
Cryptography

Chaire Informatique et sciences numériques
Collège de France, cours du 27 avril 2011

Cryptography and
computer security

• Cryptography is not the same as security.

• Cryptography is seldom the weakest link or
the heart of the matter in security.

– Cryptography is not broken, it is circumvented.
[attributed to A. Shamir]

– If you think that cryptography is the answer to
your problem then you don’t understand
cryptography and you don’t understand your
problem. [attributed to R. Needham]

Cryptography and
computer security (cont.)

• The applications of cryptography in security
are broad and significant.

• They have shaped both fields.

– Cryptographic constructions are informed by
those applications.

– Many computer systems include special support
for cryptography.

Shared-key encryption

(a.k.a. symmetric encryption)

Shared-key encryption

• E and D are algorithms that use a same key K.

– We write EK and DK for the algorithms for a given
value of K.

ciphertext
(data under K)

E D

plaintext data plaintext data

shared key K

Shared-key encryption

• E and D are algorithms that use a same key K.

– We write EK and DK for the algorithms for a given
value of K.

• The main goal is that EK(M) should conceal M.

ciphertext
(data under K)

E D

plaintext data plaintext data

shared key K

Shared-key encryption

• E and D are algorithms that use a same key K.

– We write EK and DK for the algorithms for a given
value of K.

• The main goal is that EK(M) should conceal M.

• E and D may be public.

• K should be secret.

ciphertext
(data under K)

E D

plaintext data plaintext data

shared key K

Shared-key encryption

• E and D are algorithms that use a same key K.

– We write EK and DK for the algorithms for a given
value of K.

• The main goal is that EK(M) should conceal M.

• E and D may be public (Kerckhoff’s principle).

• K should be secret.

ciphertext
(data under K)

E D

plaintext data plaintext data

shared key K

Source: www.petitcolas.net/fabien/kerckhoffs/

Shared-key encryption methods

• Substitution ciphers:

E D

plaintext data:


plaintext data:


shared key K:
(,,,)

 ciphertext
(data under K):


 

 

 

 

 

 

 

 

Shared-key encryption methods

• Substitution ciphers:

– easy to understand and to run,

– also easy to break.

E D

plaintext data:


plaintext data:


shared key K:
(,,,)

 ciphertext
(data under K):


 

 

 

 

 

 

 

 

Shared-key encryption methods

• XOR () with one-time pads:

ciphertext
(data under K):
plaintext  K = 01101011

E D

plaintext data:
00001111

plaintext data:
(ciphertext  K) = 00001111

shared key K:
01100100

 0 1

0 0 1

1 1 0

Shared-key encryption methods

• XOR () with one-time pads:

– easy to understand, just a little harder to run,

– hard to deploy: each key K can be used only once
(for otherwise an attacker can get the XOR of two plaintexts M and N from
their ciphertexts: (M  K)  (N  K) = (M  N)),

– impossible to break if K is truly random.

ciphertext
(data under K):
plaintext  K = 01101011

E D

plaintext data:
00001111

plaintext data:
(ciphertext  K) = 00001111

shared key K:
01100100

 0 1

0 0 1

1 1 0

Shared-key encryption methods

• Modern methods:

– easier to deploy,

– hard to break (we believe),

– harder to understand and moderately hard to run
(computers are needed),

– still often based on fast low-level operations
(e.g., XORs, shifts):
a few thousand operations are typically needed
for the smallest messages ( ~ microseconds).

Concerns (summary)

• Security

• Key distribution

• Execution complexity

Some themes (summary)

1. Attackers with certain capabilities and
information (e.g., some ciphertexts)

2. One-way computation (e.g., encryption)

3. Randomness (e.g., of keys)

1. Types of attacks

• Ciphertext only

• Known plaintext

• Chosen plaintext

• Chosen ciphertext

Some practical chosen-ciphertext
attacks [Bleichenbacher, Vaudenay, and others]

Ciphertext

Format ok / not ok

Ciphertext

Format ok / not ok

… … …
(some number of attempts,
e.g., just 256)

Server

(knows
the key)

Encryption without authentication is often useless and even risky:

Eventually
the attacker can
deduce the key! Recent attacks exploit

“oracles” for the
correctness of padding
[Duong & Rizzo].

1. Types of attacks (cont.)

• Ciphertext only

• Known plaintext

• Chosen plaintext

• Chosen ciphertext

• Obtaining key material somehow, e.g., via

– a software flaw (e.g., buffer overflow),

– side-channels (e.g., power analysis),

– social engineering or “rubber-hose cryptanalysis”.

Source: xkcd.com

2. One-way functions

f is a one-way function if:

• given M, it is easy to compute f(M);

• for most M, given f(M) it is hard to find M or
any M’ such that f(M) = f(M’).

