SIMPLE QUASICRYSTALS ARE SETS OF STABLE
SAMPLING

BASARAB MATEI AND YVES MEYER

VERSION FRANCAISE ABREGEE

Soit K C R"™ un ensemble compact et soit Ex C L?(R") le sous-espace
de L*(R™) composé de toutes les fonctions f € L*(R™) dont la transformée
de Fourier f(€) = [e 2™#¢f(x) dx est nulle hors de K. En utilisant la
terminologie introduite dans [3], un ensemble A C R™ est un “ensemble
d’échantillonnage stable” pour Ej s’il existe une constante C' telle que pour
toute f € Ek on ait

(0.1) 1713 < ¢ STIFP.
AEA

Sin =1 et si K est un intervalle de R, le probleme a été résolu par Albert
Ingham en 1936. L’énoncé d’Ingham a été ensuite généralisé par Beurling
et c’est sous cette forme que nous 1'utiliserons.

Pour n > 1 et K arbitraire, H.J. Landau [3] a démontré que (0.1) implique
dens A > |K|. Mais la réciproque n’est pas vraie et |K| < dens A n’implique
pas (0.1) méme dans le cas le plus simple ou A = Z". Nous allons prouver
le résultat suivant: Pour tout quasicrystal simple A C R™ et tout ensemble
compact K C R", la condition |K| < dens A entraine (0.1).

1. INTRODUCTION

This paper is motivated by some recent advances on what is now called
“compressed sensing”. Let us begin with a theorem by Terence Tao. Let p
be a prime number and F, be the finite field with p elements. We denote by
#I the cardinality of £/ C F,. The Fourier transform of a complex valued
function f defined on FF, is denoted by f . Let M, be the collection of all
f : F, — C such that the cardinality of the support of f does not exceed q.
Then Terence Tao proved that for ¢ < p/2 and for any set € of frequencies
such that #Q > 2¢, the mapping ® : M, — 12(Q) defined by f — 1qf is
injective. Here and in what follows, 1z will denote the indicator function of
the set E. This property is no longer true if I, is replaced by Z/NZ and if
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N is not a prime.

We want to generalize this fact to functions f of several real variables with
applications to image processing. The Fourier transform of f € L'(R") will
be defined by

(1.1) f& = /n exp(—2mi€ - x) f(z)dx, & € R™.

To generalize Tao’s theorem to the continuous setting we begin with a pa-
rameter 5 € (0,1/2) which will play the role of ¢ and define a collection
My of functions f € L*(R™) as follows: we write f € Mjp if f is supported
by a compact set K C [0,1]? whose measure |K| does not exceed 3. This
compact set K depends on f and Mj is not a vector space. If f, g belong
to Mg, then f + g belongs to Mg, a situation which is classical in nonlinear
approximation. It will be proved below that for every a € (0,1/2) there
exists a set A, C Z? with the following properties: (a) density A, = 2a and
(b) the mapping ® : M3 — (?(A,) defined by ®(f) = (f(\))rea, is injective
when 0 < 3 < «. This set A, plays the role of € in Tao’s work and the
density of A, is then playing the role of the cardinality of 2. Any f € Mj
can be retrieved from the information given by the “irregular sampling”
fA) = a(N), X € A,, and one would like to do it by some fast algorithm.
Tao’s theorem can be decomposed into two statements. In the first one €2
and T are fixed with the same cardinality. We denote by [?(T') the vector
space consisting of all functions f supported by T. Then the first theorem
by Tao says that the mapping ® : [*(T) — [?(f2) is an isomorphism. The
second theorem easily follows form this first statement. We now generalize
this first theorem to the continuous case. Let K C R™ be a compact set
and Fx C L*(R™) be the translation invariant subspace of L?(R") consist-
ing of all f € L*(R") whose Fourier transform f(&) = [e 2™ f(z) dx is
supported by K. We now follow [3].

Definition 1.1. A set A C R"™ has the property of stable sampling for Ex
if there exists a constant C such that

(1.2) feBx=Ifl3<CY IFNP

AEA

In other words any ” band-limited “ f € Ejx can be reconstructed from
its sampling f(\), A € A. Here is an equivalent definition. Let L*(K) be
the space of all restrictions to K of functions in L?(R"). Then A C R"
is a set of stable sampling for Ex if and only if the collection of functions
exp(2mi\ - x), A € A, is a frame of L?(K).
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Definition 1.2. A set A has the property of stable interpolation for Ey if
there exists a constant C such that

(1.3) D 1P < Clf Iz,

AEA
for every finite trigonometric sum f(x) =), c()) exp (27iA - z).

