */ 

    ... 

    while (!auth) { 

   /* Get a packet from the client */ 

      type = packet_read(); /* has overflow bug         */  

      switch (type) {       /* can make auth true       */  

      ... 

      case SSH_CMSG_AUTH_PASSWORD: 

       if (auth_password(user, password)) 

            auth = 1; 

      case ... 

    } 

    if (auth) break;  

   } 

 /* Perform session preparation. */ 

 do_authenticated(…); 

}  
  The attacker circumvents authentication. 

 

• These are data-only attacks.  
 

• The most classic attacks often inject code.  
• Injecting code is also central in higher-level 

attacks such as SQL injection and XSS. 
 



Software security:  
some approaches 

• Avoiding software flaws: 

– Static analysis and proofs of correctness. 

– Safer programming languages and libraries. 

• Reducing the impact of software flaws: 

– Various run-time mitigation techniques. 

– Defense in depth (e.g., use sacrificial machines). 

– Software updates. 



Low-level attacks and defenses 



Run-time protection: the arms race 

• Many attack methods: 

– Buffer overflows 

– Jump-to-libc exploits 

– Use-after-free exploits 

– Exception overwrites 

– … 

• Many defenses: 

– Stack canaries 

– Safe exception handling 

– NX data 

– Layout randomization 

– … 

• Not necessarily perfect 
in a precise sense 

• Nor all well understood 

• But useful mitigations 

 





• The expectation is that the contents of arg is at most 
of size n. 

define function f(arg) =  
    let t be a local variable of size n; 
    copy contents of arg into t; 
             … 
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• If this size is too big and not checked (either statically 
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• A known quantity (fixed or random) can be inserted 
between the local variable and the return address so 
that any corruption can be detected. 

define function f(arg) =  
    let t be a local variable of size n; 
    copy contents of arg into t; 
             … 

Stack canaries and cookies 

… (nothing yet) “tweety” f’s caller address 
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• A known quantity (fixed or random) can be inserted 
between the local variable and the return address so 
that any corruption can be detected. 

define function f(arg) =  
    let t be a local variable of size n; 
    copy contents of arg into t; 
             … 

Stack canaries and cookies 

… (nothing yet) “tweety” f’s caller address 

     local variable t      canary                   return address 

… arg contents = …   new return address  + code … 

First 
 
Later !!!! 



There are more things 

• Stack canaries and cookies can be effective in 
impeding many buffer overflows on the stack. 

But: 

• They need to be applied consistently. 

• Sometimes they are judged a little costly. 

• They do not help if corrupted data (e.g., a 
function pointer) is used before the return. 

• And there are many kinds of overflows, and 
many other kinds of vulnerabilities. 

 



NX (aka DEP) 

Many attacks rely on injecting code. 

 So a defense is to require that data that  
      is writable cannot be executed. 

• This requirement is supported by mainstream 
hardware (e.g., x86 processors). 

 



NX (aka DEP) 

Many attacks rely on injecting code. 

 So a defense is to require that data that  
      is writable cannot be executed.* 

• This requirement is supported by mainstream 
hardware (e.g., x86 processors). 

 

* An exception must be made in order to allow 
compilation (e.g., JIT compilation for JavaScript). 



What bytes will the CPU interpret? 

• Mainstream hardware typically places few 
constraints on control flow. 

• A call can lead to many places: 

Safe code/data 

Possible control-flow destination 

x86 x86 RISC/NX RISC/NX x86/NX x86/NX 

Data memory 

Code memory 

for  function A 

Code memory 

for  function B 



Executing existing code 

• With NX defenses, attackers cannot simply 
inject data and then run it as code. 

• But attackers can still run existing code:  

– the intended code in an unintended state, 

– an existing function, such as system(), 

– even dead code, 

– even code in the middle of a function, 

– even “accidental” code (e.g., starting  
half-way in a long x86 instruction). 



An example of accidental x86 code 
[Roemer et al.] 

