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Cryptography and  
computer security 

• Cryptography is not the same as security. 

• Cryptography is seldom the weakest link or 
the heart of the matter in security. 

– Cryptography is not broken, it is circumvented. 
[attributed to A. Shamir] 

– If you think that cryptography is the answer to 
your problem then you don’t understand 
cryptography and you don’t understand your 
problem. [attributed to R. Needham] 



Cryptography and  
computer security (cont.) 

• The applications of cryptography in security 
are broad and significant. 

• They have shaped both fields. 

– Cryptographic constructions are informed by 
those applications. 

– Many computer systems include special support 
for cryptography. 



Shared-key encryption 

(a.k.a. symmetric encryption) 
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Shared-key encryption 

• E and D are algorithms that use a same key K. 

– We write EK and DK for the algorithms for a given 
value of K. 

• The main goal is that EK(M) should conceal M. 

• E and D may be public (Kerckhoff’s principle). 

• K should be secret. 

ciphertext  
(data under K) 

E D 

plaintext data plaintext data 

shared key K 



Source: www.petitcolas.net/fabien/kerckhoffs/ 



Shared-key encryption methods 

• Substitution ciphers: 
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Shared-key encryption methods 

• Substitution ciphers: 

– easy to understand and to run, 

– also easy to break. 
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Shared-key encryption methods 

• XOR () with one-time pads: 
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Shared-key encryption methods 

• XOR () with one-time pads: 

– easy to understand, just a little harder to run, 

– hard to deploy: each key K can be used only once 
(for otherwise an attacker can get the XOR of two plaintexts M and N from 
their ciphertexts: (M  K)  (N  K) = (M  N) ), 

– impossible to break if K is truly random. 
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Shared-key encryption methods 

• Modern methods: 

– easier to deploy, 

– hard to break (we believe), 

– harder to understand and moderately hard to run 
(computers are needed), 

– still often based on fast low-level operations 
(e.g., XORs, shifts):  
a few thousand operations are typically needed 
for the smallest messages ( ~ microseconds). 



Concerns (summary) 

• Security 

• Key distribution 

• Execution complexity 



Some themes (summary) 

1. Attackers with certain capabilities and 
information (e.g., some ciphertexts) 

2. One-way computation (e.g., encryption) 

3. Randomness (e.g., of keys) 

 

 

 



1. Types of attacks 

• Ciphertext only 

• Known plaintext 

• Chosen plaintext 

• Chosen ciphertext 

 



Some practical chosen-ciphertext 
attacks [Bleichenbacher, Vaudenay, and others] 

Ciphertext 

Format ok / not ok 

Ciphertext 

Format ok / not ok 

… … … 
(some number of attempts, 
e.g., just 256) 

Server  

(knows 
the key) 

Encryption without authentication is often useless and even risky: 

Eventually  
the attacker can 
deduce the key! Recent attacks exploit  

“oracles” for the  
correctness of padding  
[Duong & Rizzo]. 



1. Types of attacks (cont.) 

• Ciphertext only 

• Known plaintext 

• Chosen plaintext 

• Chosen ciphertext 

 

• Obtaining key material somehow, e.g., via 

– a software flaw (e.g., buffer overflow), 

– side-channels (e.g., power analysis), 

– social engineering or “rubber-hose cryptanalysis”. 

 

 

 

 

 

 

 



Source: xkcd.com 



2. One-way functions 

f is a one-way function if: 

• given M, it is easy to compute f(M); 

• for most M, given f(M) it is hard to find M or 
any M’ such that f(M) = f(M’). 

Examples: 

• Multiplication is (believed to be) a one-way 
function on sufficiently large prime numbers. 

• If EK is a good encryption function and K is 
secret, then EK must be one-way. 

 

 

M f(M) 
easy 

hard 



3. Randomness 

• Good (pseudo)random numbers are crucial. 

– With them, we have at least the one-time pad. 

– Without, keys are bad, algorithms are worthless. 
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3. Randomness 

• Good (pseudo)random numbers are crucial. 

– With them, we have at least the one-time pad. 

– Without, keys are bad, algorithms are worthless. 

• Some sources rely on physical phenomena 
(noisy diodes, air turbulence on disks).  

