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MR image acquisition: Challenges ‘

- Magnetic Resonance Imaging (MRI)
— MRI acquisition is inherently a slow process
— Slow acquisition is
- ok for static objects (e.g. brain, bones, etc)
* problematic for moving objects (e.g. heart, liver, fetus)
— Options for MRI acquisition:
- real-time MRI: fast, but 2D and relatively poor image quality

- gated MRI: fine for period motion, e.g. respiration or cardiac
motion but requires gating (ECG or navigators) leading to
long acquisition times (30-90 min).



MR image acquisition: Cardiac MR '

Right Ventricle

Left Ventricle

Myocardium




MR image acquisition

Although Matthew Brady’s MRI design
was years ahead of its time, it was not as
successful as he would have preferred.
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MR full acquisition

* MRI acquisition is performed in k-space by sequentially
traversing sampling trajectories.

K-space Signal space
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K-space undersampling

« Acquiring a fraction of k-space accelerates the process
but introduces aliasing in signal space.




K-space undersampling '

« Acquiring a fraction of k-space accelerates the process
but introduces aliasing in signal space.
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Sparsity

- Most natural signals are compressible under some
domain.
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» Aliasing makes this assumption break down, so it
can be imposed on the reconstruction of a signal.
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Compressed sensing

- Assume X is the undersampled observation in k-
space and F,is the undersampled Fourier operator.

« We look for solution x such that:
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Compressed sensing

« Assume X is the undersampled observation in k-
space and F,is the undersampled Fourier operator.
* We look for solution x such that:

— It is consistent with k-space observation.
— It has the representation under S{x}.

min |5 {x} o IFulx} —%ulE <€




Dictionary learning for p

MR reconstruction

* Objective: Out of all solutions consistent with the
acquired k-space, we look for the one that is sparsest
under the learned dictionary.

/ Dictionary \
learning '
Train D = ‘
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code in D consistency
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Caballero et al., IEEE TMI 2014



Step 1: Dictionary learning '

* Training: Learn a dictionary that will sparsely
represent 3D patches randomly extracted from the
corrupted sequence.

Sparse representation
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Dictionary learning — Example '

* The dictionary is adapted to features in the data
and by construction provides a sparse
representation of it.

Trained dictiorary
- - r :
IlxPE" 1 JRET" Fa™"Lr
- TEFYLAAF" YL Kb
=xBRFar TN 0L
<N SR AN FRE s P
EIO0. smd=TE NS
R L IR
duhu al d .Sh.ddd
N ATINETN amey e
el M ML U R D b
.“ 'J- WM™ R ="a%
Ll M L AR,
BEMTIAN “'.-L-
-ld“dnll"!.-t
10 Pl L |

I-"'ll"‘ v ‘I-Lll d
- 1 LA




€

Step 2: Sparse coding

- Coding: The entire sequence is sparsely coded

using D .

P P
min > Jyilo st Y IRy — Dyl <e
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» The sparse coding I' provides an approximation of
the sequence DI excluding part of the aliasing.
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Step 3: Data consistency

* Processing in signal space will make the k-space of
solution x different from the initial observations.

» Data consistency in k-space must be enforced.




Magnitude reconstruction (8-fold) '

Original DLTG (36.7 dB) k-t FOCUSS (34.3 dB)

Zero-filled (22.7 dB) DLTG error x5 k-t FOCUSS error x5



Magnitude reconstruction (12-fold) '

Original DLTG (34.0 dB) k-t FOCUSS (31.4 dB)

Zero-filled (21.9 dB) DLTG error x5 k-t FOCUSS error x5



XIF;

Segmentation




Segmentation using registration '

Atlas/Model New image Segmentation

>

Propagation of
segmentation

Registration
or matching




Segmentation using registration ‘

Rueckert et al. IEEE TMI 1999



Segmentation using registration ‘
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Multi-atlas segmentation using a
classifier fusion

Atlas Registration Unseen data  Segmentation Final segmentation
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Heckemann et al.
Neuroimage 2006




Multi-atlas segmentation using

Average Accuracy (Dice)
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classifier fusion
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Multi-atlas segmentation using
classifier fusion

» Works very well but:

— Requires large number of atlases that should be customized to
the target subject in question

— Requires accurate registration

* Problems:
— Number of atlases is typically limited by time, manpower
— Computing many non-rigid registrations is expensive