Two instructions in the entry point ecb_crypt are 
encoded as follows: 

f7 c7 07 00 00 00   test $0x00000007, %edi 

0f 95 45 c3    setnzb -61(%ebp) 

Starting one byte later, the attacker instead obtains 

c7 07 00 00 00 0f   movl $0x0f000000, (%edi) 

95     xchg %ebp, %eax 

45     inc %ebp 

c3     ret 



Layout randomization 

Attacks often depend on addresses. 

 Let us randomize the addresses! 

– Considered for data at least since the rise of large 
virtual address spaces  
(e.g., [Druschel & Peterson, 1992] on fbufs). 

– Present in Linux (PaX) and Windows (ASLR). 
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Implementations 

• The randomization can be 
performed at build, install, 
boot, or load time. 

• It may be at various 
granularities. 

• It need not have performance 
cost, but it may complicate 
compatibility. 
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Layout randomization depends on 
secrecy, but… 

• The secrecy is not always strong. 

– E.g., there cannot be much address randomness 
on 32-bit machines. 

– E.g., low-order address bits may be predictable. 

• The secrecy is not always well-protected. 

– Pointers may be disclosed. 

– Functions may be recognized  
by their behavior. 



Layout randomization depends on 
secrecy, but… 

• This secrecy is not always effective. 

– “Heap spraying” can fill parts of the address space 
predictably, including with JIT-compiled code. 
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Layout randomization depends on 
secrecy, but… 

• This secrecy is not always effective. 

– “Heap spraying” can fill parts of the address space 
predictably, including with JIT-compiled code. 

 

 

Source: Ratanaworabhan, Livshits, and Zorn (2009) 



Layout randomization depends on 
secrecy, but… 

• This secrecy is not always effective. 

– “Heap spraying” can fill parts of the address space 
predictably, including with JIT-compiled code. 

– “Heap feng shui” influences heap layout *Sotirov]. 

– … 

 



Layout randomization: status 

This is an active area, with 

• variants and ongoing improvements to the 
randomization and its application, 

• variants of the attacks, 

• techniques detecting or mitigating the attacks. 

 

Overall, randomization is widespread and seems 
quite effective but not a panacea. 

 



Diverting control flow 

• Many attacks cause some sort of subversion of 
the expected control flow. 

 

 

– E.g., an argument that is “too large” can cause a 
function to jump to an unexpected place.  

• Several techniques prevent or mitigate the 
effects of many control-flow subversions. 

– E.g., canaries help prevent some bad returns. 

 

 

 



Control-flow integrity (CFI) 

• CFI means that execution proceeds according 
to a specified control-flow graph (CFG). 

• CFI is a basic property that thwarts a large 
class of attacks. 

check 

operation 



What bytes will the CPU interpret, 
with CFI? 

• E.g., we may allow jumps to the start of any 
function (defined in a higher-level language): 

x86 x86 RISC/NX RISC/NX x86/NX x86/NX x86/CFI x86/CFI 

Data memory 

Code memory 

for  function A 

Code memory 

for  function B 

Possible control-flow destination 

Safe code/data 



What bytes will the CPU interpret, 
with CFI? (cont.) 

• Or we may allow jumps the start of B only 
from a particular call site in A: 

x86 x86 RISC/NX RISC/NX x86/NX x86/NX x86/CFI x86/CFI 

Data memory 

Code memory 

for  function A 

Code memory 

for  function B 

Possible control-flow destination 

Safe code/data 



Some implementation 
strategies for CFI 

1. A fast interpreter performs control-flow 
checks (“Program Shepherding”). 

2. A compiler emits code with control-flow 
checks (as in WIT). 

3. A code rewriter adds control-flow checks  
(as in PittSFIeld, where all control-flow 
targets are required to end with two 0s). 



A rewriting-based system 
[with Budiu, Erlingsson, Ligatti, Peinado, Necula, and Vrable] 

 

 

 

 

 

 

• The rewriting inserts guards to be executed at 
run-time, before control transfers. 

