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Outline

I. Motion of a 2d rigid body in a perfect incompressible fluid. The
Cauchy problem.

II. The particle limit (ε→ 0).
III. The mean-field limit (N → +∞).
IV. The gyroscopic limit (m→ 0).

I ε > 0 : rigid body diameter,
I N ∈ N∗ : number of particles,
I m : individual mass of the particles.



Part I.

Motion of a 2d rigid body in a perfect
incompressible fluid. The Cauchy
problem.



Position of the rigid body
We consider the motion of a solid body occupying, at time t, the domain

S(t) = τ(t)S0,

where
I S0 ⊂ R2 is a closed, bounded, connected and simply connected

regular domain, which denotes the initial position of the solid.
I τ(t) ∈ SE (2) can be decomposed into

τ(t) · x = h(t) + Q(t)(x − h(0)),

where
I h(t) is the position of the center of mass of S(t), and we will assume

that h(0) = 0.
I Q(t) is the rotation matrix :

Q(t) :=
[
cos θ(t) − sin θ(t)
sin θ(t) cos θ(t)

]
,

and satisfies Q(0) = Id , that is θ(0) = 0.



Velocity of the rigid body

The body velocity is given by

uS(t, x) := `(t) + r(t)(x − h(t))⊥,

where
I `(t) := h′(t) is the velocity of the center of mass,
I r(t) := θ′(t) is the angular velocity of the body, and
I the notation x⊥ stands for x⊥ = (−x2, x1), when x = (x1, x2).



A solid in a perfect incompressible fluid

I We consider the motion of a solid body immersed in a perfect
incompressible fluid occupying

F(t) := R2 \ S(t).

Hence we consider the incompressible Euler equation in the fluid
domain :

∂u
∂t

+ (u · ∇)u +∇p = 0 for x ∈ F(t)

div u = 0 for x ∈ F(t).

I On the interface between the fluid and the solid there holds :

u · n = uS · n on ∂S(t).



Newton’s law

I The solid motion is given by Newton’s law.
I It evolves under the influence of the fluid pressure on its surface :

mh′′(t) =

∫
∂S(t)

p n ds and J r ′(t) =

∫
∂S(t)

p (x − h(t))⊥ · n ds,

where m > 0 and J > 0 denote respectively the mass and the
moment of inertia of the body.



Initial data

We prescribe the initial velocities :
I u|t=0 = u0 is

I in the Hölder space
C 1,λ(F0;R2),

where λ ∈ (0, 1),
I in the space

L2(F0;R2)⊕ RχH0,

where

H0(x) :=
x⊥

2π|x |2 and χ(x) :=
|x |2

1+ |x |2 ,

I and satisfies div u0 = 0 in F0,

I (`(0), r(0)) = (`0, r0) is in R2 × R,

with the compatibility condition at the interface :

u0 · n = uS0 · n on ∂S0, with uS0(x) := `0 + r0x⊥.



Global-in-time existence and uniqueness of classical solutions

Theorem
There exists a unique classical solution

(`, r , u) ∈ C 1([0,+∞);R2)×C 1([0,+∞);R)×Cw ([0,+∞);C 1,λ(F(t))).

References : Ortega-Rosier-Takahashi (2007) in the case of finite energy,
Glass-S (2012) for the general case.



Why should we bother with infinite energy ?

The fluid part of the system can also be written thanks to the vorticity :{
∂tω + div (ωu) = 0 in F(t),
ω|t=0 = ω0,

and 
curl u = ω in F(t),
div u = 0 in F(t),
u · n = uS · n on ∂S(t),
lim|x|→+∞ u(t, x) = 0,∫
∂S(t) u(t, x) · τ ds =

∫
∂S0

u0(x) · τ ds (Kelvin’s law).



Why should we bother with infinite energy ?

I In particular the unique regular vector field H such that
curlH = 0 in F0,
div H = 0 in F0,
H · n = 0 on ∂S0,
lim|x|→+∞ H(x) = 0,∫
∂S0

H · τ ds = 1.

behaves like H0 at infinity, and therefore is not in L2(F0).
I Still it is a steady (irrotationnal) solution of the Euler incompressible

equations in F0.
I For fluid velocities which are potential in F , stationary and constant,

say equal to u∞, at infinity, D’Alembert’s paradox states that the
fluid does not influence the dynamics of the solid.

