Causes de la variation du taux de recombinaison chez les vertébrés

Molly Przeworski Cours #4

Baudat et al. 2013 Nat Rev Gen

https://upload.wikimedia.org/wikipedia/commons/thumb/5/5f/Evolsex-dia2a.svg/250px-Evolsex-dia2a.svg.png

A 2x difference in mean recombination rate Only females recombine

Inter-individual variability in crossover numbers in humans

Observed Recombination Events on the 22 Autosomes, for Male and Female Meioses, within Each Family

	Mean ± SD No. of Recombination Events in							
Family	Mother	Father						
1416	44 ± 6	22 ± 4						
1413	44 ± 7	24 ± 3						
1362	37 ± 4	24 ± 4						
1347	47 ± 7	24 ± 3						
1332	33 ± 4	22 ± 3						
1331	38 ± 7	21 ± 4						
884	40 ± 7	22 ± 4						
102	39 ± 8	23 ± 4						
Overall	40 ± 8	23 ± 4						

From Broman et al. 1998

Fledel-Alon et al. 2011 PLoS One

From Jeffreys et al. 2001

Recombination in the ancestors of the extant sample.

Allelic associations (linkage disequilibrium) among polymorphic sites (SNPs).

modified from Coop and Przeworski 2007

Inferred rates are time-averaged and sexaveraged, "population recombination rates"

modified from Coop and Przeworski 2007 NRG

https://cnx.org/resources/bcf4f9f5a97ec8360801a1f5255fb2b53c11f628/Figure_11_01_04.jpg

Recombination rates and hotspots across human chromosome 12 Borrowed from Myers et al. 2005

Motif influencing hotspot activity

Length	Ranking	Element	# of hotspots ¹	# of coldspots ²	Difference ³	
9	1	CCCCACCCC	987	656	331	
	2	CCCACCCCC	730	432	298	
	3	CCCCCACCC	810	518	292	
	4	GAAAAAAAA	3257	2974	283	
	5	ААААААААА	4042	3765	277	
8	1	CCTCCCTG	1868	1269	599	
	2	CCCCACCC	1844	1280	564	
	3	CCCACCCC	1750	1222	528	
	4	CCTCCTCT	1950	1431	519	
	5	TCCTCCCT	1943	1429	514	
7	1	CCTCCCT	4366	3380	986	
	2	CCTICCC	4272	3351	921	
	3	CTCCTCC	4130	3216	914	
	4	TCCCCAG	4008	3118	890	
	5	CCCCACC	3475	2587	888	

From Myers et al. 2005

Split time 7-8 Mya

95-99% sequence identity

Ptak et al. 2004 PLoS Biol, 2005 NG See also Winckler et al. 2005 Science

From Stevison et al. 2015 MBE

How much of the crossing-over takes place in historical recombination hotspots?

Historical hotspots

Pr. of recombination events that occur in a set of historical hotspots

h² > 0 ⇔ the trait is heritable

Coop et al. 2008 Science

- Grey et al. (2009) and Parvanov et al. (2009) independently mapped a trans acting region, which influences recombination activity (>2000 fold) at various hotspots.
- Appears to control the position of recombination hotspots, but has little effect on the total number of crossovers.
- Interval further refined to PRDM9 in Baudat et al. (2010), Parvanov et al. (2010)

PRDM9 is a zinc finger H3K4 methyltransferase

– histone H3K4 trimethylation associated with hotspots in mouse and in *S. cerevisiae* (Borde et al. 2009)

- expressed in meiotic prophase
- knockouts have defective DSB repair (Hayashi et al. 05)

– is the only known hybrid sterility gene between *Mus m. musculus and Mus m. domesticus* (Mihola et al. 2009)

n. (CS7 BLO)			
	RRAD		
	1 26 85	244 ^T 364 390 411	514 ⁿ n n n n n n n n n ₈₄₃
H. s.	KRAB	PR/SE Z	
(INCBL 37)	1 26 85	244 ^T 364 390 411	529 n n n n n n n n n n 894