Examples:

• Multiplication is (believed to be) a one-way
function on sufficiently large prime numbers.

• If EK is a good encryption function and K is
secret, then EK must be one-way.

M f(M)
easy

hard

3. Randomness

• Good (pseudo)random numbers are crucial.

– With them, we have at least the one-time pad.

– Without, keys are bad, algorithms are worthless.

3. Randomness

• Good (pseudo)random numbers are crucial.

– With them, we have at least the one-time pad.

– Without, keys are bad, algorithms are worthless.

• Some sources rely on physical phenomena
(noisy diodes, air turbulence on disks).

– Such sources may be slow and yield patterns.

 Spread and stretch the randomness.

3. Randomness

• Good (pseudo)random numbers are crucial.

– With them, we have at least the one-time pad.

– Without, keys are bad, algorithms are worthless.

• Some sources rely on physical phenomena
(noisy diodes, air turbulence on disks).

– Such sources may be slow and yield patterns.

 Spread and stretch the randomness.

Theorem [Håstad et al.]: Pseudorandom generators
can be constructed from one-way functions.
(The converse is true too, and easier.)

Approximating the one-time pad:
stream ciphers (e.g., RC4, SEAL)

• Start with a fixed-size key K0 (maybe random).

• Stretch it into a key K as long as the plaintext.

• Then XOR.

ciphertext
(data under K):
plaintext  K = 01101011

E D

plaintext data:
00001111

plaintext data:
(ciphertext  K) = 00001111

derived key K:
01100100

short key K0:
 110

Another approach:
block ciphers (e.g., AES)

• Block ciphers apply keys of fixed length to
plaintext blocks of fixed length.

• They are extended to longer message by
various modes of operation.

– ECB (electronic code book): long plaintexts are
encrypted block by block, each independently.

– CBC (cipher block chaining): encryptions are
chained.

 …

ECB

00001111 00001111 10001111 00001001

01101100 01101100 10111110 00111011

00001111 00001111 10001111 00001001

Plaintext broken into blocks
(here, each just 8 bits).

Ciphertext
computed
block by
block.

Same
key K.

ECB

• Blocks can be
exchanged
(no integrity).

00001111 00001111 10001111 00001001

01101100 01101100 10111110 00111011

00001111 00001111 10001111 00001001

Plaintext broken into blocks
(here, each just 8 bits).

Ciphertext
computed
block by
block.

Same
key K.

ECB

• Blocks can be
exchanged
(no integrity).

• Equalities
between
blocks leak
(no secrecy).

 Not generally
 a good mode!

00001111 00001111 10001111 00001001

01101100 01101100 10111110 00111011

00001111 00001111 10001111 00001001

Plaintext broken into blocks
(here, each just 8 bits).

Ciphertext
computed
block by
block.

Same
key K.

CBC

00001111 00001111 10001111 00001001

01101100 01101100 10111110 00111011

00001111 00001111 10001111 00001001

Plaintext broken into blocks
(here, each just 8 bits).

Same
key K.

   

IV

   

Ciphertext
computed
block by
block.

• Each plaintext
block is first
XORed with the
previous
ciphertext block.

• The first is
XORed with an
Initialization
Vector (IV).

CBC

00001111 00001111 10001111 00001001

00001111 00001111 10001111 00001001

Plaintext broken into blocks
(here, each just 8 bits).

Same
key K.

   

IV

   

Ciphertext
computed
block by
block.

• Each plaintext
block is first
XORed with the
previous
ciphertext block.

• The first is
XORed with an
Initialization
Vector (IV).

01101100 01101100 10111110 00111011

Probabilistic encryption

• Encryption can be randomized. That is, it may
take a random number as a third argument.

• Thus, two encryptions of a plaintext with a key
need not be identical.

One construction (from a non-probabilistic system (E,D)):
E’K,r(M) = pair of r and EK(M  r)
D’K(N) = (first element of N  DK(second element of N))

ciphertext
(data under K using r)

E D

plaintext data plaintext data

shared key K random r

Multiple encryption

• So we know how to go from short messages to
long messages. Can we also go from short keys
to long keys, and get stronger encryption?

• A first idea is to nest two encryptions, as in
EK2(EK1(M)), with different keys K1 and K2.

– The hope is that the result will be as strong as if
we had a longer key…

– E.g., if K1 and K2 have length n, and breaking the
encryption takes time 2n , then breaking the
double encryption should take time 22n … ???

A known-plaintext attack
on double encryption

Given M and C = EK2(EK1(M)), find K1 and K2:

• Build a sorted table of pairs (EK(M), K) for all K,
and a sorted table of pairs (DK’(C), K’) for all K’.

• If (EK(M), K) and (DK’(C), K’) are such that EK(M)
= DK’(C), consider that (K, K’) is a candidate.

