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IntroductionIntroduction

Sharp and diffuse interfaces in Sharp and diffuse interfaces in 
solidssolids



Atomistically sharp interfaces for 
cubic to tetragonal transformation 
in NiMn   

Baele, van Tenderloo, Amelinckx



Diffuse (smooth) 
interfaces in 
Pb3V2O8

Manolikas, van Tendeloo, 
Amelinckx 



Diffuse interface in perovskite (courtesy Ekhard Salje)



Energy minimization problem
for single crystal



Frame-indifference requires

ψ(RA, θ) = ψ(A, θ) for all R ∈ SO(3).

If the material has cubic symmetry then also

ψ(AQ, θ) = ψ(A, θ) for all Q ∈ P24,

where P24 is the group of rotations of a cube.



Energy-well structure

Assume
austenite

Assuming the austenite has cubic symmetry,

and given the transformation strain U1 say, the

N variants Ui are the distinct matrices QU1Q
T ,

where Q ∈ P24.

martensite



Cubic to tetragonal (e.g. Ni65Al35)

N = 3

U1 = diag (η2, η1, η1)

U2 = diag (η1, η2, η1)

U3 = diag (η1, η1, η2)



Exchange of 

stability



Hadamard jump condition



There are no rank-one connections between

matrices A,B in the same energy well. The

rank-one connections between matrices

A ∈ SO(3)Ui, B ∈ SO(3)Uj, i �= j correspond to

twins. In general there is no rank-one connec-

tion between A ∈ SO(3) and B ∈ SO(3)Ui.



(Classical) austenite-martensite interface in CuAlNi
(C-H Chu and R.D. James)



Gives formulae of  the 
crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

24 habit planes for 
cubic-to-tetragonal



Rank-one connections for A/M interface



Possible lattice parameters
for classical austenite-martensite
interface.



Commentary on nonlinear elasticity model
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Second gradient model for diffuse    Second gradient model for diffuse    
interfaces interfaces 

JB/ Elaine Crooks (Swansea).JB/ Elaine Crooks (Swansea).

1919



How does interfacial energy affect the predictions of 
the elasticity model of the austenite-martensite transition?



Suppose that
Dψ(α(θ)1, θ) = 0,

D2ψ(α(θ)1, θ)(G,G) ≥ µ|G|2 for all G = GT ,

some µ > 0. Then ȳ(x) = α(θ)x+ c is a
local minimizer of

Iθ(y) =

∫

Ω

ψ(Dy, θ) dx

∫

Ω

in W 1,∞(Ω;R3).



Use simple second gradient model of interfacial energy (cf
Barsch & Krumhansl, Salje …), for which energy minimum is 
always attained.
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It is not clear how to justify this model on the basis of 
atomistic considerations (the ‘wrong sign’ problem  ̶  see, 
for example, Blanc, LeBris, Lions).



Hypotheses

No boundary conditions (i.e. boundary traction free), so 
result will apply to all boundary conditions.



by Friesecke, James, Müller Rigidity Theorem



Idea of proof

Reduce to problem of local minimizers for



Smoothing of twin boundaries



Lemma. Let Dy(x) = F (x · N), where F ∈

W
1,1
loc (R;M3×3) and

F (x ·N) → A,B

as x · N → ±∞. Then there exist a constant

vector a ∈ R3 and a function u : R → R3 such

that

u(s) → 0, a as s→ −∞,∞,

and for all x ∈ R3

F (x ·N) = A + u(x ·N)⊗N.

In particular

B = A + a⊗N.







A model allowing for both A model allowing for both 
sharp and diffuse interfaces  sharp and diffuse interfaces  
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JB/ Carlos MoraJB/ Carlos Mora--Corral Corral 
(Bilbao).(Bilbao).



Sharp interface models

However this is not a sensible model, because

if we have a sharp interface and approximate y

by a smooth deformation, then the interfacial

energy disappears and the elastic energy hardly

changes. Thus a minimizer can never have a

sharp interface.





GSBV





One-dimensional case





More realistic 1D model





Theorem. Let ψ : (0,∞) → [0,∞) be C1,

limt→0+ ψ(t) = ∞, and suppose there exist r1, r2

with 0 < r1 < r2 such that

−∞ < sup
(0,ri]

ψ′ = inf
[ri,∞)

ψ′ <∞ for i ∈ {1,2}.

Let λ ∈ (r1, r2).∈

Then there exists a minimiser of the functional

Iε,γ in Aλ. Moreover, if y is a minimizer then

u = y′ satisfies:

(i) u ∈ [r1, r2] a.e.

(ii) Su is finite.



(iii) ∇u is continuous and in SBV ,

ψ′(u)− 2ε2∇2u = c

for some constant c ∈ R, ∇u(0) = ∇u(1) = 0

and 2ε2∇u(z) = γ′([u](z)) for all z ∈ Su,

c =
∫ 1
0 ψ′(u) dx and
∫

ψ(u)− ε2(∇u)2 − cu = d,

for some constant d ∈ R.



NonclassicalNonclassical austeniteaustenite--
martensitemartensite interfaces interfaces 
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JB/ JB/ KonstantinosKonstantinos Koumatos (Oxford)/ Koumatos (Oxford)/ 
HanusHanus Seiner (Prague).Seiner (Prague).



Nonclassical austenite-martensite
interfaces (B/Carstensen 97)



Nonclassical interface with double 
laminate



Nonclassical interface calculation

νx = δ1νx = δ1

νx = ν
supp ν ⊂

⋃N
i=1 SO(3)Ui



Values of deformation parameters allowing classical and 
nonclassical austenite-martensite interfaces



Interface normals



Experimental 
procedureprocedure



Optical 
micrograph 
(H. Seiner) of 
non-classical 
interface 
between 
austenite and 
a martensitic 
microstructure
. 
The arrows 
indicate the indicate the 
orientations of 
twinning 
planes of 
Type-II and 
compound 
twinning 
systems





Twin crossing gradients



Cubic-orthorhombic energy wells







Possible volume fractions



Possible nonclassical interface 
normals



Curved interface between crossing twins and austenite resulting from the inhomogeneity 
of compound twinning. (Optical microscopy,H. Seiner)