I If there is a circulation γ 6= 0, then the fluid acts on the solid with
the Kutta-Joukowski force F = −γu⊥∞.



The Kutta-Joukowski force

I In an irrotationnal flow the calculation of the Kutta-Joukowski force
relies on the following lemma :

Lemma (Blasius’ lemma)
Let C be a smooth Jordan curve, f := (f1, f2) and g := (g1, g2) two
smooth tangent vector fields on C. Then∫

C
(f · g)n ds = i

(∫
C

(f1 − if2)(g1 − ig2) dz
)∗

,∫
C

(f · g)(x⊥ · n) ds = Re

(∫
C
z(f1 − if2)(g1 − ig2) dz

)
.

where (·)∗ denotes the complex conjugation.
I and on Cauchy’s Residue Theorem, using that the Laurent series of

H starts as follows :

(H1 − iH2)(z) =
1

2iπz
+O(

1
z2 ) as z →∞.



Renormalized energy

I The vector field
û := u − (α + γ)H(t),

where
α :=

∫
F(t)

ω(t, x) dx =

∫
F0

ω(0, x) dx .

is in L2(F(t)).
I Moreover

H :=
1
2

[
m`2 + J r2 +

∫
F(t)

û2 + 2(γ + α)û · H(t)

]
is conserved.

I The “standard” energy would be

E :=
1
2

[
m`2 + J r2 +

∫
F(t)

(
û + (γ + α)H(t)

)2]
,

but this is infinite in general.



Smoothness of the body motion

Theorem ( Glass-S-Takahashi (2012), Glass-S (2012).)
Assume furthermore that ∂S0 is analytic.

I Then the motion of the rigid body is analytic in time, that is

(`, r) ∈ Cω([0,∞);R2)× Cω([0,∞);R)

I Moreover it depends smoothly on the initial data.



References

This theorem extends some results about the smoothness of the
trajectories of the fluid particles :

I Chemin (1991, 1992) : perfect incompressible fluid filling the full
space, trajectories for classical solutions are C∞.

I Serfati (1992) : perfect incompressible fluid filling the full space,
trajectories for classical solutions are Cω.

I Gamblin (1994) : perfect incompressible fluid filling the full plane,
trajectories for Yudovich solutions are Gevrey 3.

I Kato (2000) : perfect incompressible fluid filling a C∞ bounded
domain, trajectories for classical solutions are C∞.



A few ingredients used in the proof

The proof uses

I a decomposition into two parts of the pressure which encodes the
added mass effect,

I a precise study of the commutation of the iterated material
derivatives Dk , where

D := ∂t + u · ∇

with an equivalent formulation of the problem, in particular with the
div-curl systems satisfied by the two parts of the pressure.



Kirchoff’s potentials.

I One introduces Kirchoff’s potentials Φ1(t),Φ2(t),Φ3(t) :

∆Φi = 0 in F(t),

∂nΦi =

{
ni ( if i = 1, 2),
(x − h(t))⊥ · n ( if i = 3),

on ∂S(t).

I The solid equations become

[
m Id2 0
0 J

] [
`
r

]′
=


∫
∂S(t)

p n ds∫
∂S(t)

p (x − h(t))⊥ · n ds


=

[∫
∂S(t)

p∂nΦi dx
]

i=1,2,3

=

[∫
F(t)
∇p · ∇Φi dx

]
i=1,2,3

.



Decomposition of the pressure

The pressure decomposes as follows :

∇p = −
[
`
r

]′
·
[
∇Φi

]
i=1,2,3 −∇µ,

where

−∆µ = tr {∇u · ∇u} for x ∈ F(t),

∂µ

∂n
= σ, for x ∈ ∂S(t),

µ(t, x)→ 0 as x →∞,

where

σ := ∇2ρ {u − uS , u − uS} − n ·
(
r (2u − uS − `)⊥

)
,

with
ρ(t, x) := dist(x , ∂S(t)).



