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Motivation

Aim
Understanding swimming at microscopic scale

=⇒ For the design of micro-robots (medical applications)
=⇒ For biological purposes

Swimming micro-robot : ESPCI (2005)
Micromotor - Monash University (Australia 2008)
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Swimming problems

Definition: Ability to move on or under water with appropriate
movements leading to periodic shape changes (strokes) and
without external forces

1st Problem: For a given deformable shape, is it possible to find
an internal force law which produces a periodic shape change
(a stroke) and a net displacement ?
2nd Problem: If it is possible to swim, how to swim the most
efficiently possible ?
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Navier-Stokes equations[
ρ
(
∂u
∂t + (u · ∇)u

)
− ν∆u +∇p = f ,

divu = 0

become at low Re = ρUL
ν Stokes equations[
−ν∆u +∇p = f ,
divu = 0
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The scallop theorem

Obstruction:[Purcell]
At low Reynolds number, a reciprocal motion induces no net
displacement

(Movie: G. Blanchard, S. Calisti, S. Calvet, P. Fourment, C.
Gluza, R. Leblanc, M. Quillas-Saavedra)
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Evidence of scallop theorem

(Movie: G. I. Taylor)
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Example of swimming robot (Purcell)

Edward Mills Purcell
(1912 - 1997)
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Example of swimming robot (Purcell)
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Modelization

The state of the system is given by shape and position
X = (ξ,p)

Shapes ξ are parameterized by a finite number of variables
ξ = (ξ1, · · · , ξN)

Typically the position p = (c,R) where c ∈ R3,R ∈ SO(3)

The swimmer changes its shape =⇒ ξ(t) and pushes the
fluid... which reacts (following Stokes equations) and moves
(and turns) the swimmer.

Questions
How to compute c(t) and R(t) knowing ξ(t)?
Is it possible to find ξ(t) periodic such that c and/or R is
not?
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Easiest example: Najafi et Golestanian (2001)
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By changing ξ1 and ξ2, the spheres impose forces f1, f2, f3
to the fluid f1 + f2 + f3 = 0 (self-propulsion)
3 variables ξ1, ξ2, c and only two control parameters
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Analogy

The car parking problem
2 controls (forward/backward motion + turn wheels to the
left/right )
Car position and orientation
3 variables to control and only 2 controls...
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Linearity of Stokes equations

Self-propulsion
The total force applied to the fluid by the swimmer vanishes.

Here, v = (ċ − ξ̇1, ċ, ċ + ξ̇2).
The total force is given by

Fx = A(ξ(t))ċ(t) + B(ξ(t))ξ̇1(t) + C(ξ(t))ξ̇2(t) = 0

from which ċ = V1(ξ)ξ̇1 + V2(ξ)ξ̇2.

d
dt

 ξ1
ξ2
c

 = ξ̇1

 1
0

V1(ξ)

+ ξ̇2

 0
1

V2(ξ)

 = ξ̇1F1(ξ)+ ξ̇2F2(ξ)

At each point X = (ξ1, ξ2, c), the trajectory is tangent to the
plane generated by (F1(ξ),F2(ξ))

The coordinates of Ẋ in this basis are (ξ̇1, ξ̇2)
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The total force is given by
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Holonomic and nonholonomic constraints

c = W (ξ1, ξ2)
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Holonomic constraint

c = W (ξ1, ξ2) ċ = V1(ξ)ξ̇1 + V2(ξ)ξ̇2
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Non holonomic constraints

c = W (ξ1, ξ2) ċ = V1(ξ)ξ̇1 + V2(ξ)ξ̇2

equivalent if V = ∇ξW i.e. curlξV = 0
or Lie(F1,F2) 6= R3
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The scallop theorem

The scallop has only one degree of freedom ξ

ξ̇ = α(t)
ċ = V (ξ)ξ̇

and c =
∫ ξ V (y)dy =: W (ξ)

If ξ is periodic, so is c...
The constraint is always holonomic.
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A control theorem

Theorem
Najafi and Golestanian’s 3-sphere system is globally
controllable

From any state (ξi , ci), one can reach any other state (ξf , cf )
with a suitable law force (fi(t))i such that

∑
i fi(t) = 0 (or

equivalently with suitable functions αi(t)).
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Other controllable systems:
B

y

z

q

r

l

x

p

s

e

3 controls, 3 first order Lie brackets
x1

x2

x3

x4

r1,2

e1,4

4 controls, 6 first order Lie brackets
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Optimal swimming

Lighthill : Eff−1(ξ) = C
∫ 1

0

∫
∂Ω(t)

f · v dσ dt for shape paths with

fixed extremities (ξi , c i) and (ξf , cf )

On ∂Ω, forces and velocities are linearly expressed in terms of
ξ̇i

Eff−1(ξ) = C
∫ 1

0

N∑
i,j=1

gij(ξ(t))ξ̇i(t)ξ̇j(t) dt

G = (gij) defines a metric on the tangent plane at (ξ, c)
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Optimal swimming

At (ξ, c) the tangent space is only bidimensional (instead of
3-dimensional) on which there is a metric
−→ sub-Riemannian geometry

Optimal strokes are optimal geodesics in a
sub-Riemannian space

sub-Riemannian geodesics solve a 2nd order ODE which
coefficients depend on ξ = (ξ1, · · · , ξN), through Stokes
equation
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Numerical computation of geodesic strokes

Numerical solution of Stokes problem
Finite elements (axisymmetric, FREEFEM)
BEM (axisymmetric and union of spheres)
C++, written using deal.II library

Optimal strokes
shooting method
global minimization using Trilinos software

Movies done with POVRAY, BLENDER
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Comparison Between Square and Optimal Strokes
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Plane Swimmers
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Space Swimmers - Translation
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Future directions

Swimming in a bounded domain
Stochastic forcing
Advanced graphical tools (Blender)
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Plane Swimmer
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Link between both problems
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