• It need not be trusted, because of the verifier. 
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   ECX := Mem[ESP + 4] 
   EDX := Mem[ESP + 8] 
   ESP := ESP - 0x14 

   // ... 

   push Mem[EDX + 4] 
   push Mem[EDX] 
   push ESP + 8 
   call ECX 

   // ... 

   EAX := Mem[ESP + 0x10] 
   if EAX != 0 goto L    

   EAX := Mem[ESP] 

L: ... and return 

? 

Machine-code basic blocks 

Example 

• Code uses data and  
function pointers, 

• susceptible to effects of  
memory corruption. 

int foo(fptr pf, int* pm) {  
  int err; 
  int A[4]; 
 

  // ... 
 

  pf(A, pm[0], pm[1]); 
 

  // ... 
 

  if( err ) return err; 
  return A[0]; 
} 
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Example (cont.) 

• We add guards for  
checking control transfers. 

• These guards are “inline  
reference monitors”. 

int foo(fptr pf, int* pm) {  
  int err; 
  int A[4]; 
 

  // ... 
 

  pf(A, pm[0], pm[1]); 
 

  // ... 
 

  if( err ) return err; 
  return A[0]; 
} 

C
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o
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e 
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   ECX := Mem[ESP + 4] 
   EDX := Mem[ESP + 8] 
   ESP := ESP - 0x14 

   // ... 

   push Mem[EDX + 4] 
   push Mem[EDX] 
   push ESP + 8 
   cfiguard(ECX, pf_ID) 
   call ECX 

   // ... 

   EAX := Mem[ESP + 0x10] 
   if EAX != 0 goto L    

   EAX := Mem[ESP] 

L: ... and return 

Machine-code basic blocks 



 // ... 

 ... 
 cfiguard(ECX, pf_ID) 
 call ECX  … 

 ret 

pf 

Machine code 

 // ... 

 ... 
 EAX := 0x12345677 
 EAX := EAX + 1 
 if Mem[ECX-4] != EAX goto ERR 
 call ECX 

 ret 

Machine code with 0x12345678 as CFI guard ID 

0x12345678 

A CFI guard 

• A CFI guard matches IDs at source and target. 

– IDs are constants embedded in machine code. 

– IDs are not secret, but must be unique. 

  pf(A, pm[0], pm[1]); 
 

  // ... 

C source code 



Proving that CFI works 

• Some of the recent systems come with (and 
were guided by) proofs of correctness. 

• The basic steps may be: 

1. Define a machine language and its semantics. 

2. Define when a program has appropriate 
instrumentation, for a given control-flow graph. 

3. Prove that all executions of programs with 
appropriate instrumentation follow the 
prescribed control-flow graphs. 



1. A small model of a machine 

• Instructions: nop, addi, movi, bgt, jd, jmp, ld, st. 

• States: each state is a tuple that includes 

– code memory Mc 

– data memory Md 

– registers R 

– program counter pc 

• Steps: transition relations define the possible 
state changes of the machine. 



1. A small model of a machine 



1. A small model of a machine 

Dc : instruction decoding function 



1. A small model of a machine 



1. A small model of a machine 

+ Md  could change at any time (because of attacker actions). 



2. Example condition on 
instrumentation 

Computed jumps occur 
only in context of a specific  
instruction sequence: 

 



2. Example condition on 
instrumentation 

Computed jumps occur 
only in context of a specific  
instruction sequence: 

 
HALT is the address of a 
halt instruction. 

IMM is a constant that 
encodes the allowed label 
at the jump target. 

(For this simple model,  
we do not need to add 1.) 

 



3. A result 

Let S0 be a state with pc = 0 and code memoryMc that 
satisfies the instrumentation condition for a given CFG. 

Suppose S0 S1 S2  … 
where each  transition is either a normal n step or 
an attacker step that changes only data memory. 

For each i, if Si n Si + 1 then pc at Si + 1 is one of the 
allowed successors of pc at Si according to the CFG. 
 

Proof: by a tedious induction. 



Software-based fault isolation 

• CFI does not assume memory protection. 

