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Introduction Formulation of the problem

The viscous surface wave problem

We consider:
A viscous fluid of finite depth in 3D (the ocean)
Lower boundary is fixed (the solid ocean floor)
Upper boundary is a free surface where the fluid meets the air
(surface waves)
Air is constant pressure, zero viscous forcing
Uniform gravitational field
No surface tension
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Introduction Formulation of the problem

Main features

Fluid evolves according to the incompressible Navier-Stokes
equations: nonlinear system of PDEs
The domain in which the fluid evolves is an unknown in the
problem: free boundary problem
Geometric evolution for the boundary (hyperbolic) is coupled to
the nonlinear PDE for fluid (parabolic)
Potential for nasty singularities in boundary geometry:
self-intersections, topology changes, ...

I. Tice (LAMA) Decay of viscous surface waves April 6, 2012 5 / 50



Introduction Formulation of the problem

Singularities

Wave breaking Spray
Because of these singularities, it is reasonable to only expect
global-in-time (strong) solutions to exist for small initial data.

Singularity formation verified recently by
Castro-Cordoba-Fefferman-Gancedo-Gomez-Serrano and

Coutand-Shkoller.
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Introduction Formulation of the problem

Cartoons of our configurations (cross-sections)

Infinite, flat bottom Periodic, non-flat bottom
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Introduction Formulation of the problem

Fluid domain and unknowns

The moving domain has a free surface given as the graph of the
unknown function η : Σ× R+ → R, where Σ = R2 or T2:

Ω(t) = {y ∈ Σ× R | − b(y1, y2) < y3 < η(y1, y2, t)}
b ∈ (0,∞) is constant in the infinite case (Σ = R2)
0 < b ∈ C∞(T2) in the periodic case (Σ = T2)

For each t ≥ 0 the fluid is described by
velocity u(·, t) : Ω(t)→ R3

pressure p(·, t) : Ω(t)→ R
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Introduction Formulation of the problem

Equations of motion

Incompressible Navier-Stokes in Ω(t):{
∂tu + u · ∇u +∇p = µ∆u − ge3

div u = 0

(u · ∇u)i = uj∂jui

µ > 0 is the viscosity = fluid friction = dissipation mechanism
g > 0 is the gravitational constant
div u = 0 means that volume is preserved along the flow
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Introduction Formulation of the problem

Equations of motion

Continuity of normal stress on the free surface, {y3 = η(y1, y2, t)}:

(pI − µD(u))ν = patmν

patm is the constant atmospheric pressure
I is the 3× 3 identity matrix
ν is the unit normal to {y3 = η(y1, y2, t)}
(Du)ij = ∂iuj + ∂jui is the symmetric gradient
S(p,u) = (pI − µD(u)) is the stress tensor
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Introduction Formulation of the problem

Equations of motion

Surface is advected with the fluid on {y3 = η(y1, y2, t)}:

∂tη + u1∂y1η + u2∂y2η = u3

Kinematic transport equation: free boundary is defined by where
the fluid is
No dissipation mechanism
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Introduction Formulation of the problem

Equations of motion

No-slip BCs on {y3 = −b(y1, y2)}:

u = 0

Required by viscosity
Initial data {

u(t = 0) = u0

η(t = 0) = η0,

Enforce compatibility conditions (ignore for now)
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Introduction Formulation of the problem

Full problem

Make change of pressure p 7→ p + gy3 − patm to shift forcing to the
boundary

Then (u,p, η) satisfy:

∂tu + u · ∇u +∇p = µ∆u in Ω(t)
div u = 0 in Ω(t)
∂tη = u3 − u1∂y1η − u2∂y2η on {y3 = η(y1, y2, t)}
(pI − µD(u))ν = gην on {y3 = η(y1, y2, t)}
u = 0 on {y3 = −b(y1, y2)}
u(t = 0) = u0, η(t = 0) = η0.
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Introduction Formulation of the problem

Natural energy structure

The problem possesses a natural energy structure:

d
dt

1
2

∫
Ω(t)
|u(t)|2 +

g
2

∫
Σ
|η(t)|2︸ ︷︷ ︸

energy E

+
µ

2

∫
Ω(t)
|Du(t)|2︸ ︷︷ ︸

dissipation D

= 0.

On one hand, g > 0 gives a priori control of η
On the other hand, it seems to obstruct decay...
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Introduction Formulation of the problem

Decay info

In a fixed domain without gravity:

d
dt

(
1
2

∫
Ω
|u(t)|2

)
︸ ︷︷ ︸

E

+
µ

2

∫
Ω
|Du(t)|2︸ ︷︷ ︸
D

= 0.