– Such sources may be slow and yield patterns.  

 Spread and stretch the randomness. 

Theorem [Håstad et al.]: Pseudorandom generators 
can be constructed from one-way functions. 
(The converse is true too, and easier.) 

 



Approximating the one-time pad: 
stream ciphers (e.g., RC4, SEAL) 

• Start with a fixed-size key K0 (maybe random). 

• Stretch it into a key K as long as the plaintext. 

• Then XOR. 

ciphertext  
(data under K):  
plaintext  K = 01101011 

E D 

plaintext data: 
00001111 

plaintext data:  
(ciphertext  K) = 00001111 

derived key K: 
01100100 

short key K0: 
    110 



Another approach:  
block ciphers (e.g., AES) 

• Block ciphers apply keys of fixed length to 
plaintext blocks of fixed length. 

• They are extended to longer message by 
various modes of operation. 

– ECB (electronic code book): long plaintexts are 
encrypted block by block, each independently. 

– CBC (cipher block chaining): encryptions are 
chained. 

     … 



ECB 

00001111 00001111 10001111 00001001 

01101100 01101100 10111110 00111011 

00001111 00001111 10001111 00001001 

Plaintext broken into blocks 
(here, each just 8 bits). 

Ciphertext 
computed 
block by 
block. 

Same 
key K. 
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ECB 

• Blocks can be 
exchanged 
(no integrity). 

• Equalities 
between 
blocks leak 
(no secrecy). 

 Not generally 
     a good mode! 
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Ciphertext 
computed 
block by 
block. 

• Each plaintext 
block is first 
XORed with the 
previous 
ciphertext block. 

• The first is 
XORed with an 
Initialization 
Vector (IV). 



CBC 

00001111 00001111 10001111 00001001 

00001111 00001111 10001111 00001001 

Plaintext broken into blocks 
(here, each just 8 bits). 

Same 
key K. 

    

IV 

    

Ciphertext 
computed 
block by 
block. 

• Each plaintext 
block is first 
XORed with the 
previous 
ciphertext block. 

• The first is 
XORed with an 
Initialization 
Vector (IV). 

01101100 01101100 10111110 00111011 



Probabilistic encryption 

• Encryption can be randomized. That is, it may 
take a random number as a third argument. 

• Thus, two encryptions of a plaintext with a key 
need not be identical. 

One construction (from a non-probabilistic system (E,D)): 
E’K,r(M) = pair of r and EK(M  r) 
D’K(N) = (first element of N  DK(second element of N)) 

ciphertext  
(data under K using r) 

E D 

plaintext data plaintext data 

shared key K random r 



Multiple encryption 

• So we know how to go from short messages to 
long messages. Can we also go from short keys 
to long keys, and get stronger encryption? 

• A first idea is to nest two encryptions, as in 
EK2(EK1(M)), with different keys K1 and K2.  

– The hope is that the result will be as strong as if 
we had a longer key… 

– E.g., if K1 and K2 have length n, and breaking the 
encryption takes time 2n , then breaking the 
double encryption should take time 22n … ??? 



A known-plaintext attack  
on double encryption 

Given M and C = EK2(EK1(M)), find K1 and K2: 

• Build a sorted table of pairs (EK(M), K) for all K, 
and a sorted table of pairs (DK’(C), K’) for all K’. 

• If (EK(M), K) and (DK’(C), K’) are such that EK(M) 
= DK’(C), consider that (K, K’) is a candidate. 

M C 
EK( ) DK’( ) 
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A known-plaintext attack  
on double encryption 

Given M and C = EK2(EK1(M)), find K1 and K2: 

• Build a sorted table of pairs (EK(M), K) for all K, 
and a sorted table of pairs (DK’(C), K’) for all K’. 

• If (EK(M), K) and (DK’(C), K’) are such that EK(M) 
= DK’(C), consider that (K, K’) is a candidate. 

• There should be only one or few candidates. 
All but one can be discarded by checking a few 
other plaintext/ciphertext pairs. 

Time: a fixed number of iterations over the key 
space (so, more like 2n+1 than 22n). 



Perspectives 

• It is easier and safer to rely on encryption 
schemes with variable key lengths by design. 