Added mass effect
We end up with this new equation for the solid :

M
[
`
r

]′
=

[∫
F(t)
∇µ · ∇Φi dx

]
i=1,2,3

,

where

M :=

[
m Id2 0
0 J

]
+

[∫
F(t)
∇Φi · ∇Φj dx

]
i,j=1,2,3︸ ︷︷ ︸

=:M2

.

The matrixM2 is a matrix of added inertia, expressing how the fluid
opposes the movement of the solid. It is positive as a Gram matrix.



Weak solutions
There exists some results of global existence of weak solutions.

I Glass-S. (2011) : weak solutions with ω := curl u ∈ L∞c , for which
uniqueness holds true and the motion of the rigid body is Gevrey 3,
if the boundary is analytic.
This corresponds to solutions “à la Yudovich”.

I Glass-Lacave-S. (2011) : weak solutions with ω := curl u ∈ Lp
c ,

where p > 2. These solutions satisfy renormalization properties and
the corresponding velocity u is continuous.
This corresponds to solutions “à la Di Perna-Lions”.

Remark
One can also prove the existence of even weaker solutions, for ω ∈ Lp

c
with p > 1, or for finite-energy weak solutions for ω bounded Radon
measure with symmetry (solutions “à la Delort"). cf. Glass-S. (2012),
Xin-Wang (2012), S. (2012).



Part II.

The particle limit (ε→ 0).



The problem of a small body
I Question. What can be said if the size ε of the solid goes to zero, so

that the body shrinks to a point ?
I For ε ∈ (0, 1), we define

Sε0 := εS0, Fε0 := R2 \ Sε0 .

I We will be interested in the following particular regime of a massive
point in the limit :

mε = m and Jε = ε2J ,

where m and J are some fixed positive constants.



The problem of a small body, continued

I Let

ω0 ∈ Lp
c (R2), with p > 2, γ ∈ R, (`0, r0) ∈ R2 × R.

I For ε ∈ (0, 1), we define uε0 satisfying

curl uε0 = ω0 in Fε0 ,
div uε0 = 0 in Fε0 ,
uε0 · n = (`0 + r0x⊥) · n on ∂Sε0 ,
lim|x|→+∞ uε0 = 0,∫
∂Sε

0
uε0 · τ ds = γ.

I What can be said about a sequence of global weak solutions

(`ε, rε, uε)

associated to these data ?



A brief recall of some notations

I Recall that

hε(t) :=

∫ t

0
rε(s)ds, θε(t) :=

∫ t

0
rε(s)ds,

and H0(x) :=
x⊥

2π|x |2

I We will also use the Biot-Savart operator K [·] which is the
convolution with H0, and maps to a reasonable scalar function ω the
vector field K [ω] solution of curlK [ω] = ω in R2,

div K [ω] = 0 in R2,
lim|x|→+∞ K [ω](x) = 0.



Main result

Theorem (Glass-Lacave-S. 12’). Up to a subsequence,

I (hε, εθε) w∗−⇀ (h, 0) in W 2,∞(0,T ;R2 × R),

I ωε
w−⇀ ω in C 0([0,T ]; Lp(R2)),

I one has

∂tω + div (ωu) = 0, u = K [ω + γδh(t)],

mh′′(t) = γ
(
h′(t)− ũ(t, h(t))

)⊥
, ũ = K [ω],

with

(ω|t=0, h(0), h′(0)) = (ω0, 0, `0).



Comparison of the limit system

Our limit system : Euler + massive point vortex

∂tω + div (ωu) = 0, u = K [ω + γδh(t)],

mh′′(t) = γ
(
h′(t)− ũ(t, h(t))

)⊥
, ũ = K [ω],

Euler + (massless) point vortex, see Marchioro-Pulvirenti :

∂tω + div (ωu) = 0, u = K [ω + γδh(t)],

h′(t) = ũ(t, h(t)), ũ = K [ω].



Uniform (in ε) a priori estimates
I Using

I the renormalized energy
I and the conservations of ‖ω‖Lp ,

one obtains that, for T > 0, the quantities

|`ε|, ε|rε|, ‖uε − γHε‖∞, and diam(Supp(ωε))

are bounded on [0,T ] independently of ε.
I Let us point pout that Hε is of order O(1/ε) on ∂Sε0 . . ..
I When ε→ 0, the added inertia is negligible with respect to the body

inertia.
I One uses a potential approximation of the velocity on the solid’s

boundary, satisfying the interface condition.



