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Soit K ⊂ Rn un ensemble compact et soit EK ⊂ L2(Rn) le sous-espace
de L2(Rn) composé de toutes les fonctions f ∈ L2(Rn) dont la transformée

de Fourier f̂(ξ) =
∫
e−2πix·ξf(x) dx est nulle hors de K. En utilisant la

terminologie introduite dans [3], un ensemble Λ ⊂ Rn est un “ensemble
d’échantillonnage stable” pour EK s’il existe une constante C telle que pour
toute f ∈ EK on ait

(0.1) ‖f‖2
2 ≤ C

∑
λ∈Λ

|f(λ)|2.

Si n = 1 et si K est un intervalle de R, le problème a été résolu par Albert
Ingham en 1936. L’énoncé d’Ingham a été ensuite généralisé par Beurling
et c’est sous cette forme que nous l’utiliserons.

Pour n ≥ 1 et K arbitraire, H.J. Landau [3] a démontré que (0.1) implique
dens Λ ≥ |K|. Mais la réciproque n’est pas vraie et |K| < dens Λ n’implique
pas (0.1) même dans le cas le plus simple où Λ = Zn. Nous allons prouver
le résultat suivant : Pour tout quasicrystal simple Λ ⊂ Rn et tout ensemble
compact K ⊂ Rn, la condition |K| < dens Λ entrâıne (0.1).

1. Introduction

This paper is motivated by some recent advances on what is now called
“compressed sensing”. Let us begin with a theorem by Terence Tao. Let p
be a prime number and Fp be the finite field with p elements. We denote by
#E the cardinality of E ⊂ Fp. The Fourier transform of a complex valued

function f defined on Fp is denoted by f̂ . Let Mq be the collection of all
f : Fp 7→ C such that the cardinality of the support of f does not exceed q.
Then Terence Tao proved that for q < p/2 and for any set Ω of frequencies

such that #Ω ≥ 2q, the mapping Φ : Mq 7→ l2(Ω) defined by f 7→ 1Ωf̂ is
injective. Here and in what follows, 1E will denote the indicator function of
the set E. This property is no longer true if Fp is replaced by Z/NZ and if
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N is not a prime.

We want to generalize this fact to functions f of several real variables with
applications to image processing. The Fourier transform of f ∈ L1(Rn) will
be defined by

(1.1) f̂(ξ) =

∫
Rn

exp(−2πiξ · x)f(x)dx, ξ ∈ Rn.

To generalize Tao’s theorem to the continuous setting we begin with a pa-
rameter β ∈ (0, 1/2) which will play the role of q and define a collection

Mβ of functions f ∈ L2(Rn) as follows : we write f ∈ Mβ if f̂ is supported
by a compact set K ⊂ [0, 1]2 whose measure |K| does not exceed β. This
compact set K depends on f and Mβ is not a vector space. If f, g belong
to Mβ, then f + g belongs to M2β, a situation which is classical in nonlinear
approximation. It will be proved below that for every α ∈ (0, 1/2) there
exists a set Λα ⊂ Z2 with the following properties : (a) density Λα = 2α and
(b) the mapping Φ : Mβ 7→ `2(Λα) defined by Φ(f) = (f(λ))λ∈Λα is injective
when 0 < β < α. This set Λα plays the role of Ω in Tao’s work and the
density of Λα is then playing the role of the cardinality of Ω. Any f ∈ Mβ

can be retrieved from the information given by the “irregular sampling”
f(λ) = a(λ), λ ∈ Λα, and one would like to do it by some fast algorithm.
Tao’s theorem can be decomposed into two statements. In the first one Ω
and T are fixed with the same cardinality. We denote by l2(T ) the vector
space consisting of all functions f supported by T. Then the first theorem
by Tao says that the mapping Φ : l2(T ) 7→ l2(Ω) is an isomorphism. The
second theorem easily follows form this first statement. We now generalize
this first theorem to the continuous case. Let K ⊂ Rn be a compact set
and EK ⊂ L2(Rn) be the translation invariant subspace of L2(Rn) consist-

ing of all f ∈ L2(Rn) whose Fourier transform f̂(ξ) =
∫
e−2πix·ξf(x) dx is

supported by K. We now follow [3].

Definition 1.1. A set Λ ⊂ Rn has the property of stable sampling for EK
if there exists a constant C such that

(1.2) f ∈ EK ⇒ ‖f‖2
2 ≤ C

∑
λ∈Λ

|f(λ)|2.

