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Plan of the talk
1. Brief review of known results

2. The model and the method of proof
e The fluid model in Eulerian variables

e The Lamé system in Lagrangian variables
e The flow associated with the velocity field
e The interface conditions

e The full nonlinear system
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3. Analysis of the linearized coupled model
e Analysis of the interface condition

e Analysis of the Lamé system

e Analysis of the Stokes system

e The linearized coupled system

4. The Lispchitz estimates

5. The method of successive approximations
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1. Known results

e N.S.E. + Rigid body (Takahashi '03, San Martin, Starovoitov,
Tucsnak '02, Cumsille, Takahashi '09, ...)

e N.S.E. + Deformable body described by a system of O.D.E. (San
Martin, Scheid, Takahashi, Tucsnak '08, Court '10)

e N.S.E. + Elasticity system with a damping (Boulakia '07)

e Elastic structure modeled by the Lamé system (Coutand,
Shkoller '05, Kukavica, Tuffaha, '12)

e A damped beam or plate located at the fluid boundary (Beirao
da Veiga '04, Chambolle, Desjardins, Esteban, Grandmont '05, R.
'09, Lequeurre '10)



2. The model and the method of proof
The fluid model in Eulerian variables
Oou . . .
T (u-Vy)u—divyko(u,p) =0, divx,u=0 in Qg(t), fort >0,

U(O) = Up in QF = QF(O),

at the F-S interface u(x, t) = velocity of the solid displacement,

where
o(u,p) = v(Vyu+ (Viu)") = pl.
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The Lamé system in Lagrangian variables

Pw ) )
92 divyo(w) =0 in Q_;r =Qsx(0,T),
w(-,0) =/ and %—V:(-,O) = wy in Qs,

o(w)n = force exerted by the fluid,
where
1
o(w) = Atracee(w)/+2ue(w) with e(w) = E(vvar(vyw)T),

p>0and A+ p > 0.
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The flow associated with the velocity field

The mapping X(-, t) from Qg(0) = QFf to Qg(t) satisfies the
differential equation

oxX
E(yvt):u(x(yat)vt)’ X(y,O):y fora||y€QF~

The equality of velocity is expressed by

ow

U(X(Y7 t)ﬂt):E()@ t) on Z;—'

The equality of forces reads as
o(w)h = (o(u, p) o X) cof(V, X)i = (¢(u,p) o X) n on L,

where n = cof(V, X)#, 7 is the unit normal to I's exterior to Qf.



The Lagrangian formulation of the coupled system
We introduce
i(y,t) = u(X(y,t),t) and B(y,t) =p(X(y,1),t).

X(-, t) is a Cl-diffeomorphism from Qf into Qp(t) = X(Qf, t) for
all t € [0, T*], where T* > 0 only depends on the initial conditions
up and wi.

We denote by Y(:, t) the inverse of X(-, t), that is the mapping
from Qf(t) into QF satisfying

Y(X(y,t),t) =y, yeQr and X(Y(x,t),t)=x, xé&Qe(t).
Let us notice that

Vu(x, t) =Vu(Y(x,t), t)y(x,t), xe€Qg(t), fort €0, T"],
while

Vp(x,t) = Jy(x, t)TVB(Y(x,t),t), x € Qp(t), for t € [0, T*],
where Jy(x,t) = (Ux(Y(x,t),t))~L.
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The full nonlinear system

gi’—mﬂw:;ﬂ(a,ﬁ) in QF,
divii = G(i) = div(g(1)) in QF,

00)=wup inQp, =0 onX],

=2 and o(&n, p)i = o(w)h + H(i, p) on LI,
2
8—;2’ — divo(w) =0 in QZ,
ow .
w(0) =1/ and E(-,O) =w; in Qs,

t
X(y,t)=y +/ i(y,s)ds, forally € Qpandalltel0,T],
0

Qp (1) = X(2 1),
Y(X(y,t),t) =y, yeQr and X(Y(x,t),t)=x, x¢&Qe(t).
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The nonlinear terms are defined by

F(u, p) = Fi(b) + Fo (i) + F5(a, p),

J,k J
L aYiavL 020
-7:2(u)_yzaxj 8)(1(X(y’ )7 )ayak(yat)_VAu7

H(@, p) = —v(ViJy+Jy (Vi) n+o(Vi+ (Vi) ) i—p(i—cof(VX)7).



Let us notice that
Vi (/ - JJ) = G(i) = div(g(i)) with g(@)= (I — Jy)i,

because
Vii: Jy = divcu=0.

Otherwise, any regular vector field v, we have
G(v) = divy g(v) +i(¥),

where
j(V) = =V (detdy,) - Jy, v/det (Jx,).
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3. The linearized model

The method of successive approximations is based on fine
estimates for the following linearized system

@—VAv—i—Vq:f in Q,_T,

ot
divv =g =divg+j in Qg,
v(0)=u inQF, v= ow on Xl

ot

o(v,q)n=c(w)n+h on Xl

2
%t‘;v —dive(w) =0 in QZ,
w(0) =/ and aW(‘,0) =w; in Qs.

ot

For simplicity we have replaced i by n.
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Maximal regularity results for the Stokes system

%-mwwzo in QF,
divv=0 in Qf,

. ow T
v(0) = up in QF, V=g on Xg,

o(v,q)n=o(w)n+h onXl.

