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MR image acquisition: Challenges

• Magnetic Resonance Imaging (MRI)
– MRI acquisition is inherently a slow process
– Slow acquisition is 

• ok for static objects (e.g. brain, bones, etc)
• problematic for moving objects (e.g. heart, liver, fetus)

– Options for MRI acquisition:
• real-time MRI: fast, but 2D and relatively poor image quality
• gated MRI: fine for period motion, e.g. respiration or cardiac 

motion but requires gating (ECG or navigators) leading to 
long acquisition times (30-90 min).



MR image acquisition: Cardiac MR
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Left Ventricle!

Right Ventricle!



MR image acquisition



• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.
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MR full acquisition
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• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.



• Acquiring a fraction of k-space accelerates the process 
but introduces aliasing in signal space.
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• Acquiring a fraction of k-space accelerates the process 
but introduces aliasing in signal space.

K-space undersampling

K-space Signal space

Full sampling
(slow)

25% sampling
(4-fold 

acceleration)



Sparse

• Most natural signals are compressible under some 
domain.

Sparsity

Not sparse

• Aliasing makes this assumption break down, so it 
can be imposed on the reconstruction of a signal.



Compressed sensing
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space and      is the undersampled Fourier operator.
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Compressed sensing

• Assume      is the undersampled observation in k-
space and      is the undersampled Fourier operator.

• We look for solution     such that:
– It is consistent with k-space observation.
– It has the sparsest representation under          .            



• Objective: Out of all solutions consistent with the 
acquired k-space, we look for the one that is sparsest 
under the learned dictionary.

Dictionary learning for 
MR reconstruction

Train D

Sparse 
code in D

Data 
consistency

Dictionary 
learning

Caballero et al., IEEE TMI 2014



Step 1: Dictionary learning

• Training: Learn a dictionary that will sparsely 
represent 3D patches randomly extracted from the 
corrupted sequence.
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Dictionary learning − Example

• The dictionary is adapted to features in the data 
and by construction provides a sparse 
representation of it.



Step 2: Sparse coding

• Coding: The entire sequence is sparsely coded 
using     .

• The sparse coding      provides an approximation of 
the sequence          excluding part of the aliasing.



Step 3: Data consistency

• Processing in signal space will make the k-space of 
solution    ! different from the initial observations.

• Data consistency in k-space must be enforced.



Magnitude reconstruction (8-fold)

Original

Zero-filled (22.7 dB)

DLTG (36.7 dB)

DLTG error x5

k-t FOCUSS (34.3 dB)

k-t FOCUSS error x5



Magnitude reconstruction (12-fold)

Original

Zero-filled (21.9 dB)

DLTG (34.0 dB)

DLTG error x5

k-t FOCUSS (31.4 dB)

k-t FOCUSS error x5



Segmentation



Segmentation using registration

Atlas/Model Segmentation

Registration
or matching

New image

Propagation of 
segmentation



Segmentation using registration

Rueckert et al. IEEE TMI 1999



Segmentation using registration

Manual segmentation

Automatic segmentation



Multiple atlases



Multi-atlas segmentation using 
classifier fusion

Atlas SegmentationRegistration Unseen data

Decision fusion 
or label fusion

Final segmentation

Heckemann et al.
Neuroimage 2006



Heckemann et al.
Neuroimage 2006

Multi-atlas segmentation using 
classifier fusion



Multi-atlas segmentation using 
classifier fusion

• Works very well but: 
– Requires large number of atlases that should be customized to 

the target subject in question
– Requires accurate registration

• Problems:
– Number of atlases is typically limited by time, manpower
– Computing many non-rigid registrations is expensive

• Solution:
– Use dictionary learning to relax requirement for accurate 

registration and large number of atlases



Dictionary learning for patch-based 
segmentation

Target image

Atlas
images

....

