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For an immersed closed surface f:3 — R™ the Willmore functional is defined by

W) =5 [ 1P duy,

by

where H denotes the mean curvature vector of f,9 = [*geue the pull-back metric and
g the induced area measure on 3 . The Gaufl equations and the Gauf-Bonnet theorem
give rise to equivalent expressions

W) =5 [ AP diy + 200 = p(2) = 5 [ 147 dpg + 4m(1-p(2) (1)
P P

where A denotes the second fundamental form, A° = A — % g® H its tracefree part and
p(X) is the genus of X .

The Willmore functional is scale invariant and moreover invariant under the full Mobius
group of R™ . As the Mobius group is non-compact, minimizers of the Willmore energy
cannot be found via the direct method. Nevertheless

W(f) > 4m = W(S?), (2)

and the round spheres are absolut minimizers. We give here the argument in codimension
one for an embedded surface ¥ C R? due to Willmore in [Wil82].

Let v:3 — 82 be the unique smooth outer normal at ¥ . For any unit vector 1 ,
we choose xp € ¥ with

(o, 10) = r;lezg((x, Vo)

and see
EQ{yGR?’ | (y — xo,19) <0 }.

Therefore {vg}t is a supporting hyperplane of ¥ at zy and
v(zog) =v9 and K(xp) >0,
where K denotes the Gau curvature. As vy € S? was arbitrary, we get
v(K >0) =852 (3)
Observing for the principal curvature ki, ko that

‘ﬁ’2 = ("11 + l€2)2 = (I<L1 — HQ)Q +4k1ko > 4K



and recalling that the Jacobian of the Gaul map v is given as the modulus of the Gauf}
curvature

ng - ‘K’7

we get by the area formula

> Area(v(K > 0)) = Area(S?) = 4r.

Checking the case of equality, one gets A° =0, and hence ¥ is a round sphere.
In general, one has by an inequality of Li and Yau in [LY82] that

#f71(x) <W(f)/4r  for all z € R™,
in particular (2) and moreover
W(f) < 8m = f is an embedding.

Critical points of W are called Willmore surfaces or more precisely Willmore immersions.
They satisfy the Euler-Lagrange equation which is the fourth order, quasilinear geometric
equation

AH + Q(AYH =0

where the Laplacian of the normal bundle along f is used and Q(AY) acts linearly on
normal vectors along f by

Q(A%)¢ := g™ g/ AV (A, 9).

The non-linearity is cubic in A and is hence critical due to the conformal invariance
of the Willmore functional. We see that minimal surfaces, that is when H =0 , are
Willmore surfaces. Now by maximum principle there are no closed minimal surfaces in
R3 . Instead, the Clifford torus

1
TCliff = E(Sl X Sl) - 53

is a minimal surface in S% , and by a similar argument is a Willmore surface. Applying
an appropriate stereographic projection, this yields a rotational round torus whose ratio
of the radi is /2 . By conformal invariance this is a Willmore surface in R3 .

In 1965, Willmore conjectured that

W(TQ) > W(Tcusr) = Area(Tcrifr) = o2

for any torus 72 in R? .

In 1993, Simon proved in [Sim93] that there exists a torus which minimizes the Will-
more energy under all tori in R" .

In 2005, Kuwert and S. gave an estimate on the conformal factor in the following
setting. By Poincare’s theorem, the pull-back metric ¢ = f*geye is conformally equivalent

g=¢e"g



to a metric gg of constant GauB curvature K, = const . If ¥ is not a sphere,
go respectively u are unique up to a multiplicative respectively additive constant. Apply-
ing a Mdbius transformation @ , we get

g:= ((I) ° f)*geuc = f*q)*geuc = 621190’

as @ is conformal. Deforming f by an appropriate Mobius transformation ® to a
sphere with small handles keeping the Wilmore energy fixed by conformal invariance, we
see that @ degenerates, and hence no estimation of w is possible without taking account
of the invariance group of W . The theorem reads as follows.

Theorem [KuSch08]: Let ¥ C R™ be an embedded closed surface of genus p > 1,n =
3,4 with
W(E) < W, — 9,

where
Wi, p = min(8m, Douglas condition , technical condition for n = 4).

Then the exists a Mobius transformation @ satisfying

* 2u
¢ Geuc|z = €90

for some constant curvature metric gy and

| w ooy < Clp, 0).

Here some comments and consequences:

1. The Douglas condition is neccessary to ensure that all handles stay together at same
size and do not split. The technical condition is due to a possibly not optimal model
of the Grassmannian G42 in higher codimension. Anyway we have W1 = 87 .

2. Connecting two concentric spheres by two necks which are approximate catenoids,
one gets conformally degenerate tori with Willmore energy < 8m+¢ . Mobius trans-
formations can enlarge one of these necks, but not simultanously both. Therefore
the above estimate cannot be obtained on a energy level > 87 even after dividing
out the Mobius group.

3. Combining the estimate of the above theorem with Mumford’s compactness lemma,
one can prove that the conformal structures induced by immersions f : ¥ —
R™ of a closed surface ¥ with genus p > 1,n = 3,4, and W(f) < W,,, — 0 are
compactly contained in the moduli space.

4. For a an immersion f : X — R" of a closed surface ¥ with genus p > 1,n =
3,4, and W(f) < Wy — ¢ which is conformal to a given metric gy on X , the
above theorem yields a Mobius transformation @ such that

H o f HW2’2(E)S C(p7 57 90)7
Area(®o f) =1.



We add to 3.:
Any torus is conformally equivalent to a quotient T2 = C/(Z+wZ) with w = 2 +iy ¢ R .
Actually w can uniquely be chosen with

224+ >1,0<x<1/2,y >0.

Now it was proved in [LY82]

272
Yy

which yields the estimate of the Willmore conjecture

W(T?) > 272, (4)

W(T?) >

if y<1.In [MoRo86| this was improved to

472
T2) >

which enlarges (4) to the circle with center at w = % + 4 and radius 1/2 . Both regions
include the square structure, that is w = ¢ . As the Clifford torus has square structure
Teuifs = C/(Z+iZ) and satisfies W(Tcyipf) = 212, both estimates imply that the Clifford
torus minimizes the Willmore energy in its conformal class.

Critical points of the Willmore functional under fixed conformal class are called con-

strained Willmore surfaces or immersions. They satisfy the Euler-Lagrange equation
AgH + Q(A")H = g™ ¢’ A qp,

1,

where ¢ is symmetric, traceless and transverse, that is

gkl = qik,
trgq = g"au =0,
99Vigjk = 0.

These tensors are equivalent to holomorphic quadratic differentials, hence ¢ are analytic.
We generalize the Clifford torus to

T, :=rS' x /1 —r258t C 3,

T, VE = Tciifs » which are surfaces of constant mean curvature. By an easy argument
these are in codimension one constrained Willmore surfaces. 7T, are of rectangular class

with w = (V1 —1r2/r)i and
W(T,) — oo forr — 0.
On the other hand, the examples in 2. are of degenerate rectangular class with Willmore

energy W < 8m+¢ . Therefore T, do not minimize the Willmore energy in its conformal
class for small r . 0

We add to 4.:
With the estimate in 4., one can apply the direct method of the calculus of variations and
obtain minimizers of the Willmore energy in fixed conformal class.



Theorem [KuSch09]: Let ¥ be a closed surface of genus p > 1,n = 3,4 and g9 be a
metric on X . If

W(X, go,n) :=inf{W(f) | f: (X, g0) = R" conformal immersion } < W, ,,
then there exists a minimizer f under all conformal immersions

W(f) = W(E, go, n)-
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