М. 1	т. (C57	BL6)
------	------	-----	------

PRDM9 contributes to variation in genome-wide usage of historical hotspots

In combined sex sample: p_{AB} = 0.033, p_{AI} = 9.3 x 10⁻¹²

AA: N= 142; AB: N = 18; AI: N=9

Baudat et al. 2010

Percentage of crossover events in historical hotspots

Hotspot usage

Chr Pos	LD class	Calma Company	Alteration	Enardé	Effect	P	Primary	RR	RH	GC	TD	RT	Gene function in meiosis	Novel	Γ	
	res	(r ² > 0.8)	ocher implact	Alteration	rice	(sd)		pheno	TP	IPI	j p m	IIP m] pm	(sc = synaptonemal complex)	locus**	
chr4	682038	17	MFSD7/ms	p.Ala535Thr	0.2	-0.534	8.9×10 ⁻¹³	RR(j)							No	Г
chr10	133560087	206	SYCE1/sp	c.136+4G>A	9.4	0.087	2.2×10 ⁴	RRI(đ)						sc component (central element), synapsis (95)	RR	Reco
chr14	20316559	81	CONBLIP1/sp	c36C>A	48.3	-0.097	2.5×10 ⁻³¹	RR(\$)			1			crossover formation, dissociation of RNF212 (96)	No	
chr16	1844960	441	MEIOB/ms	p.lle261Thr	15.6	0.068	3.1×10 ⁻⁰	RR(Q)					1000	required for recombination and synapsis (42)	RR	aug
chr17	38945127	3	FBX047/ms	p.Gin209Arg	6.8	0.078	1.9×10 ⁻¹⁰	RR(j)							No	Tato
chrX	104040193	36	H2BFM/ns	p.Gin73Ter	46.5	-0.043	2.6×10 ⁻⁹	RR(đ)						chromatin relaxation in meiotic recombination (43)	RR	Inrate
chrX	135864034	190	CT45A9/sp	c.513-6C>T	26.2	0.071	2.1×10 ⁻¹⁸	RR(8)							RR	
chr1	75880138	6	MSH4/ms	p.Tyr589Cys	16	0.283	5.1×10 ⁻¹⁷	RR(Q)						prevents dissolution of dHJ structures(I)	1	
chr1	91394244	57	HFM1/ms	p.Ser115Pro	29.4	-0.089	1.2×10 ⁻¹⁹	00(8)						number of crossovers, sc formation (44)	RR/L	
chr4	1093477	142	RNF2 12/ms	p.lle262Val	22.7	-0.300	5.8×10-178	RR(ð)			10-10-			stabilization of recombination proteins (58)	L	M
chr14	60437039	135	C14ort39/ms	p.Leu624Phe	31.2	0.138	1.5×10 ⁻⁵³	RR(\$)						sc component (central element), synapsis (56)	L	(ed
chr17	45983409	4444	MAPT/ms	p.Pro202Leu	18.2	0.131	1.8×10 ⁻³³	RR(Q)				11 12		microtubule formation (55)	L	
chr20	1230003	9	RAD21L1/ms	p.Cys90Arg	48.3	0.184	2.3×10 ⁻¹¹¹	TD(đ)						sister chromatid cohesion, DNA repair, sc formation (57)	L	
chr1	150703341	9	HORMAD1/15	p.Thr327GinfsTer18	0.1	0.935	2.5×10 ⁻²¹	TD(j)				2		sc formation, regulation of recombination (76)	L	Г
chr5	multiple		PRDM9		3.2	-1.638	3.6×10 ⁻⁷³⁸²	RH(&)		100				Localization of recombination sites (8)	No	
chr6	656555	75	HUS1B/ms	p.His130Gln	8.8	0.076	2.1×10 ⁻¹⁰	RT(j)						DNA damage response checkpoint (59)		
chr12	101737235	27	SYCP3/ms	p.Met66Thr	0.1	0.911	1.5×10	TD(ð)						sc component (lateral element)(95)	1 L	
chr12	133226965	10	ANHX/ms	p.Ser230Cys	18.8	-0.076	6.5×10 ⁻¹³	RT(Q)							$\langle \mathbf{L} \rangle$	
chr12	133227085	18	ANHX/ms	p.Arg190His	0.5	0.438	4.3×10 ⁻¹²	RT(Q)							1 L	5
chr14	34516452	38	EAPP/ms	p.Arg239Gln	2.9	-0.133	2.6×10 ^{-#}	GC(2)							С.	Can
chr19	12904533	1	SYCE2/ms	p.His89Tyr	1.3	-0.647	7.4×10 ⁻⁷²	TD(Q)						sc component (central element) (95) DNA repair (68)		3
chr20	57524058	1	CTOFL/ms	p.Glu50Gin	39.5	-0.051	1.5×10.9	TD(đ)						organization of chromatin loops, insulator (60)	L	
chr21	43613852	1	HSF28P/ns	p.Gly224Ter	0.3	0.389	1.0×10 ⁻⁸	TD(đ)				10 10		interacting partner of HSF2 required for sc(77)	L	
chr22	22556814	26	PRAME/ms,sp	p.Trp7Arg	40.9	-0.079	1.4×10-17	60(3)				6 2 4			L	
chr22	45354086	7	SMC1B/ms	p.Phe1055Leu	5.1	-0.179	6.6×10 ⁻²²	RT(Q)		1000		-		cohesin, DNA repair, sc formation (62, 63)	L	
chrX	14859282	3	FANCE/ms	p.Gly335Glu	7.7	0.104	3.7×10 ⁻²⁵	600						homologous recombination, and epigenetic regulator(64)	L	
Color guide		White: no as:	ociation	Red shade: positive effec	t p	< 0.05	p < 7.09×1	10 ⁻⁵ gen	mewide	ignificant	Blue s	shade: neg	ative effe	ct p < 0.05 p < 7.09×10 ⁻⁵ genome	wide signif	icant