In other words any ” band-limited “ f ∈ EK can be reconstructed from
its sampling f(λ), λ ∈ Λ. Here is an equivalent definition. Let L2(K) be
the space of all restrictions to K of functions in L2(Rn). Then Λ ⊂ Rn

is a set of stable sampling for EK if and only if the collection of functions
exp(2πiλ · x), λ ∈ Λ, is a frame of L2(K).
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Definition 1.2. A set Λ has the property of stable interpolation for EK if
there exists a constant C such that

(1.3)
∑
λ∈Λ

|c(λ)|2 ≤ C‖f‖2
L2(K)

for every finite trigonometric sum f(x) =
∑

λ∈Λ c(λ) exp (2πiλ · x).

In the one dimensional case and when K is an interval, A. Ingham (1936)
proved the following estimate :

Proposition 1.1. Let Λ be an increasing sequence λj, j ∈ Z, of real num-
bers such that λj+1 − λj ≥ β, j ∈ Z, where β is a positive constant.
Let I be any interval with length |I| > 1/β. Then we have C

∑
|cj|2 ≤∫

I
|
∑
cj exp(2πiλjt)|2 dt where C = 2

π
(1− 1

|I|2β2 ).

This constant C is not optimal. The condition |I| > 1/β cannot be
replaced by |I| < 1/β and Ingham’s inequality does not tell anything in
the limiting case |I| = 1/β. This was generalized A. Beurling (see [2]) who
proved the following :

Proposition 1.2. Let Λ be an increasing sequence λj, j ∈ Z, of real num-
bers fulfilling the following two conditions

(a) λj+1 − λj ≥ β
′
> 0

(b) if T large enough we have λj+T − λj ≥ βT, j ∈ Z, β > 0.

Let I be any interval with length |I| > 1/β. Then we have C
∑
|cj|2 ≤∫

I
|
∑
cj exp(2πiλjt)|2 dt where C = C(β, β

′
, T, |I|).

Here the length of I only depends on the averaged distance between λj+1

and λj. The final result easily follows from the preceding one :

Proposition 1.3. Let Λ be an increasing sequence λj, j ∈ Z, of real num-

bers such that λj+1−λj ≥ β > 0 and let dens Λ = limR→∞R
−1 supx∈R card{Λ ∩ [x, x+R]}

be the upper density of Λ. The lower density is defined by replacing upper
bounds by lower bounds. Then for any interval I, |I| < dens Λ implies (1.2)
and |I| > dens Λ implies (1.3).

Returning to the general case K ⊂ Rn H.J. Landau proved in [3] that
(1.2) implies dens Λ ≥ |K| and (1.3) implies dens Λ ≤ |K|. These necessary
conditions are not sufficient. Indeed |K| < dens Λ does not even imply
(1.2) when Λ = Zn . The following result shows that Landau’s necessary
conditions are sufficient for some sets Λ.

Theorem 1.1. Let Λ ⊂ Rn be a simple quasicrystal and K ⊂ Rn be a
compact set. Then |K| < dens Λ implies (1.2). If K is Riemann integrable,
then |K| > dens Λ implies (1.3).
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A compact K ⊂ Rn is a Riemann integrable if the Lebesgue measure of
its boundary is 0.

We now define a simple quasicrystal as in [2] or [3]. Let Γ ⊂ Rn ×R be a
lattice and if (x, t) ∈ Rn × R, let us write p1(x, t) = x, p2(x, t) = t. We now
assume that p1 once restricted to Γ is an injective mapping onto p1(Γ) = Γ1.
We make the same assumption on p2. We furthermore assume that p1(Γ) is
dense in Rn and p2(Γ) is dense in R. The dual lattice of of Γ is denoted Γ∗

and is defined by x · y ∈ Z, x ∈ Γ, y ∈ Γ∗. We use the following notations.
For γ = (x, t) ∈ Γ we write t = x̃, t̃ = x. Note that t is uniquely defined
by x. The same notations are used for the two components of γ∗ ∈ Γ∗. If
I = [−α, α], the simple quasicrystal ΛI ⊂ Rn is defined by

(1.4) ΛI = {p1(γ); γ ∈ Γ, p2(γ) ∈ I}.