For Dirichlet boundary conditions, if v|zsr € HY2(21), >0
then v € H€+1/2,£/2+1/4(QZ_')_

Conversely, if v € HFL/26241/4(QI), then vlsy € HY2(E D).
For Neumann boundary conditions, if o(v, q)n € H%/2(£1), £ >0

then v € He+3/2’z/2+3/4(Q,2-—). Conversely, if
v € HH3/2L243/4(Q), then o(v, q)n € HA/2(ED).
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Regularity results for the Lamé system

P
ot?

t
W:G:W0|r5+/ vdr on Z;,
0

—dive(w) = F in QJ,

ow
ot
If wo € H?(Qs), w1 € HY(Qs), F € LY(HY) n Wi(L2?),

G e H2(Zg—), G’tzo = Wo’r5 and 8tG|t:0 = Wl‘rs, then

w(0) =wp and (,0) =wq in Qs.

w e C([0, T]; H*(Qs)) N CY([0, T]; HY(Qs)) N C*([0, T]; L*(Qs))
and

o(w)n e HYZI).

More generally if G € H*(XI), then o(w)n € H1(Z1).



Analysis of the interface conditions

't
w = G:W0|rs+/ vdr and o(v,q)n=oc(w)n+h onXl.
0

If o(w)n+ h e HY(ZI), then v € HY/25/4(Q[),
't

vlgr € H2Y(2{), and wolr, +/ vdr € H*(X1), which gives
0

again o(w)n € HY(ZD).

Thus v € H%25/4(Q[') and

w € C([0, T]; H*(Qs)) N C([0, T]; H(Qs)) N C3([0, T]; L*(Qs))
with o(w)n € HY(X) seems to be a good candidate family of
spaces for a fixed point method.

Unfortunately, for the nonlinear terms in 3D, we need

Ve H2+e’1+£/2(Q/-T)> with £ > 1/2.
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We redo the previous analysis
If o(w)n + h € HY2H4(T), then v € HZHEIH2(Q),

V‘):;r c H3/2+Z,3/4+Z/2(Z;'), and

t
wolr +/ vdr € HY(0, T; H¥*T(T's)) n H/*4/2(0, T; L3(T's)).
0

t
We would like to have wg|r. +/ vdr e H¥?(2 D), to recover
0
o(w)n € HY/2+H(L D).

But 7/4+¢/2 < 3/2+ ¢ and we cannot get

t
wolr +/ vdr e H3/2T4(]).
0



We have to prove new anisotropic hidden regularity for the Lamé
system.

We prove that if

t
wolrs +/ vdr € HY(0, T; H¥/>T(T's)) n H/*T/2(0, T; L*(T's)),
0
then

o(w)n € HY/8H%0, T; HY2H(T'5)) 0 H3/4T42(0, T; L2(T's)).
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Analysis of the Stokes system

%fm\%w:o in QF,
divv =g =divg+]j inQ,_T,
v(0) = up in QF,

o(v,q)n=c(w)n+h onXl.

To simplify we set j = 0.
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The difficult part is

ov L :
a—uAv—qu:O mQ,_T,
divi =g =divg in Q/,
7(0) =0 in QF,

o(V,g)n=0 onXl.

We have to use the decomposition ¥ = PV + (/I — P)7.

The regularity of g € L2(0, T; H't4(QF)) N H/2(0, T; HY(QF)) is
used to recover the best regularity with respect to the space
variable 7 € L2(0, T; H***(QF)),

while the regularity g € H'+/2(0, T; L?(QF)) is used to recover
the best regularity with respect to the time variable
Ve HYW2(0, T; L2(QF)).
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Regularity result for the Stokes system. If
feHY2(QL), w e H™W (Qr)NHE(QF), divv =0,
he HY2HL402(5T) g e HIF2(0, T; 12(QF)),
g€ C([0, T H'™(QF)), glsz =0, g(,0)=0 inQF,
g € L2(0, T; HY(QF)) N HY2(0, T; HY(QF)),
and if h, vy obey the compatibility conditions
2v (e(wo)n) -7 =h(0)-7 on g,
then
HPVHH2+Z’1+Z/2(QFT) + ”VQHHM/2(QI_T) < C(”fHvaeﬂ(Q;[)
+llgllzprreynmerzeany + 18l ez 2y + 1l peers 1) + Vol prvecar) )
and
1(1 = P)iipseserzqry < CUlI8lI2(0, 51+ e(06)) + |18l Hrerzi2y)-
In particular v|z7 belongs to H3/2+63/4+4/2(£ T) because
v e H2HLH2(QT).