• But some techniques with multiple encryption 
are strong. (This is not easy to prove.) 

 

• Not all “intuitive” techniques work as well as 
we might hope. 

 “Don’t do this at home.” 

 



Public-key encryption 

(a.k.a. asymmetric encryption) 



Public-key encryption 

• Public-key encryption generalizes shared-key 
encryption: 

– Each principal has a secret key SK for decrypting. 

– The inverse of the secret key is a public key PK for 
encrypting, with the property DSK(EPK(M)) = M. 

• It usually relies on more mathematics, and it is 
usually slower (~ milliseconds). 

• Key-distribution services need to know and 
transmit only public keys. 



RSA 

Encryption key: 

• a modulus N = pq, where p and q are two 
(randomly chosen, large) primes, 

• an exponent e that has no factors in common 
with p − 1 or q − 1. 

E(N, e)(M) = Me mod N 

 
Decryption key: the factors p and q. 
D(p, q)(C) = Cd mod N where d is chosen so that 
                                         ed = 1 mod (p − 1)(q − 1) 



RSA (cont.) 

With a little number theory: 

• d can be found efficiently: given e, p, and q, 
one can use the GCD algorithm to find d and k 
such that ed + k(p − 1)(q − 1) = 1. 

• Cd = Med = M 1−k(p−1)(q−1) = M mod N. 



Diffie-Hellman 

• Let p be a prime and g a generator  
of Zp

*(chosen with a little care). 

• A invents x and publishes gx mod p.  
B invents y and publishes gy mod p. 

– x and y serve as secret keys. 

– gx mod p and gy mod p serve as public keys. 

A  
(knows x) 

B  
(knows y) 

gy 

gx 



Diffie-Hellman 

• Let p be a prime and g a generator  
of Zp

*(chosen with a little care). 

• A invents x and publishes gx mod p.  
B invents y and publishes gy mod p. 

– x and y serve as secret keys. 

– gx mod p and gy mod p serve as public keys. 

• Both A and B can compute gxy mod p. 

– It is a shared secret (but not authenticated). 

– From gxy, A and B can for example compute keys. 

A  
(knows x) 

B  
(knows y) 

gy 

gx 



Homomorphic encryption 



A property of pure RSA 

Given 

• E(N, e)(M1) = M1
e mod N 

• E(N, e)(M2) = M2
e mod N 

anyone can compute 

• E(N, e)(M1M2) = (M1M2)e mod N  
= E(N, e)(M1)E(N, e)(M2) mod N. 

 
(This homomorphism is often false in standards 
based on RSA, but holds for pure RSA.) 



Homomorphic encryption  
(more generally) 

• An encryption scheme is fully homomorphic if, 
for any function f on plaintexts,  
there is a function f’ on ciphertexts such that 
f(M1,…,Mn) = DSK(f’(EPK(M1),…,EPK(Mn))) 
or, in the symmetric case,  
f(M1,…,Mn) = DK(f’(EK(M1),…,EK(Mn))). 

 

The existence of such schemes was a big open 
problem, recently solved by C. Gentry. Costs 
seem to be measured in seconds and minutes. 



Homomorphic encryption  
and the clouds 

The cloud can help a client 
in computing f without 
seeing plaintext data. 

 
Cloud computing 

service 
 

Client with private data 
M1,…,Mn and a secret 

symmetric key K 

EK(M1) 
   … 
EK(Mn) 

f’(EK(M1),…,EK(Mn)) 



Homomorphic encryption  
and the clouds 

Public-key versions allow 
more generality. 

 
Cloud computing 

service 
 

Client with secret 
asymmetric key 

SK 

EPK(M1) 
   … 
EPK(Mn) 

f’(EPK(M1),…,EPK(Mn)) 

Anyone 
with data 
M1,…,Mn 



Homomorphic encryption  
and the clouds 

Applications? 

• Searches on  
private data. 

• Any analysis of  
private data. 

This has caused much 
excitement, but is not  
yet practical in general.  
For some applications, 
special methods may  
be faster. 

