Imperial College London

Learning clinically useful information from medical images

Daniel Rueckert Biomedical Image Analysis Group Department of Computing

Overview

MR image acquisition

- Magnetic Resonance Imaging (MRI)
 - MRI acquisition is inherently a slow process
 - Slow acquisition is
 - ok for static objects (e.g. brain, bones, etc)
 - problematic for moving objects (e.g. heart, liver, fetus)
 - Options for MRI acquisition:
 - real-time MRI: fast, but 2D and relatively poor image quality
 - gated MRI: fine for period motion, e.g. respiration or cardiac motion but requires gating (ECG or navigators) leading to long acquisition times (30-90 min).

MR image acquisition: Cardiac MR

Right Ventricle

MR image acquisition

• MRI acquisition is performed in k-space by sequentially traversing sampling trajectories.

K-space

 $\mathcal{F}^{-1}\{.\}$

Signal space

• MRI acquisition is performed in k-space by sequentially traversing sampling trajectories.

K-space

 $\mathcal{F}^{-1}\{.\}$

Signal space

• MRI acquisition is performed in k-space by sequentially traversing sampling trajectories.

 $\mathcal{F}^{-1}\{.\}$

K-space

Signal space

• MRI acquisition is performed in k-space by sequentially traversing sampling trajectories.

Signal space

K-space undersampling

 Acquiring a fraction of k-space <u>accelerates</u> the process but introduces <u>aliasing</u> in signal space. K-space undersampling

 Acquiring a fraction of k-space <u>accelerates</u> the process but introduces <u>aliasing</u> in signal space.

Sparsity

 Most natural signals are compressible under some domain.

• Aliasing makes this assumption break down, so it can be imposed on the reconstruction of a signal.

Compressed sensing

- Assume $\hat{\mathbf{x}}_u$ is the undersampled observation in k-space and \mathcal{F}_u is the undersampled Fourier operator.
- We look for solution \mathbf{x} such that:

Compressed sensing

- Assume $\hat{\mathbf{x}}_u$ is the undersampled observation in k-space and \mathcal{F}_u is the undersampled Fourier operator.
- We look for solution **x** such that:

- It is consistent with k-space observation.

Servation.
$$\|\mathcal{F}_u\{\mathbf{x}\} - \mathbf{\hat{x}}_u\|_2^2 < \epsilon$$

Compressed sensing

- Assume $\hat{\mathbf{x}}_u$ is the undersampled observation in k-space and \mathcal{F}_u is the undersampled Fourier operator.
- We look for solution \mathbf{x} such that:
 - It is consistent with k-space observation.

– It has the sparsest representation under $\mathcal{S}{x}$.

$$\min_{\mathbf{x}} \|\mathcal{S}\{\mathbf{x}\}\|_0$$

$$\|\mathcal{F}_u\{\mathbf{x}\} - \mathbf{\hat{x}}_u\|_2^2 < \epsilon$$

Dictionary learning for MR reconstruction

• Objective: Out of all solutions consistent with the acquired k-space, we look for the one that is sparsest under the learned dictionary.

• <u>Training</u>: Learn a dictionary that will sparsely represent 3D patches randomly extracted from the corrupted sequence.

 $\min_{\boldsymbol{\Gamma}, \mathbf{D}} \|\boldsymbol{\gamma}_i\|_0 \qquad s.t. \qquad \|\mathbf{y}_i - \mathbf{D}\boldsymbol{\gamma}_i\|_2^2 < \epsilon, \forall i$

• The dictionary is adapted to features in the data and by construction provides a sparse representation of it.

Step 2: Sparse coding

<u>Coding</u>: The entire sequence is sparsely coded using D.

• The sparse coding $\,\Gamma\,$ provides an approximation of the sequence $\,D\Gamma\,$ excluding part of the aliasing.

Step 3: Data consistency

- Processing in signal space will make the k-space of solution x different from the initial observations.
- Data consistency in k-space must be enforced.

Magnitude reconstruction (8-fold)

Zero-filled (22.7 dB)

DLTG error x5

k-t FOCUSS error x5

Magnitude reconstruction (12-fold)

Zero-filled (21.9 dB)

DLTG error x5

k-t FOCUSS error x5

Segmentation using registration

New image

Propagation of segmentation

Segmentation

Segmentation using registration

Rueckert et al. IEEE TMI 1999

Segmentation using registration

Multi-atlas segmentation using classifier fusion

Multi-atlas segmentation using classifier fusion

Multi-atlas segmentation using classifier fusion

• Works very well but:

- Requires large number of atlases that should be customized to the target subject in question
- Requires accurate registration
- Problems:
 - Number of atlases is typically limited by time, manpower
 - Computing many non-rigid registrations is expensive
- Solution:
 - Use *dictionary learning* to relax requirement for accurate registration and large number of atlases

Dictionary learning for patch-based segmentation

Dictionary learning: Interpreting medical images

- Learning a dictionary D from image patches P_L

$$\langle D, \alpha \rangle = \mathop{\arg\min}_{D, \alpha} \| \mathbf{P}_{\mathbf{L}} - D\alpha \|_2^2 \quad \text{subject to} \quad \| \alpha \|_0 \leq T$$

Discriminative Dictionary Learning

• Add a classification error term $||H - W\alpha||_2^2$:

$$\langle D, W, \alpha \rangle = \underset{D, W, \alpha}{\operatorname{arg\,min}} \| \mathbf{P}_{\mathbf{L}} - D\alpha \|_{2}^{2} + \beta_{1} \| H - W\alpha \|_{2}^{2}$$
subject to $\| \alpha \|_{0} \leq T$

Discriminative Dictionary Learning for Segmentation (DDLS)

Best subject

Median subject

Worst subject Manual segmentation

k = 0.9079

k = 0.8939

k = 0.7709

Dictionary Learning

Manifold learning

Manifold learning aims to model the space of images through a low-dimensional manifold

Local linear embedding, Roweis, Science 2000 Other approaches: MDS, Isomap, Laplacian eigenmaps

Manifold learning

Manifold learning for biomarker discovery

Wolz et al., MICCAI MLMI, 2010

Manifold learning for biomarker discovery: Using longitudinal information

Wolz et al., MICCAI MLMI, 2010

Manifold learning for biomarker discovery: Using longitudinal information

- T1-weighted 1.5T MR images from
 - 362 subjects from the ADNI study consisting of patients with mild AD (N=83), MCI (N=165) and healthy control subjects (N=114).
 - baseline, 12 month and 24 month scans.

	a sana ana di mba sana a nangan in dia sana na kaona ka na		
	AD vs CN	P-MCI vs CN	P-MCI vs S- MCI
Class. rate:	88%	82%	67%
Sensitivity	85%	76%	64%
Specificity	90%	86%	70%

Understanding brain development: Motivation

Understanding of the cause of pre-term birth

Improved intensive neonatal care

Early diagnosis of long-term problems

Understanding brain development: Motivation and challenges

Understanding of the cause of pre-term birth

Improved intensive neonatal care

Early diagnosis of long-term problems

Motion makes image acquisition challenging

Pre-term infants are vulnerable and more difficult to image

The fetal and neonatal brain is small compared to adults

Understanding brain development: Bringing it together

Example: Fetal MR imaging

Challenges:

 Long acquisition times
Fetal motion and maternal breathing

fast single-shot techniques are 2D acquisitions that freeze the motion in time **but** ...

Motion compensated fetal MRI

Motion compensated fetal MRI

Acquisition: several loops of single-shot slices Volumetric registration: aligning stacks (1 loop) to a stack Slice-to-volume registration: 3D reconstruction: interpolation of the slices to align each slice with latest reconstructed 3D volume reconstruct 3D volume

Rousseau, Academic Radiology 2006; Jiang, IEEE TMI 2007

Motion compensated fetal MRI

 S. Jiang et al. MRI of moving subjects using multi-slice snapshot images with Volume Reconstruction. IEEE TMI, 2007.
Can also be done with DTI data (S. Jiang et al, MRM 2009)

Multi-atlas segmentation: Application to fetal MRI

Multi-atlas segmentation: Application to neonatal and fetal MRI

20 manually labelled brain atlases dividing the brain into 50 regions I. Gousias et al., Neuroimage, 2012

Multi-atlas segmentation: Application to fetal MRI

Manifold learning for longitudinal image analysis: Measurement of growth

Aljabar et al., TMI, 2011

Aljabar et al., TMI, 2011

Manifold learning for longitudinal image analysis: Measurement of growth

Spatio-temporal atlas of brain development

A. Serag et al., Neuroimage, 2012

Acknowledgements

Antonios Makropolous Anand Pandit **David Edwards** Mary Rutherford Serena Counsell Jo Hajnal Jose Caballero **Robin Wolz Christian Ledig** Hui Xue Alexander Hammers Chengwen Chu Kensaku Mori

Ahmed Serag Gareth Ball Paul Aljabar Shuzhou Jiang Maria Murgasova James Boardmann Katherine Gray Giovanni Montana **Rolf Heckemann** Ioannis Gousias Kazunari Misawa

Funding

Engineering and Physical Sciences Research Council

European Commission Information Society and Media

Technology Strategy Board Driving Innovation

European Research Council