• But it enables memory protection,  
i.e., “software-based fault isolation” (SFI). 

• Again, there are several possible  
implementations of SFI. 

– E.g., by code rewriting, with guards on 
memory operations. 

check 

memory  
operation 



A recent system:  
Native Client (NaCl) [Yee et al.] 
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Security in  
programming languages 



Security in programming languages 

• Languages have long been related to security. 

• Modern languages should contribute to security: 

– Constructs for protection (e.g., objects). 

– Techniques for static analysis,  
in particular for ensuring safety by typechecking.  

– A tractable theory, with sophisticated methods. 

• Several security techniques rely on language 
ideas, with static and dynamic checks. 



A class with a secret field 

class C { 

    // the field 
    private int x; 

    // a constructor 
    public C(int v) { x = v; } 

} 
 

// two instances of C 

C c1 = new C(17); 

C c2 = new C(28); 

• A possible conjecture: 
Any two instances of this 
class are observationally 
equivalent (that is, they 
cannot be distinguished 
within the language). 

• More realistic examples 
use constructs similarly. 

• Objects are unforgeable. 
E.g., integers cannot be 
cast into objects. 



Mediated access [example from A. Kennedy]  

   class Widget {// No checking of argument 
  virtual void Operation(string s) {…}; 
} 
class SecureWidget : Widget { 
  // Validate argument and pass on 
  // Could also authenticate the caller 
  override void Operation(string s) { 
    Validate(s); 
    base.Operation(s); 
  } 
} 
… 
SecureWidget sw = new SecureWidget(); 

  sw.Operation(“Nice string”); 
// Can’t avoid validation of argument 



Caveats 

Mismatch in characteristics: 

• Security requires simplicity 
and minimality. 

• Common programming 
languages are complex. 

Mismatch in scope: 

• Language descriptions 
rarely specify security. 
Implementations may or 
may not be secure. 

• Security is a property of 
systems (not languages). 
Systems typically include 
much security machinery 
beyond what is given in 
language definitions. 
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Mediated access 

   class Widget {// No checking of argument 
  virtual void Operation(string s) {…}; 
} 
class SecureWidget : Widget { 
  // Validate argument and pass on 
  // Could also authenticate the caller 
  override void Operation(string s) { 
    Validate(s); 
    base.Operation(s); 
  } 
} 
… 
SecureWidget sw = new SecureWidget(); 

  sw.Operation(…); 
// Can’t avoid validation of argument 

// In IL (pre-2.0), make a direct call 
// on the superclass: 
ldloc sw 
ldstr “Invalid string” 
call void Widget::Operation(string) 



Other examples 

There are many more examples,  
for Java, C#, and other languages. 

• In each case, some observational 
equivalence that holds in  
the source language does  
not hold in implementations. 

• We may say that the translations  
are not fully abstract. 

• Typechecking helps,  
but it does not suffice. 

High-level language 
 

 

Implementation language 
 

 

T 



Alternatives 

• One may ignore the security of translations 

– when low-level code is signed by a trusted party, 

– if one analyzes low-level code. 

    These alternatives are not always satisfactory. 

• In other cases, translations should preserve at 
least some security properties; for example: 

– limited versions of full abstraction  
(e.g., for certain programming idioms), 

– the secrecy of pieces of data labelled as secret, 

– fundamental guarantees about control flow. 



Closing comments 



Abstractions and security 

Abstractions are common 
in computing, e.g.: 

– function calls, 

– objects with private 
components, 

– secure channels. 

Clever implementation 
techniques abound too: 

– stacks, 

– static and dynamic 
access checks, 

– cryptography. 

Implementations often need to work in interaction with 
(malicious?) systems that do not use the abstractions. 
 



Some reading 

• Úlfar Erlingsson’s tutorial paper “Low-level 
Software Security: Attacks and Defenses” 
(2007). 

• “Protection in Programming Languages”, by 
Jim Morris (1973). 

• “Securing the .NET Programming Model”, by 
Andrew Kennedy (2006). 