 
Cloud computing 

service 
 

Client with secret 
asymmetric key 

SK 

EPK(M1) 
   … 
EPK(Mn) 

f’(EPK(M1),…,EPK(Mn)) 

Anyone 
with data 
M1,…,Mn 



Hashes, MACs, and signatures 



One-way hash functions  
(e.g., hopefully SHA-2) 

f is collision-resistant if it is hard to find distinct 
M and N such that f(M)=f(N). 

f is a one-way hash function (or cryptographic 
hash function) if: 

• f is collision-resistant,  

• f is one-way, 

• f(M) is of fixed size.  



 
 
 
 
 
 

Server 

An example application:  
user authentication [Needham, 1967] 

Using a one-way hash function f, a principal can 
recognize M without knowing it in advance. 

For user authentication, this means that 
passwords do not need to be stored in cleartext. 
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recognize M without knowing it in advance. 

For user authentication, this means that 
passwords do not need to be stored in cleartext. 
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Server 

“Alice”,  
password= “123456” 

An example application:  
user authentication [Needham, 1967] 

Using a one-way hash function f, a principal can 
recognize M without knowing it in advance. 

For user authentication, this means that 
passwords do not need to be stored in cleartext. 

 

Alice 

user name f(password) 

Alice 987987 

Bob 876868 

    …     … 

f 

=? 

Yes access / No access 



An example application:  
user authentication [Needham, 1967] 

 
Not always done perfectly… 



One-way hash functions:  
the Merkle–Damgård construction 

One-way hash functions are often defined by 
iterating a basic compression function h: 

– f(M1) = h(IV,M1) 

– f(M1…Mi+1) = h(f(M1…Mi),Mi+1) for i = 1..(n  1). 

00001111 00001111 10001111 00001001 

h h h h IV 

  M1                . . .         Mn 

f(M1…Mn) 

Blocks of some fixed, small size. 

One strengthening: add the length as a last block. 



Message authentication codes  
or MACs 

• Two principals know a key K.  

• Both principals apply a function MACK for 
signing and for checking signatures: 

– To sign M, append MACK(M). 

– To verify a signature N of M, check N = MACK(M). 



Message authentication codes  
or MACs: unforgeability 

MACK(M) should be easy to compute from K and 
M, but hard without knowing K.  
More precisely: 

• Given MACK(M1), . . ., MACK(Mn) (but not K),  
it is hard to compute MACK(M), for a new M. 

• So MACK(Mi) should not leak K, but it may 
reveal Mi. 



Constructing MACs 

• Typically, MACs are based on hash functions 
and on encryption functions. 

• For example, given a one-way hash function f, 
we may try to set: MACK(M)= f(KM). 
 

Here KM is  
the concatenation  

of K and M. 
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Constructing MACs 

• Typically, MACs are based on hash functions 
and on encryption functions. 

• For example, given a one-way hash function f, 
we may try to set: MACK(M)= f(KM). 
But this is subject to an extension attack: 
MACK(M1…Mn+1) = h(MACK(M1…Mn),Mn+1) if f 
is defined from the compression function h. 

• There are better ideas, for example:  
MACK(M) = f(K f(KM))       [see Krawczyk et al.’s HMAC] 



Public-key signatures (e.g., RSA) 

• Each principal has a secret key for signing. 

• The inverse of the secret key is a public key for 
checking signatures. 



Closing comments 



Cryptography summary 

The same key is used for 
encrypting and decrypting. 

The same key is used for 
signing and checking 
signatures. 

The public key is used for 
encrypting. 
The corresponding secret 
key is used for decrypting. 

The secret key is used for 
signing. 
The corresponding public 
key is used for checking 
signatures. 

Encryption (for secrecy)           Signatures (for authenticity) 

Symmetric 
a.k.a. 
shared key 
 
Asymmetric 
a.k.a. 
public key 

It is not safe, in general, to assume anything else !!! 
In particular: Decryption success/failure may not be evident. 
Encryptions may not look random, and may not provide integrity.  



Some reading 

• “A Method for Obtaining Digital Signatures 
and Public-Key Cryptosystems”, by Rivest, 
Shamir, and Adleman. 

• The Handbook of Applied Cryptography.  

• Jacques Stern’s book La Science du Secret. 

• “Why Cryptosystems Fail”, by Ross Anderson. 

• “Computing Arbitrary Functions on Encrypted 
Data”, by Craig Gentry. 