M C
EK() DK’()

A known-plaintext attack
on double encryption

Given M and C = EK2(EK1(M)), find K1 and K2:

• Build a sorted table of pairs (EK(M), K) for all K,
and a sorted table of pairs (DK’(C), K’) for all K’.

• If (EK(M), K) and (DK’(C), K’) are such that EK(M)
= DK’(C), consider that (K, K’) is a candidate.

M C
EK() DK’()

A known-plaintext attack
on double encryption

Given M and C = EK2(EK1(M)), find K1 and K2:

• Build a sorted table of pairs (EK(M), K) for all K,
and a sorted table of pairs (DK’(C), K’) for all K’.

• If (EK(M), K) and (DK’(C), K’) are such that EK(M)
= DK’(C), consider that (K, K’) is a candidate.

• There should be only one or few candidates.
All but one can be discarded by checking a few
other plaintext/ciphertext pairs.

Time: a fixed number of iterations over the key
space (so, more like 2n+1 than 22n).

Perspectives

• It is easier and safer to rely on encryption
schemes with variable key lengths by design.

• But some techniques with multiple encryption
are strong. (This is not easy to prove.)

• Not all “intuitive” techniques work as well as
we might hope.

 “Don’t do this at home.”

Public-key encryption

(a.k.a. asymmetric encryption)

Public-key encryption

• Public-key encryption generalizes shared-key
encryption:

– Each principal has a secret key SK for decrypting.

– The inverse of the secret key is a public key PK for
encrypting, with the property DSK(EPK(M)) = M.

• It usually relies on more mathematics, and it is
usually slower (~ milliseconds).

• Key-distribution services need to know and
transmit only public keys.

RSA

Encryption key:

• a modulus N = pq, where p and q are two
(randomly chosen, large) primes,

• an exponent e that has no factors in common
with p − 1 or q − 1.

E(N, e)(M) = Me mod N

Decryption key: the factors p and q.
D(p, q)(C) = Cd mod N where d is chosen so that
 ed = 1 mod (p − 1)(q − 1)

RSA (cont.)

With a little number theory:

• d can be found efficiently: given e, p, and q,
one can use the GCD algorithm to find d and k
such that ed + k(p − 1)(q − 1) = 1.

• Cd = Med = M 1−k(p−1)(q−1) = M mod N.

Diffie-Hellman

• Let p be a prime and g a generator
of Zp

*(chosen with a little care).

• A invents x and publishes gx mod p.
B invents y and publishes gy mod p.

– x and y serve as secret keys.

– gx mod p and gy mod p serve as public keys.

A
(knows x)

B
(knows y)

gy

gx

Diffie-Hellman

• Let p be a prime and g a generator
of Zp

*(chosen with a little care).

• A invents x and publishes gx mod p.
B invents y and publishes gy mod p.

– x and y serve as secret keys.

– gx mod p and gy mod p serve as public keys.

• Both A and B can compute gxy mod p.

– It is a shared secret (but not authenticated).

– From gxy, A and B can for example compute keys.

A
(knows x)

B
(knows y)

gy

gx

Homomorphic encryption

A property of pure RSA

Given

• E(N, e)(M1) = M1
e mod N

• E(N, e)(M2) = M2
e mod N

anyone can compute

• E(N, e)(M1M2) = (M1M2)e mod N
= E(N, e)(M1)E(N, e)(M2) mod N.

(This homomorphism is often false in standards
based on RSA, but holds for pure RSA.)

Homomorphic encryption
(more generally)

• An encryption scheme is fully homomorphic if,
for any function f on plaintexts,
there is a function f’ on ciphertexts such that
f(M1,…,Mn) = DSK(f’(EPK(M1),…,EPK(Mn)))
or, in the symmetric case,
f(M1,…,Mn) = DK(f’(EK(M1),…,EK(Mn))).

The existence of such schemes was a big open
problem, recently solved by C. Gentry. Costs
seem to be measured in seconds and minutes.

Homomorphic encryption
and the clouds

The cloud can help a client
in computing f without
seeing plaintext data.

Cloud computing

service

Client with private data
M1,…,Mn and a secret

symmetric key K

EK(M1)
 …
EK(Mn)

f’(EK(M1),…,EK(Mn))

Homomorphic encryption
and the clouds

Public-key versions allow
more generality.

Cloud computing

service

Client with secret
asymmetric key

SK

EPK(M1)
 …
EPK(Mn)

f’(EPK(M1),…,EPK(Mn))

Anyone
with data
M1,…,Mn

Homomorphic encryption
and the clouds

Applications?

• Searches on
private data.

• Any analysis of
private data.

This has caused much
excitement, but is not
yet practical in general.
For some applications,
special methods may
be faster.