CE ≤ D via Korn’s inequality ⇒ ∂tE + CE ≤ 0

⇒ E(t) ≤ e−CtE(0).
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Introduction Formulation of the problem

Decay info

In a moving domain with gravity, we can prove

C
2

∫
Ω(t)
|u(t)|2 ≤ µ

2

∫
Ω(t)
|Du(t)|2

if we have some uniform control of the geometry of Ω(t), but at best

C ‖η‖2H−1/2(Σ) ≤ D,

so
CE � D ⇒ decay is not clear.
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Introduction History and motivation

Beale’s non-decay theorem, part 1

Beale (’81) proves three theorems for the infinite problem

Theorem (Local well-posedness)

For u0 ∈ H r−1 with r ∈ (3,7/2), there exists a unique solution

u ∈ H0((0,T ); H r ) ∩ H r/2((0,T ); H0)

with T = T (‖u0‖r ) > 0.

Theorem (Large-but-finite-time well-posedness)

For all T > 0 there exists δ = δ(T ) > 0 so that if ‖u0‖r < δ, then there exists a
unique soln on (0,T ). Also, solutions are analytic in the data.
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Introduction History and motivation

Beale’s non-decay theorem, part 2

Given these, one might expect GWP + decay, but...

Theorem (No global well-posedness and decay)

There exists an initial surface ζ so that there cannot exist a curve of
global-in-time solutions, (u(ε),p(ε), η(ε)) for ε near 0, so that (among other
things) 

η0(ε) = εζ + O(ε2),u0(ε) = 0
u(ε) ∈ L1((0,∞); H r ) for r ∈ (3,7/2),

limt→∞ η(ε, t) = 0 in H r−1/2.

Proof is a reductio ad absurdum that critically uses specially chosen
properties of ζ.

Beale notes that the theorem does not preclude GWP + decay, but
rather indicates that such a result must follow from different hypotheses.
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Introduction History and motivation

Surface tension results

A way to add stability is to consider the effect of surface tension:

(pI − µDu)ν = gην − σHν

where H = div(∇η/
√

1 + |∇η|2) is the mean curvature on the free
surface and σ > 0 is the surface tension.

Geometric forcing: like mean curvature flow for the surface, leads
to a smoothing of the surface (RHS is now an elliptic operator)
Beale (’83): small data global well-posedness
Beale-Nishida (’84): algebraic decay, which is sharp
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Introduction History and motivation

Inviscid, irrotational problem

If viscosity is neglected (µ = 0) and the fluid is initially irrotational,
curl u0 = 0, then curl u(t) = 0 for t > 0. Hence u = ∇ϕ for ϕ
harmonic.
“Surface reformulation” reduces problem to PDE on horizontal
cross section (R2) only.
GWP: Wu (’09), Germain-Masmoudi-Shatah (’09)
With viscosity, irrotationality is impossible: vorticity is generated at
the free surface
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Introduction History and motivation

Intriguing questions

1 Is viscosity alone capable of producing global well-posedness?
(Physics: is surface tension required for global stability, or is
viscosity alone enough?)

2 Do the solutions decay in time, and if so, in which spaces and at
what rate? Which of the assumptions of Beale’s non-decay
theorem must be violated?
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Main results Overview
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Main results Overview

Answers

In joint work with Y. Guo, we answer both questions in the affirmative in
a trio of papers.

High regularity local well-posedness, using linear problems in
moving domains
Two-tier energy method: a priori estimates in the infinite case with
flat bottom
Two-tier energy method: a priori estimates in the periodic case
with smooth bottom

Consequence: GWP + decay in both cases
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Main results Overview

Infinite case – rough statement of theorem, part 1

Theorem

Let λ ∈ (0,1). Suppose the data (u0, η0) satisfy certain compatibility
conditions. There exists a κ > 0 so that if

‖u0‖2
H20 + ‖η0‖2

H20+1/2 + ‖Iλu0‖2
H0 + ‖Iλη0‖2

H0 < κ,

then there exists a unique solution (u,p, η) on the interval [0,∞) that
achieves the initial data. The solution obeys various estimates...