Patch library
Test patch

Dictionary LearningLabel fusion

Tong et al, NeuroImage, 2013



• Learning a dictionary D from image patches PL

Dictionary learning: Interpreting 
medical images

DPL

=

α
Tong et al, NeuroImage, 2013



• Add a classification error term                      : 

PL =

Discriminative Dictionary Learning

D
α

WH

Tong et al, NeuroImage, 2013



Discriminative Dictionary Learning for 
Segmentation (DDLS)

Tong et al, NeuroImage, 2013

Manual segmentation Dictionary Learning



Biomarker discovery



Manifold learning 

Local linear embedding,
Roweis, Science 2000

Other approaches: MDS,
Isomap, Laplacian eigenmaps

Manifold learning aims to model the
space of images through 

a low-dimensional manifold 



Manifold learning

Construct graph 
G = (V, E) Sparsification Spectral 

analysis



Manifold learning for biomarker 
discovery

Wolz et al., MICCAI MLMI, 2010



Manifold learning for biomarker 
discovery: Using longitudinal information

Wolz et al., MICCAI MLMI, 2010



Manifold learning for biomarker 
discovery: Using longitudinal information

• T1-weighted 1.5T MR images from
– 362 subjects from the ADNI study consisting of patients with 

mild AD (N=83), MCI (N=165) and healthy control subjects 
(N=114). 

– baseline, 12 month and 24 month scans.

AD vs CN P-MCI vs CN P-MCI vs S-
MCI

Class. rate: 88% 82% 67%

Sensitivity 85% 76% 64%

Specificity 90% 86% 70%



Understanding brain development: 
Motivation

Understanding of the cause
of pre-term birth

Early diagnosis of 
long-term problems

Better detection of 
fetal abnormalities

Improved intensive 
neonatal care



Understanding brain development: 
Motivation and challenges

Understanding of the cause
of pre-term birth

Early diagnosis of 
long-term problems

Better detection of 
fetal abnormalities

Improved intensive 
neonatal care

The fetal and neonatal brain is 
small compared to adults

Motion makes image 
acquisition challenging

Pre-term infants are vulnerable 
and more difficult to image



Understanding brain development: 
Bringing it together

Segmentation

Biomarker discovery

Intelligent imaging

 

 



Example: Fetal MR imaging

fast single-shot techniques 
are 2D acquisitions that 
freeze the motion in time 

but ...

Challenges:

1. Long acquisition times
2. Fetal motion and
    maternal breathing



Motion compensated fetal MRI

 



Motion compensated fetal MRI

Acquisition:
several loops of single-shot 
slices 

Rousseau, Academic Radiology 2006; Jiang, IEEE TMI 2007 

Volumetric registration:
aligning stacks (1 loop) to a 
stack 

3D reconstruction:
interpolation of the slices to 
reconstruct 3D volume

Slice-to-volume registration:
align each slice with latest 
reconstructed 3D volume



Motion compensated fetal MRI

 

 

S. Jiang et al. MRI of moving subjects using multi-slice snapshot 
images with Volume Reconstruction. IEEE TMI, 2007.

Can also be done with DTI data (S. Jiang et al, MRM 2009)

Reconstruction using registration
and super-resolution imaging



Multi-atlas segmentation: Application 
to fetal MRI

 
SVR 

reconstruction

Multi-atlas
segmentation

 

Acquisition of 
multiple cine loops



Multi-atlas segmentation: Application 
to neonatal and fetal MRI

20 manually labelled brain atlases dividing the brain into 50 regions 
I. Gousias et al., Neuroimage, 2012



Multi-atlas segmentation: Application 
to fetal MRI



Multi-atlas segmentation: Application 
to fetal MRI



Manifold learning for longitudinal 
image analysis: Measurement of growth

Aljabar et al., TMI, 2011
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Manifold learning for longitudinal 
image analysis: Measurement of growth

Aljabar et al., TMI, 2011



Spatio-temporal atlas of 
brain development

4240383634323028

4240383634323028

A. Serag et al., Neuroimage, 2012

3.3. Results

Figure 3.5 shows the resulting atlas using T2 weighted MR images at 28, 30, 32, 34, 36,

38, 40, 42 and 44 weeks PMA. However, it is worth mentioning that the atlas templates

were constructed for each week between 28 � 44 weeks PMA. In Figure 3.6, the final atlas

(An) is compared with an atlas constructed using a�ne registration (Aa) [24]. The atlas

constructed using non-rigid registration has a higher level of anatomic definition with more

distinct boundaries between anatomical structures.