In the one dimensional case and when K is an interval, A. Ingham (1936)
proved the following estimate :

Proposition 1.1. Let A be an increasing sequence N\, j € Z, of real num-
bers such that \jy1 — A\; > B, j € Z, where B is a positive constant.
Let I be any interval with length |I| > 1/8. Then we have C'Y|c;|* <
[ 135 ¢jexp(2mirt)|? dt where C' = 2(1 — Il\+ﬁ2)

This constant C' is not optimal. The condition |I| > 1/3 cannot be
replaced by |I| < 1/8 and Ingham’s inequality does not tell anything in
the limiting case |I| = 1/3. This was generalized A.Beurling (see [2]) who
proved the following :

Proposition 1.2. Let A be an increasing sequence \;, j € Z, of real num-
bers fulfilling the following two conditions
(2) Ajr1 = A; >3 >0
(b) if T large enough we have \jip — X\; > BT, j € Z, > 0.
Let I be any interval with length |I| > 1/3. Then we have C'Y_ |¢;|* <
[, 13" cjexp(2midt)|* dt where C = C(B,8, T, |1]).

Here the length of I only depends on the averaged distance between ;44
and A;. The final result easily follows from the preceding one:

Proposition 1.3. Let A be an increasing sequence N, j € Z, of real num-

bers such that A\jy1—X\; > 3> 0 and let dens A = limp_.o, B! sup, g card{A N [z, x + R]}
be the upper density of A. The lower density is defined by replacing upper

bounds by lower bounds. Then for any interval I, |I| < dens A implies (1.2)

and |I| > dens A implies (1.3).

Returning to the general case K C R™ H.J.Landau proved in [3] that
(1.2) implies dens A > |K| and (1.3) implies dens A < |K|. These necessary
conditions are not sufficient. Indeed |K| < densA does not even imply
(1.2) when A = Z™ . The following result shows that Landau’s necessary
conditions are sufficient for some sets A.

Theorem 1.1. Let A C R" be a simple quasicrystal and K C R"™ be a
compact set. Then |K| < dens A implies (1.2). If K is Riemann integrable,
then | K| > dens A implies (1.3).
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A compact K C R” is a Riemann integrable if the Lebesgue measure of
its boundary is 0.

We now define a simple quasicrystal as in [2] or [3]. Let ' C R™ X R be a
lattice and if (z,t) € R™ x R, let us write py(z,t) =z, pa(x,t) = t. We now
assume that p; once restricted to I' is an injective mapping onto p;(T') = T';.
We make the same assumption on p,. We furthermore assume that p;(I") is
dense in R™ and py(I") is dense in R. The dual lattice of of I' is denoted I'*
and is defined by x -y € Z, x € I, y € I'*. We use the following notations.
For v = (z,t) € T we write t = &,¢ = 2. Note that ¢t is uniquely defined
by x. The same notations are used for the two components of ~* € I'™. If
I = [—a, a], the simple quasicrystal A; C R™ is defined by

(1.4) Ar={pm();v €T, pa(y) € I}

2. PROOF OF THEOREM 1.4.
If K C R™is a compact set, Mg C R is defined by

(2.1) My ={p2(v");7" € I", ;m(y") € K}

The density of A; is uniform and is given by ¢|I| where ¢ = ¢(I') and similarly
the density of M is |K|/c when K is Riemann integrable ([5], [6]). Therefore
|K| < dens Ay implies |I| > dens Mg which will be crucial in what follows.

We sort the elements of M in increasing order and denote the corresponding
sequence by {my;k € Z}. Then we have ([5], [6])

Lemma 2.1. The sequence {my; k € Z} is equidistributed on K.

We now prove our main result.
We replace K by a larger compact set still denoted by K which is Riemann
integrable and still satisfies |K| < dens A. By a standard density argument

we can assume f € C°(K). Lemma 2.1 implies
1 1
oz - e Pl V(2
k=—T
The right-hand side in(2.2) is given by

(23 cxclim & 3 [p(ema)|?1 ()

kEZ

(2.2)

where ¢ is any function in the Schwartz class S(R) normalized by ||¢||2 = 1.
The constant cx = % is taking care of the density of the sequence my, k € Z
and C only depends on the lattice I'. At this stage we use the auxiliary
function of the real variable ¢ defined as

(2.4) F.(t) = \/EZ o(emy,) f () exp (2mimyt).

keZ
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We denote by ¢ the Fourier transform of ¢. We will suppose that ¢ €
Cs°([—1,1]) is a positive and even function. Since || > dens My, Beurling’s
theorem applies to the interval I, to the set of frequencies My and to the
trigonometric sum defined in (2.4). Then one has

(2.5) e llemi)’|f () <C/\F )|2dt.

kEZ

Let us compute the lim sup as € — 0 of the right-hand side of (2.5). To this
aim, we use the definition of Mg and write

(2.6) = e Z (ep2(¥))f (p1(7")) exp (2mipa(77)1).

Poisson identity says that this sum can be computed on the dual lattice. We
then have

t—p
2.7) Ft) = o)z - o220 ).
vyel
We then return to the estimation of
(2.8) lim Sup/|FE(t)]2dt,
€l0 I

where F_ is given by (2.7). To this end, we notice that all terms in the right-
hand side of (2.7) for which [pi(7)| > a + ¢ vanish on I = [—a, . Indeed
the support of ¢ is contained in [—1,1]. We can restrict the summation to
the set Ar. = {p1(7);v € T, [p2(7)] < a+¢}. For 0 < e <1 we have

(29) hH(l)ALE = A[ and A[,E C AI,l-

We split F. into a sum F. = FY + Ry where

(2.10) FN(t) = — > ¢(m)f(p1(7)),

9
Y€, Ip1(V)|I<N,|p2(v)|<a+e

and

@11)  Rw(t) == 3 oL =20 £ ().