« Solution:

— Use dictionary learning to relax requirement for accurate
registration and large number of atlases



Dictionary learning for patch-based
segmentation

Target image

Atlas
images
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Tong et al, Neurolmage, 2013



Dictionary learning: Interpreting p
medical images

» Learning a dictionary D from image patches P

(D,a) = argmin |P, — Da||> subject to ||a||, < T
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Discriminative Dictionary Learning

+ Add a classification error term |[H — Wa/|; :

(D,W,a) = argmin ||Py, — Dal|z + B, |H — Wal|
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Tong et al, Neurolmage, 2013



Discriminative Dictionary Learning for @
Segmentation (DDLS)

Best subject = 0.9079

Median subject = 0.8939

Worst subject k= 0.7709

Manual segmentation Dictionary Learning

Tong et al, Neurolmage, 2013
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Manifold learning

Manifold learning aims to model the
space of images through
a low-dimensional manifold

Local linear embedding,
Roweis, Science 2000
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Manifold learning
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Manifold learning for biomarker @

discovery
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Wolz et al., MICCAI MLMI, 2010



Manifold learning for biomarker p
discovery: Using longitudinal information

Control

e MCI —"

e AD /

Wolz et al., MICCAI MLMI, 2010



Manifold learning for biomarker
discovery: Using longitudinal information

- T1-weighted 1.5T MR images from

— 362 subjects from the ADNI study consisting of patients with
mild AD (N=83), MCI (N=165) and healthy control subjects
(N=114).

— baseline, 12 month and 24 month scans.

| ADVvSCN |P-MCIvsCN| P-MClvs S-
: f'? ils

Class. rate: 88% 82% 67%

Sensitivity 85% 76% 64%

Specificity 90% 86% 70%



Understanding brain development:
Motivation

A

Better detection of Understanding of the cause
fetal abnormalities of pre-term birth

/ \

Improved intensive Early diagnosis of
neonatal care long-term problems




Understanding brain development:
Motivation and challenges

A

Better detection of Understanding of the cause
fetal abnormalities of pre-term birth

/N

Improved intensive Early diagnosis of
neonatal care long-term problems

Motion makes image Pre-term infants are vulnerable
acquisition challenging and more difficult to image

N pd

The fetal and neonatal brain is
small compared to adults



Understanding brain development:
Bringing it together
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Segmentation

Biomarker discovery



Example: Fetal MR imaging '

Challenges:

1. Long acquisition times
2. Fetal motion and
maternal breathing

fast single-shot techniques
are 2D acquisitions that
freeze the motion in time
but ...




Motion compensated fetal MRI '




Motion compensated fetal MRI

A cquisi tion:
- several loops of single-shot
(slices

HHHHT
b
v

Vlutrc regi'ra fio:
‘aligning stacks (1 loop) to a
jstack

Slice-to-volume l"egiétfatibh:’
-align each slice with latest
reconstructed 30 volume |

3D reconstruction:
-interpolation of the slices to
|reconstruct 3D volume |

HUL ,
Rousseau, Academic Radiology 2006; Jiang, IEEE TMI 2007



Motion compensated fetal MRI

Reconstruction using registration

and super-resolution imaging

S. Jiang et al. MRI of moving subjects using multi-slice snapshot
images with Volume Reconstruction. IEEE TMI, 2007.
Can also be done with DTl data (S. Jiang et al, MRM 2009)



Multi-atlas segmentation: Application p
to fetal MR

Acquisition of Multi-atlas
multiple cine loops segmentation




Multi-atlas segmentation: Application ‘
to neonatal and fetal MRl

20 manually labelled brain atlases dividing the brain into 50 regions
|. Gousias et al., Neuroimage, 2012



Multi-atlas segmentation: Application ‘
to fetal MR




Multi-atlas segmentation: Application ‘
to fetal MR



Manifold learning for longitudinal p
image analysis: Measurement of growth
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Manifold learning for longitudinal
image analysis: Measurement of growth
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Aljabar et al., TMI, 2011



Manifold learning for longitudinal
image analysis: Measurement of growth
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Manifold learning for longitudinal p
image analysis: Measurement of growth
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Spatio-temporal atlas of
brain development
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A. Serag et al., Neuroimage, 2012
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