Note: Iλ = horizontal Riesz potential = negative λ horizontal derivatives
(more later...)
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Main results Overview

Infinite case – rough statement of theorem, part 2

Theorem
In particular, we have the decay estimates

sup
t≥0

[
(1 + t)2+λ ‖u(t)‖2

C2 + (1 + t)1+λ ‖u(t)‖2
H2

]
≤ Cκ,

sup
t≥0

(1 + t)1+λ ‖η(t)‖2
L∞ +

1∑
j=0

(1 + t)j+λ
∥∥Djη(t)

∥∥2
H0

 ≤ Cκ

for a universal constant C > 0.
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Main results Overview

Periodic case – rough statement of theorem, part 1

Theorem

Let N ≥ 3 be an integer. Suppose the data (u0, η0) satisfy certain
compatibility conditions and that η0 satisfies a “zero average condition.” There
exists a 0 < κ = κ(N) so that if

‖u0‖2
H4N + ‖η0‖2

H4N+1/2 < κ,

then there exists a unique solution (u,p, η) on the interval [0,∞) that
achieves the initial data. The solution obeys various estimates. In particular,
we have the decay estimates

sup
t≥0

(1 + t)4N−8
[
‖u(t)‖2

H2N+4 + ‖η(t)‖2
H2N+4

]
≤ Cκ

for a universal constant C > 0.
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Main results Overview

Remarks

Infinite case: the sharp decay rates with surface tension
(Beale-Nishida) correspond to λ = 1, so by taking λ ≈ 1, we
recover almost the same decay.
Periodic: by making N larger, we recover arbitrarily fast algebraic
decay. This is almost exponential decay. This is in contrast with a
result of Nishida-Teramoto-Yoshihara (’04) with surface tension,
which proves exponential decay with flat lower bottom.
Moral: viscosity is the basic decay mechanism, surface tension
just enhances the decay rate, and the rate of decay with ST can
“almost” be achieved without it.
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Main results Discussion of Beale’s non-decay theorem

Avoiding the non-decay theorem

We avoid the hypotheses of Beale’s non-decay theorem in three
important ways:

We work in a very different functional framework with higher
regularity and more compatibility conditions for the data.
In the infinite case, our framework does not require that
u ∈ L1((0,∞); H2). Moreover, our decay estimates do not imply
this since the best we can do has the L1((0,T ); H2) norm
diverging like log T .
In the periodic case, Beale’s choice of data, η0 = εζ + O(ε2),
violates the natural “zero-average condition” for the data.
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Main results Discussion of Beale’s non-decay theorem

Zero average condition, periodic case

In the periodic case we have

d
dt

∫
T2
η = 0⇒

∫
T2
η(t) =

∫
T2
η0.

Then a necessary condition for the decay η(t)→ 0 in L2 and L∞ as
t →∞ is that η0 satisfies the “zero average condition”:∫

T2
η0 = 0.

It turns out that the properties of ζ require that η0 = εζ + O(ε2) violate
this.

Note: a large class of data can be shifted to force this to be true while
maintaining the condition b > 0 (essentially a constraint on the fluid
mass to prevent pooling).
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Main results Discussion of Beale’s non-decay theorem

Zero average condition, infinite case

The condition
∫
R2 η0 = 0 need not make sense if η0 ∈ Hk .

Equivalent to η̂0(0) = 0 for ·̂ the Fourier transform.
We enforce a “weak form” of η̂0(0) = 0 by requiring the Riesz
potential Iλη0 ∈ L2 for some λ ∈ (0,1), where

Iλf (x) =

∫
R2

f̂ (ξ) |ξ|−λ e2πix ·ξdξ.

Analytic utility = controls low frequency Fourier modes =
something like a Poincaré inequality that we get in the periodic
case from the zero-average condition. Essential use in
interpolation estimates in a priori estimates.
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Sketch of the a priori estimates Difficulties

Sketch of principal difficulties, pt. 1

Usual nonlinear energy method runs into some problems:
Domain moves, so applying derivatives breaks the boundary
conditions. Solution: introduce a flattened “geometric” coordinate
system that fixes the domain to Ω = {x ∈ R3 | − b < x3 < 0} (not
Lagrangian coordinates).
The dissipation always fails to control the energy by a 1/2
derivative gap for η. This prevents us from deducing exponential
decay from the energy evolution equation. Solution: introduce two
tiers of energies / dissipations, one with high regularity and one
with low regularity. Use an interpolation argument to compensate
for the 1/2 derivative gap in the low energy. This leads to
algebraic decay of the low-regularity energy.
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Sketch of the a priori estimates Difficulties

Sketch of principal difficulties, pt. 2

The nonlinearity that appears in the high-regularity energy
estimates involves more derivatives of the free surface, η, than
can be controlled by the high-level energy and dissipation, which
breaks the usual energy method. Solution: estimate the highest
derivatives of η using the kinematic transport equation.
Highest derivatives of η grow in time, so it’s impossible to close
the usual energy method estimates. Solution: use the decay of
the low-regularity energy to balance this growth.