19
YEL,Ip1(M)I>N,|p2(v)|<a+e

The triangle inequality yields ||Ry|l2 < en||¢]|2 with

(2.12) en = > [f(p1 ().

YEDL [Pt (7)[>N,[p2(7)|<a+1
Let us observe that this series converges. Therefore ¢y tends to 0. Indeed
f belongs to the Schwartz class and the set Y = {p1(7); [p2(7)] < a + 1}
is uniformly sparse in R™. Using the terminology of [3], Y is a “model set”.
For the term (2.10) the estimations are more involved. Since |p;(y)| < N,
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the points po(7y) appearing in (2.10) are separated by a distance > fBx > 0.
If 0 < e < By the different terms in (2.10) have disjoint supports which
implies

(2.13) IFN 22y < o(N €)1l

where
o(N,e)* = >, [f 1 (7))
YEL,[p1(7)|SN,|p2(v)|Sote
If € is small enough we have

el lpI <N, ;) <ater ={y el |p(V)] <N, [pa(v)] < a}.
and o(N,e) = (N, 0). Therefore

(2.14) limsup/j|FE(t)]2dt < IV +ny

e—0 AEA;

and letting N — oo we obtain the first claim. The following lemma clarifies
and summarizes our proof:

Lemma 2.2. Let z;, j € N, be a sequence of pairwise distinct points in R",
let f(z) be a function in L*(R™) with a compact support and, for € > 0, let
fo(x) =e™2f(x/e). Then for any sequence c; € I* we have

(2.15) lig 132 st =l = 3 el

The proof of the second claim uses the same strategy and notations. The
first assertion of Beurling’s theorem is used and the details can be found in
a forthcoming paper.

Frangois Golse raised the following problem. Let us assume A = {},;, j €
Z} where \; = j+r;, j € Z, and r; are equidistributed mod 1. Is it true that
A is a set of stable sampling for any compact set K with measure |K| < 17
There are some examples where this happens. For instance if « is irrational,
the set A defined by \; = j + {aj}, j € Z, is a set of stable sampling for
every compact set of the real line with a measure less than 1. Indeed this set
A is a simple quasicrystal. On the other hand we cannot take r; at random
as the following lemma is showing:

Lemma 2.3. Letr;, j € Z, be independent random variables equidistributed
in [0,1]. Then almost surely the random set A = {\; = j+r;, j € Z} is not
a set of stable sampling.

This lemma answers an issue raised by Jean-Michel Morel. Recently in
[1] the problem of random sampling of band-limited functions was studied.
More precisely, the authors proved the following
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Proposition 2.1. Let
B={f e L*RY :suppf C [~1/2,1/2]%},

be the space band-limited functions. Let r > 1 be the number of random
samples in each cube k + [0,1]% . With probability one the following holds:
For each k > 0 there exists a function f, € B such that

(2.16) S el < plLfell

2, €X (w)
Consequently, the sampling inequality is false almost surely.

Exactly the same proof applies to our lemma. Here are the details.

Our probability space €2 is [0,1]N equipped with the product measure
and the elements of Q are denoted by w = (r;);en. The random set under
study is A(w). We now prove a stronger statement. Almost surely (1.1) fails
for A(w) when the compact set K in (1.1) is the union between the two
intervals [0, o] and [1, 14 «] where « is arbitrarily small. The measure of K
is 2a.. To prove this statement, it suffices to construct a sequence of random
functions fy (), N € Nsuch that || x|l = V2, fx is supported by K but
>0, 1 fn(Ag)[? < N7 We start with a function ¢ belonging to the Schwartz
class, normalized by ||¢|ls = 1 and such that the Fourier transform of ¢ is
supported by [0,a]. Then fy(z) = ¢(z — ny)(exp(2miz) — 1) fulfils these
requirements when ny = ny(w) is a random integer which is now defined.
Given N there are almost surely infinitely many integers m such that the
following holds

(2.17) m—N<j<m+N=0<r; <1/N.

This observation follows form the Borel-Cantelli lemma applied to the inde-
pendent events Ej vy = {0 <r; <1/N, |3Nk — j| < N}. The probability of
Ej.n is N72M71 and the sum over k of these probabilities diverges. There-
fore with probability 1, for every N there exists a random integer ny such
that |[ny —j| < N = 0 < r; < 1/N. Since fy(j) =0, A\; = j+r; and
0 <r; <1/N we have

(2.18) > )P <CONTE
Inn—jI<N

On the other hand the rapid decay of ¢ yields

(2.19) )P <N

Iny—j|>N

Putting these estimates together we can conclude.
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