The linearized coupled system

The Stokes system

?;—yAv+Vq—f inQ;,
divyv =g =divg+j in QE,
V(O) = Uup in QF,

o(v,q)n=c(w)n+h=C+h on Xl

The Lamé system
2y diva(w) =0 in QJ,

t
W:l+/ v(s)ds on Xl
0

ow

w(0) =1/ and 5

(',0) = w in Qs.
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For ¢ given, we denote by (v¢, g¢) the solution to the Stokes
equation. We denote by w, the solution to the Lamé system with
the Dirichlet boundary condition

ot
we I+/O ve(s)ds onX!.
We show that the mapping
Cr—> O’(WC)I‘)

is a contraction in
{C c H1/2+€,1/4+€/2(Z;) |

¢ - T|t=0 = 0 on I's for all vector T tangent to I's}.
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4. Lipschitz estimates

We need to introduce

Ko = [luolliee(ap) + wollparzeers(qg) + llwolrsllpszee(rs)
Hlwallp/esessqgy, 0<B<5/8-1/4

The solution (&%, p°, w°) to

(;‘;_,/AV+Vq:0, divv =0, in Qf,
v(0) = ug in QF, V:%/: on £{,
a(v,q)n=o(w)n on ZST,

2
%T‘;/ — dive(w) =0 in QJ,
w(0) =/ and 8—W(',O) =w; in Qs.

ot
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The estimate
~0 ~0
HU HH;+Z’1+Z/2(QE) + va HH;@K/Q(Q;) S Cl KO?
We set
~ 0 0
Ko =[G (& )HL2(o,T;HyZ(QF))mHL’ﬁ(o,T;H#(QF))‘FHg(U )HHHZ/?(O,T;L?%(QF))'

and My = 3C1(K0 + Ro) + 3.

The maximal time T* depends only on M.
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Lipschitz estimates

|F (@, B)llry < Ke T x(Mo),
| F(@t, pt) — F(@?, b2l Fr
< KeTHx(Mo) (18t — 22)g, + IV — VB?|IF,) S

for all @1, & and &% bounded by My in ET, equal to ug at t =0,
and all p, p* and p? bounded by My in Fr, with

Er = HEHIH2(QT), Fr = HY2(QF).

X is a polynomial of high degree.
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5. The method of successive approximations

We look for a solution (i, p, w) to system the nonlinear system in
the form

i=v+i, p=qg+p° w=z+wd

Thus (v, g, z) obeys

)
a—‘;—yAv+Vq:f(v+D°,q+;30) in Q7,

divv = G(v + %) = div(g(v + @°) +j(v + &°) in QF,
v(0)=0 inQr, v=0 onX/],
0z

V=5 and o(v,q)n=oc(z)n+H(v+i° g+ p°) onXl,
2
gt; —divo(z) =0 in QJ,
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and X and Y are determined by

t
X(y,t)=y +/ (v +@%(y,s)ds, forally € Qf andall t €0, T],
0

Q1) = X(2 1),
Y(X(y,t),t) =y, yeQr and X(Y(x,t),t)=x, xe&Qe(t).
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We prove the existence of a fixed point to the above system, by
the method of successive approximation.

We choose (vk, qk,zk) in the nonlinear terms of the RHS, and we
denote by (vAt1, gkt1 zk+1) the corresponding solution.

At the first iterate, that is for (v9, q°, z%) = (0,0, 0), we have
G(°) = div (g(@°)),
because Vii° : J\ZO =0.
For the other iterates, we have
G(o*) =div (g(v* + %)) +j(v* + i°).

This method is used with some gap in the literature on free
boundary value problems.
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Existence and uniqueness theorem

Assumptions.

w € HH(QF), wlr, =0, divug =0, wy e H/2T45(Qs),
with £ € (1/2,1) and 0 < 3 < 2 — g, and

uolrs = wilrs, 2v(e(uo)n)-7=o(wo)n-7=0o(l)n-7=0 onTs,

for any unit vector 7 tangent to [s.



Metric spaces.

ET,I\/Io,uo = {f] S H2+€,1+Z/2(Q;—) ’ TJ(O) = up, HTIHH2+Z,1+6/2(QI‘__F) < /\ﬂo}7
Pr.m, =1{p € L2(QI—T) | HVPHHN/Z(QI_T) < Mo},

and

X712 = {X € HY(0, T; H***(QF)) N H2H/2(0, T; L2(QF)) |

IVyX =1 - c(ef) <1/2}.

Conclusion. Then, there exists T > 0 such that the nonlinear
system admits a unique solution (&1, Vp, w, X) in

ET,Mo,uo X PT,MO X (CO([O, T]; H7/4+é/2(95)) N
Cl([oa T]; H3/4+£/2(§25))) X XT,1/2-
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Solution to the initial system.

If up and wy obey the previous compatibility conditions. Assume
that (7, VP, w, X) € ET My,u0 X PT,Mo %

(CO([0, T]; HT/4H72(Qs)) N CH([0, TT; H¥/*H4/2(Qs))) x X172 is

a solution to the nonlinear system in Lagrangian variables. Let us
set

u(x,t) =u(Y(x,t),t), p(x,t)=p(Y(x,t),t) forall x e Qp(t),
tel0, T].

Then (u, p, w) is a solution to system initial system in
Eulerian-Lagrangian variables.
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