Figure 3.5.: The resulting atlas using T2 weighted MR images at 28, 30, 32, 34, 36, 38, 40,
42 and 44 weeks PMA.

No such spatio-temporal non-rigid atlas has been constructed using a large number of sub-

jects and for such a wide range of ages and this makes it di�cult to compare the constructed

atlas against a benchmark atlas. However, recently Shi et al. [120] constructed infant atlases

for neonates, 1-year-olds, and 2-year-olds from 95 subjects using a non-rigid registration

approach [121]. Figure 3.7 compares the constructed atlas with an infant template at 41

weeks provided by Shi et al. 1. The atlas constructed using the proposed method has greater

1
http://bric.unc.edu/ideagroup/free-softwares/

64
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IXICO announces launch of a decision-support tool for diagnosing dementia and widened 
collaboration with InHealth  

x Assessa™ helps healthcare professionals make fast and accurate diagnosis of dementia  

x InHealth and IXICO to provide access to Assessa™ selectively in the UK and Eire 

x IXICO piloting the use of Assessa™ in a community setting in a collaboration with partners 

11 December 2013 IXICO plc (Ticker: IXI) (“IXICO”   or   the   “Company”),   the   brain   health   company, 
announces the launch of its first CE marked medical device – to be marketed as Assessa™ – a digital 

healthcare platform to support the diagnosis of dementia.  IXICO  and  InHealth  Limited  (‘InHealth’), a 

major supplier of diagnostic and healthcare services to the NHS and private health providers, have 
today signed heads of terms to explore opportunities to provide Assessa™ and complementary 

services within the UK and Eire. 

IXICO's Assessa™   is   designed   to   improve   the   quality   of   the   information   available   to   healthcare  
professionals diagnosing dementia thereby enabling patients to receive the right treatment and 

support they need sooner.  Structural brain imaging (such as MRI scans) is regularly used in the 
diagnosis of dementia and is recommended by the National Institute for Clinical Excellence (NICE) in 

the UK.  Assessa™   provides   clinically actionable information from brain scans by making precise 

measurements of the brain and comparing it to a reference database of normal elderly people and 

dementia patients of the same age. 

The product launch and widened collaboration coincide  with   the   gathering   of   the  world’s   health  
ministers in London for the G8 Dementia Summit.  Fewer than half of the 800,000 people living with 

dementia in the UK are estimated to have a firm diagnosis, yet receiving a timely diagnosis has been 
shown to extend independent life by up to 18 months.  This should make it possible for patients and 

families to access the care and support they need and plan for the future.  The   Prime  Minister’s  
Dementia Challenge, launched in March 2012, aims to raise the diagnostic rate to two thirds of 
sufferers being diagnosed by 2015.  Traditionally, diagnosing dementia has been long and slow, with 

more than half of patients having to wait between one to four years to complete diagnosis. 

Availability of Assessa™   

In partnership with InHealth, IXICO is now starting to provide access to Assessa™ selectively in the 

UK and Eire.  It is anticipated that this  service  will  incorporate  a  detailed  assessment  of  the  patient’s  
cognition together with an in-depth analysis of a brain MRI scan, patient and GP liaison and support 

services post diagnosis.  InHealth will supply patient bookings and administration services and the 

clinical scanning capabilities associated with either MRI or PET CT scanning which it already provides 
in the UK and Eire.  IXICO will supply Assessa™ and appropriate cognitive assessment tools.  The 

objective of the collaboration is to establish appropriate models of diagnostic services and service 

provision in a personalised care context.    

The Brain Health Centre pilot project  

IXICO is also already separately piloting the use of Assessa™   in a community setting in a 

collaboration with InHealth, Cambridge   Cognition   plc   (‘CamCog’), the NHS in Sussex and the 