2. Proof of Theorem 1.4.

If K ⊂ Rn is a compact set, MK ⊂ R is defined by

(2.1) MK = {p2(γ∗); γ∗ ∈ Γ∗, p1(γ∗) ∈ K}.
The density of ΛI is uniform and is given by c|I| where c = c(Γ) and similarly
the density ofMK is |K|/c whenK is Riemann integrable ([5], [6]). Therefore
|K| < dens ΛI implies |I| > densMK which will be crucial in what follows.
We sort the elements of MK in increasing order and denote the corresponding
sequence by {mk; k ∈ Z}. Then we have ([5], [6])

Lemma 2.1. The sequence {m̃k; k ∈ Z} is equidistributed on K.

We now prove our main result.
We replace K by a larger compact set still denoted by K which is Riemann
integrable and still satisfies |K| < dens Λ. By a standard density argument

we can assume f̂ ∈ C∞0 (K). Lemma 2.1 implies

(2.2)
1

|K|
‖f̂‖2

2 = lim
T→∞

1

2T

T∑
k=−T

|f̂(m̃k)|2.

The right-hand side in(2.2) is given by

(2.3) cK lim
ε↓0

ε
∑
k∈Z

|ϕ(εmk)|2|f̂(m̃k)|2

where ϕ is any function in the Schwartz class S(R) normalized by ‖ϕ‖2 = 1.
The constant cK = C

|K| is taking care of the density of the sequence mk, k ∈ Z
and C only depends on the lattice Γ. At this stage we use the auxiliary
function of the real variable t defined as

(2.4) Fε(t) =
√
ε
∑
k∈Z

ϕ(εmk)f̂(m̃k) exp (2πimkt).
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We denote by φ the Fourier transform of ϕ. We will suppose that φ ∈
C∞0 ([−1, 1]) is a positive and even function. Since |I| > densMK , Beurling’s
theorem applies to the interval I, to the set of frequencies MK and to the
trigonometric sum defined in (2.4). Then one has

(2.5) ε
∑
k∈Z

|ϕ(εmk)|2|f̂(m̃k)|2 ≤ C

∫
I

|Fε(t)|2dt.

Let us compute the lim sup as ε→ 0 of the right-hand side of (2.5). To this
aim, we use the definition of MK and write

(2.6) Fε(t) =
√
ε

∑
γ∗∈Γ∗

ϕ(εp2(γ∗))f̂(p1(γ∗)) exp (2πip2(γ∗)t).

Poisson identity says that this sum can be computed on the dual lattice. We
then have

(2.7) Fε(t) = c(Γ)
1√
ε

∑
γ∈Γ

φ(
t− p2(γ)

ε
)f(p1(γ)).

We then return to the estimation of

(2.8) lim sup
ε↓0

∫
I

|Fε(t)|2dt,

where Fε is given by (2.7). To this end, we notice that all terms in the right-
hand side of (2.7) for which |p1(γ)| ≥ α + ε vanish on I = [−α, α]. Indeed
the support of φ is contained in [−1, 1]. We can restrict the summation to
the set ΛI,ε = {p1(γ); γ ∈ Γ, |p2(γ)| ≤ α + ε}. For 0 ≤ ε ≤ 1 we have

(2.9) lim
ε→0

ΛI,ε = ΛI and ΛI,ε ⊂ ΛI,1.

We split Fε into a sum Fε = FN
ε +RN where

(2.10) FN
ε (t) =

1√
ε

∑
γ∈Γ,|p1(γ)|≤N,|p2(γ)|≤α+ε

φ(
t− p2(γ)

ε
)f(p1(γ)),

and

(2.11) RN(t) =
1√
ε

∑
γ∈Γ,|p1(γ)|>N,|p2(γ)|≤α+ε

φ(
t− p2(γ)

ε
)f(p1(γ)).

The triangle inequality yields ‖RN‖2 ≤ εN‖φ‖2 with

(2.12) εN =
∑

γ∈Γ,|p1(γ)|>N,|p2(γ)|≤α+1

|f(p1(γ))|.

Let us observe that this series converges. Therefore εN tends to 0. Indeed
f belongs to the Schwartz class and the set Y = {p1(γ); |p2(γ)| ≤ α + 1}
is uniformly sparse in Rn. Using the terminology of [3], Y is a “model set”.
For the term (2.10) the estimations are more involved. Since |p1(γ)| ≤ N ,
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the points p2(γ) appearing in (2.10) are separated by a distance ≥ βN > 0.
If 0 < ε < βN the different terms in (2.10) have disjoint supports which
implies

(2.13) ‖FN
ε ‖L2(I) ≤ σ(N, ε)‖φ‖2

where

σ(N, ε)2 =
∑

γ∈Γ,|p1(γ)|≤N,|p2(γ)|≤α+ε

|f(p1(γ))|2.