Note: in this scheme the existence of global-in-time solutions is
predicated on their decay.
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Sketch of the a priori estimates Two-tier nonlinear energy method
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Sketch of the a priori estimates Two-tier nonlinear energy method

Two tiers

We define two tiers of energies and dissipations using the natural energy /
dissipation structure described earlier. Let N ≥ 3 be an integer.

EH and DH – high derivatives: 2N temporal, 4N spatial

EL and DL – low derivatives: N + 2 temporal, 2N + 4 spatial

Parabolic scaling dictates the relation between temporal and spatial
derivative counts.

“Low” is roughly half of “high” with extra +2 to help in Sobolev
embeddings.

We get

EH(t) +

∫ t

0
DH(s)ds . EH(0) +

∫ t

0
NH(s)ds

∂tEL(t) +DL(t) . NL(t)

for some nonlinearities NL and NH .
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Sketch of the a priori estimates Two-tier nonlinear energy method

Absorbing

Suppose we can estimate the nonlinearities in terms of the
dissipations (and data):∫ t

0
NH(s)ds . ε

∫ t

0
DH(s)ds + FH(0)

NL(t) . εDL(t)

for ε > 0 small and FH(0) some norms of the data at t = 0. Then we
can absorb the nonlinear terms into the LHS:

EH(t) +

∫ t

0
DH(s)ds . EH(0) + FH(0) := C0

∂tEL(t) + CDL(t) ≤ 0.
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Sketch of the a priori estimates Two-tier nonlinear energy method

High-level bounds imply low-level decay

It is not true that EL . DL (1/2 derivative gap persists). However, we can now
interpolate and use the high-level bound:

EL . EθHD1−θ
L . Cθ0D1−θ

L

for θ ∈ (0,1) small (determined by N and λ). Then for 1/(1− θ) = 1 + 1/r we
have

∂tEL(t) + CDL(t) ≤ 0⇒ ∂tEL(t) + C(C0)(EL(t))1+1/r ≤ 0
⇒ EL(t) . C0/(1 + t)r ,

and so we get algebraic decay. Note that the decay rate r is determined by
1− θ, which is ultimately determined by N and λ. Only by taking λ ∈ (0,1)
can we get r = 2 + δ for some δ > 0.
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Sketch of the a priori estimates Two-tier nonlinear energy method

Estimates of the nonlinearities

Now we need to justify the estimates of the nonlinearities NH and NL.
Problem 1: NL involves more derivatives of η than can be
controlled by EL or DL. Solution: interpolate with EH . We get

NL . Eq
HDL for some q > 0

⇒ NL . εDL if EH is small enough.

Problem 2: NH involves more derivatives of η (4N + 1/2) than can
be controlled by EH (4N) or DH (4N − 1/2). We can’t interpolate
now. Solution: use the kinematic transport equation

∂tη + u1∂1η + u2∂2η = u3

⇒ ∂tη ≈ u3|Σ ∈ H4N+1/2 since ‖u3|Σ‖24N+1/2 . ‖u‖24N+1 . DH .
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Sketch of the a priori estimates Two-tier nonlinear energy method

Transport estimate

Define FH = ‖η‖24N+1/2 . Then we use a transport estimate for η
(Danchin, ’05):

sup
0≤s≤t

FH(s) ≤ C exp
(

C
∫ t

0

√
EL(s)ds

)[
FH(0) + t

∫ t

0
DH(s)ds

]
.

The RHS can grow exponentially in time unless EL decays like
1/(1 + t)2+δ. Even if EL decays this fast, the RHS still grows
linearly in time.
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Sketch of the a priori estimates Two-tier nonlinear energy method

Estimate of NH

In order to balance the growth of FH , we have to identify a special
structure in the estimate of NH : it always appears in a product FhEL, so
we can use the decay of EL to balance the growth of Fh. Fortunately,
this structure is there:∫ t

0
NH(s)ds .

∫ t

0
EH(s)qDH(s)ds +

∫ t

0

√
DH(s)EL(s)FH(s)ds

for some q > 0.
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Sketch of the a priori estimates Two-tier nonlinear energy method