Cloud computing

service

Client with secret
asymmetric key

SK

EPK(M1)
 …
EPK(Mn)

f’(EPK(M1),…,EPK(Mn))

Anyone
with data
M1,…,Mn

Hashes, MACs, and signatures

One-way hash functions
(e.g., hopefully SHA-2)

f is collision-resistant if it is hard to find distinct
M and N such that f(M)=f(N).

f is a one-way hash function (or cryptographic
hash function) if:

• f is collision-resistant,

• f is one-way,

• f(M) is of fixed size.

Server

An example application:
user authentication [Needham, 1967]

Using a one-way hash function f, a principal can
recognize M without knowing it in advance.

For user authentication, this means that
passwords do not need to be stored in cleartext.

Alice

user name f(password)

Alice 987987

Bob 876868

 … …

Server

“Alice”,
password= “123456”

An example application:
user authentication [Needham, 1967]

Using a one-way hash function f, a principal can
recognize M without knowing it in advance.

For user authentication, this means that
passwords do not need to be stored in cleartext.

Alice

user name f(password)

Alice 987987

Bob 876868

 … …

Server

“Alice”,
password= “123456”

An example application:
user authentication [Needham, 1967]

Using a one-way hash function f, a principal can
recognize M without knowing it in advance.

For user authentication, this means that
passwords do not need to be stored in cleartext.

Alice

user name f(password)

Alice 987987

Bob 876868

 … …

f

=?

Server

“Alice”,
password= “123456”

An example application:
user authentication [Needham, 1967]

Using a one-way hash function f, a principal can
recognize M without knowing it in advance.

For user authentication, this means that
passwords do not need to be stored in cleartext.

Alice

user name f(password)

Alice 987987

Bob 876868

 … …

f

=?

Yes access / No access

An example application:
user authentication [Needham, 1967]

Not always done perfectly…

One-way hash functions:
the Merkle–Damgård construction

One-way hash functions are often defined by
iterating a basic compression function h:

– f(M1) = h(IV,M1)

– f(M1…Mi+1) = h(f(M1…Mi),Mi+1) for i = 1..(n  1).

00001111 00001111 10001111 00001001

h h h h IV

 M1 . . . Mn

f(M1…Mn)

Blocks of some fixed, small size.

One strengthening: add the length as a last block.

Message authentication codes
or MACs

• Two principals know a key K.

• Both principals apply a function MACK for
signing and for checking signatures:

– To sign M, append MACK(M).

– To verify a signature N of M, check N = MACK(M).

Message authentication codes
or MACs: unforgeability

MACK(M) should be easy to compute from K and
M, but hard without knowing K.
More precisely:

• Given MACK(M1), . . ., MACK(Mn) (but not K),
it is hard to compute MACK(M), for a new M.

• So MACK(Mi) should not leak K, but it may
reveal Mi.

Constructing MACs

• Typically, MACs are based on hash functions
and on encryption functions.

• For example, given a one-way hash function f,
we may try to set: MACK(M)= f(KM).

Here KM is
the concatenation

of K and M.

Constructing MACs

• Typically, MACs are based on hash functions
and on encryption functions.

• For example, given a one-way hash function f,
we may try to set: MACK(M)= f(KM).
But this is subject to an extension attack:
MACK(M1…Mn+1) = h(MACK(M1…Mn),Mn+1) if f
is defined from the compression function h.

Constructing MACs

• Typically, MACs are based on hash functions
and on encryption functions.

• For example, given a one-way hash function f,
we may try to set: MACK(M)= f(KM).
But this is subject to an extension attack:
MACK(M1…Mn+1) = h(MACK(M1…Mn),Mn+1) if f
is defined from the compression function h.

• There are better ideas, for example:
MACK(M) = f(K f(KM)) [see Krawczyk et al.’s HMAC]

Public-key signatures (e.g., RSA)

• Each principal has a secret key for signing.

• The inverse of the secret key is a public key for
checking signatures.

Closing comments

Cryptography summary

The same key is used for
encrypting and decrypting.

The same key is used for
signing and checking
signatures.

The public key is used for
encrypting.
The corresponding secret
key is used for decrypting.

The secret key is used for
signing.
The corresponding public
key is used for checking
signatures.

Encryption (for secrecy) Signatures (for authenticity)

Symmetric
a.k.a.
shared key

Asymmetric
a.k.a.
public key

It is not safe, in general, to assume anything else !!!
In particular: Decryption success/failure may not be evident.
Encryptions may not look random, and may not provide integrity.

Some reading

• “A Method for Obtaining Digital Signatures
and Public-Key Cryptosystems”, by Rivest,
Shamir, and Adleman.

• The Handbook of Applied Cryptography.

• Jacques Stern’s book La Science du Secret.

• “Why Cryptosystems Fail”, by Ross Anderson.

• “Computing Arbitrary Functions on Encrypted
Data”, by Craig Gentry.