If ε is small enough we have

{γ ∈ Γ, |p1(γ)| ≤ N, |p2(γ)| ≤ α + ε} = {γ ∈ Γ, |p1(γ)| ≤ N, |p2(γ)| ≤ α}.
and σ(N, ε) = σ(N, 0). Therefore

(2.14) lim sup
ε→0

∫
I

|Fε(t)|2dt ≤
∑
λ∈ΛI

|f(λ)|2 + ηN

and letting N →∞ we obtain the first claim. The following lemma clarifies
and summarizes our proof :

Lemma 2.2. Let xj, j ∈ N, be a sequence of pairwise distinct points in Rn,
let f(x) be a function in L2(Rn) with a compact support and, for ε > 0, let
fε(x) = ε−n/2f(x/ε). Then for any sequence cj ∈ l1 we have

(2.15) lim
ε→0
‖
∞∑
0

cjfε(x− xj)‖2 = (
∞∑
0

|cj|2)1/2

The proof of the second claim uses the same strategy and notations. The
first assertion of Beurling’s theorem is used and the details can be found in
a forthcoming paper.

François Golse raised the following problem. Let us assume Λ = {λj, j ∈
Z} where λj = j+rj, j ∈ Z, and rj are equidistributed mod 1. Is it true that
Λ is a set of stable sampling for any compact set K with measure |K| < 1?
There are some examples where this happens. For instance if α is irrational,
the set Λ defined by λj = j + {αj}, j ∈ Z, is a set of stable sampling for
every compact set of the real line with a measure less than 1. Indeed this set
Λ is a simple quasicrystal. On the other hand we cannot take rj at random
as the following lemma is showing :

Lemma 2.3. Let rj, j ∈ Z, be independent random variables equidistributed
in [0, 1]. Then almost surely the random set Λ = {λj = j + rj, j ∈ Z} is not
a set of stable sampling.

This lemma answers an issue raised by Jean-Michel Morel. Recently in
[1] the problem of random sampling of band-limited functions was studied.
More precisely, the authors proved the following
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Proposition 2.1. Let

B = {f ∈ L2(Rd) : suppf̂ ⊂ [−1/2, 1/2]d},

be the space band-limited functions. Let r ≥ 1 be the number of random
samples in each cube k + [0, 1]d . With probability one the following holds:
For each k > 0 there exists a function fk ∈ B such that

(2.16)
∑

xi∈X(ω)

|fk(xi)|2 ≤
1

k
‖fk‖2

2.

Consequently, the sampling inequality is false almost surely.

Exactly the same proof applies to our lemma. Here are the details.
Our probability space Ω is [0, 1]N equipped with the product measure

and the elements of Ω are denoted by ω = (rj)j∈N. The random set under
study is Λ(ω). We now prove a stronger statement. Almost surely (1.1) fails
for Λ(ω) when the compact set K in (1.1) is the union between the two
intervals [0, α] and [1, 1 +α] where α is arbitrarily small. The measure of K
is 2α. To prove this statement, it suffices to construct a sequence of random
functions fN,ω(x), N ∈ N such that ‖fN‖2 =

√
2, f̂N is supported by K but∑

j |fN(λj)|2 ≤ CN−2. We start with a function φ belonging to the Schwartz

class, normalized by ‖φ‖2 = 1 and such that the Fourier transform of φ is
supported by [0, α]. Then fN(x) = φ(x − nN)(exp(2πix) − 1) fulfils these
requirements when nN = nN(ω) is a random integer which is now defined.
Given N there are almost surely infinitely many integers m such that the
following holds

(2.17) m−N ≤ j ≤ m+N ⇒ 0 < rj < 1/N.

This observation follows form the Borel-Cantelli lemma applied to the inde-
pendent events Ek,N = {0 < rj < 1/N, |3Nk − j| ≤ N}. The probability of
Ek,N is N−2N−1 and the sum over k of these probabilities diverges. There-
fore with probability 1, for every N there exists a random integer nN such
that |nN − j| ≤ N ⇒ 0 < rj < 1/N. Since fN(j) = 0, λj = j + rj and
0 < rj < 1/N we have

(2.18)
∑

|nN−j|≤N

|fN(λj)|2 < CN−2.

On the other hand the rapid decay of φ yields

(2.19)
∑

|nN−j|>N

|fN(λj)|2 < CN−2.

Putting these estimates together we can conclude.
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