Decay at the low level implies bounds at the high level

Since EL(t) decays like 1/(1 + t)2+δ we can get∫ t

0
NH(s)ds . FH(0) + ε

∫ t

0
DH(s)ds.

We then deduce that

EH(t) +

∫ t

0
DH(s)ds . EH(0) + FH(0) = C0

and
FH(t)
1 + t

. C0.
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Sketch of the a priori estimates Two-tier nonlinear energy method

Summary of a priori estimates

We will build a “total energy” that couples the bounds at the high
order to the decay at the low order and the growth of FH .
Low order decay estimate⇒ high order bounds in terms of data.
High order bounds⇒ low order decay estimate in terms of data.
Decay and high bounds⇒ linear growth estimate for FH in terms
of data.
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Sketch of the a priori estimates Particulars
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Sketch of the a priori estimates Particulars

Two tiers of energies (rough definition)

We define energies and dissipations for n = 2N and n = N + 2:

En = ‖Iλu‖2
H0(Ω) +

n∑
j=0

∥∥∥∂ j
t u
∥∥∥2

H2n−2j (Ω)
+

n−1∑
j=0

∥∥∥∂ j
t p
∥∥∥2

H2n−2j−1(Ω)

+ ‖Iλη‖2
H0(Σ) +

n∑
j=0

∥∥∥∂ j
tη
∥∥∥2

H2n−2j (Σ)

Dn = ‖Iλu‖2
H1(Ω) +

n∑
j=0

∥∥∥∂ j
t u
∥∥∥2

H2n−2j+1(Ω)
+ ‖∇p‖2

H2n−1(Ω) +
n−1∑
j=1

∥∥∥∂ j
t p
∥∥∥2

H2n−2j (Ω)

+ ‖Dη‖2
H2n−3/2(Σ) + ‖∂tη‖2

H2n−1/2(Σ) +
n+1∑
j=2

∥∥∥∂ j
tη
∥∥∥2

H2n−2j+5/2(Σ)
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Sketch of the a priori estimates Particulars

Total energy norm

In our interpolation estimates we need N ≥ 5, and for the infinite
problem nothing improves for larger N, so we choose N = 5: (2N = 10
temporal, 4N = 20 spatial), (N + 2 = 7 temporal, 2N + 4 = 14 spatial).

Let’s now call EH = E2N = E10, EL = EN+2 = E7, FH = F10, etc.

We combine the high and low terms into the total energy we use for our
GWP result:

G10(t) := sup
0≤s≤t

E10(s) +

∫ t

0
D10(s)dr

+ sup
0≤s≤t

(1 + s)2+λE7(s) + sup
0≤s≤t

F10(s)

(1 + s)
.

Bounds on G10(t) couple the boundedness of high-order norms to the
decay of low-order norms.
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Sketch of the a priori estimates Particulars

Interpolation remark

To close the estimates we need the interpolation estimate:

E7 . Eθ10D1−θ
7 .

An example estimate:

∥∥D2η
∥∥2

0 .
(
‖Iλη‖2

0

)θ (∥∥D3η
∥∥2

0

)1−θ

with θ = 1/(3 + λ)⇒ 1/(1− θ) = 1 + 1/(2 + λ)⇒ r = 2 + λ.

Power improves with use of Iλ: λ > 0 is necessary for r > 2.

Proof of full estimate is fairly involved: multi-step bootstrap interpolation
(using proper definitions of N + 2 energies, which involve “minimal
derivative counts”)
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Theorem 1 – A priori estimates

The two-tier nonlinear energy method then works as described before,
and we get:

Theorem
Let (u,p, η) be a solution on (0,T ). Then there exists a δ > 0 so that if
G10(T ) ≤ δ, then

G10(T ) ≤ C (E10(0) + F10(0))

for a constant C = C(λ, µ,g,b).
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Theorem 2 – GWP+decay (using LWP)

Theorem
Fix λ ∈ (0,1). Then there exists a κ > 0 so that if E10(0) + F10(0) ≤ κ, then
there exists a unique global-in-time solution satisfying

G10(∞) ≤ C (E10(0) + F10(0)) ≤ Cκ

for a constant C = C(λ, µ,g,b). Moreover,

sup
0≤t

[
(1 + t)2+λ ‖u(t)‖2

C2(Ω) + (1 + t)1+λ ‖u(t)‖2
H2(Ω)

]
≤ Cκ,

sup
0≤t

(1 + t)1+λ ‖η(t)‖2
L∞(Σ) +

1∑
j=0

(1 + t)j+λ
∥∥∥Djη(t)

∥∥∥2

H0(Σ)

 ≤ Cκ.
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Thanks!

Thank you for your attention!
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