PRDM9

Figure from Myers et al. 2010

Figure from Grey et al. 2011

Baudat et al. 2010 Science; Myers et al. 2010; Parvanov et al. 2010

PRDM9 motifs are rapidly lost

Borrowed from Coop and Myers 2007

The PRDM9 zinc finger evolves rapidly

Borrowed from Myers et al. 2010

In the absence of PRDM9

Borrowed from Auton et al. 2013

Windows to nearest feature (10kb)

Baker et al. 2017 eLife

Summary

- In humans, like most sexually reproducing organisms, recombination events ensure the proper alignment and segregation of homologous chromosomes
- Yet at the scale of kilobases, recombination rates are extremely variable, both across species and even within humans.
- This rapid evolution between species, and the inter-individual variability in hotspot usage is driven by PRDM9
- PRDM9 appears to lead to less recombination in promoter like regions than what would happen otherwise

What happens when PRDM9 is absent?

Ellen Leffler (soon faculty, U. Utah)

Sonal Singhal (now faculty, Cal. State)

Singhal, Leffler et al. 2015 Science

Singhal, Leffler et al. 2015 Science

Where does recombination occur?

Baker et al. 2017 eLife

Do hotspots evolve rapidly?

Hotspots are largely shared between species (>70%)

Singhal, Leffler et al. 2015 Science

Independent evidence for hotspots: peak in GC substitutions

Distance from center of hotspot (kb)

Singhal, Leffler et al. 2015 Science

Conservation over large evolutionary distances

Singhal, Leffler et al. 2015 Science

* Also in yeasts (Lam & Keeney 2015)

When targeting functional elements

Apes, mice, others...?

Birds, yeasts,...?

Summary

In species with PRDM9, recombination is not elevated near promoters. The binding specificity of PRDM9 and hotspot locations evolve very rapidly. Despite this rapid evolution, broad scale rates are conserved.

 In species without PRDM9, recombination is elevated near promoter like features and in particular CpG islands. Hotspots seem to be conserved over long periods of time.