Description of the shrinking body’s behaviour

The solid equations become[
m Id2 0
0 J

] [
hε

εθε

]′′
= γ

[
((hε)′ − uε(t, hε))⊥

0

]
+γ

[
−(ε(θε)′)Qε(t)α

α · Qε(t)∗((hε)′ − uε)

]
︸ ︷︷ ︸
converges weak-∗ to 0 in W 1,∞

+o(1),

where
I uε = K [ωε],
I ωε is extended by 0 inside Sε0 ,
I and α ∈ R2 depends only on the geometry.



Part III.

The mean-field limit (N →∞).



N pointwise massive particles in a perfect incompressible
fluid

Let us now generalize the previous system to the case of N pointwise
particles of mass mi , of circulation γi and of position hi (t), moving into a
perfect and incompressible planar fluid :

∂tω + div x(ωu) = 0, u(t, x) = K [ω +
N∑

j=1

γjδhj (t)],

mih′′i (t) = γi

(
h′i (t)− ũi (t, hi (t))

)⊥
, ũi = K [ω +

∑
j 6=i

γjδhj (t)],

ω|t=0 = ω0, hi (0) = hi,0, h′i (0) = hi,1.



The mean-field limit

I We want to study the mean-field limit of the previous system, that is
the limit system obtained by the empirical measure

fN(t) :=
1
N

N∑
i=1

δ(hi (t),h′
i (t))

when N goes to infinity, with an appropriate scaling of the
amplitudes.

I We therefore consider now the solutions of

∂tω + div x(ωu) = 0, u(t, x) = K [ω +
1
N

N∑
j=1

δhj (t)],

h′′i (t) =
(
h′i (t)− ũi (t, hi (t))

)⊥
, ũi = K [ω +

1
N

∑
j 6=i

δhj (t)],

ω|t=0 = ω0, hi (0) = hi,0, h′i (0) = hi,1.



An Euler-Vlasov system

In the case of several massive vortices, in the mean-field regime, one
obtains :

∂tω + div x(ωu) = 0,

∂t f + ξ · ∇x f +∇ξ · [f (ξ − u)⊥] = 0,

u := K [ω + ρ] and ρ :=

∫
R2

fdξ.



Comparison of different sprays models

I Our model : Euler-Vlasov in 2d, coupled by a gyroscopic force.

I Spherical particles in a 3d potential flow. No gyroscopic force, but
thicker spray with some added mass effect.
cf. Russo-Smerecka, Herrero-Lucquin-Perthame, Jabin-Perthame.

I Vlasov-Stokes in 3d, coupled by the Brinkman drag force.
cf. Jabin-Perthame, Desvillettes-Golse-Ricci.



The Cauchy problem for the Euler-Vlasov system

For this system, one can prove (Moussa-S. 12’) :
I a well-posedness result “à la Dobrushin” in the space of Radon

measures when the Biot-Savart kernel H0 is regularized into a
Lipshitz kernel.

I the existence of weak solutions, for ω0 ∈ (L4/3 ∩ L1)(R2),
f0 ∈ (L∞ ∩ L1)(R2 × R2) such that the kinetic energy of the
dispersed phase is finite :∫

R2×R2
f0(x , ξ)|ξ|2dx dξ < +∞,

I the uniqueness of solution for solutions “à la Loeper”, with the main
assumption that ρ ∈ L∞((0,T )× R2),

I the persistence, globally in time, of regularity, “à la Degond”.



Part IV.

The gyroscopic limit (m→ 0).



I We investigate the behavior, when the individual mass m of the
particles converges to 0, of the system :

∂tω
m + div x(ωmum) = 0,

∂t f m + div x(f mξ) +
1
m

div ξ(f m(ξ − um)⊥) = 0,

um = K [ωm + ρm] and ρm :=

∫
R2

f mdξ.

I One may guess that in the limit m→ 0+ the density of particles
becomes monokinetic with a velocity ξ = u so that

jm :=

∫
R2

f mξdξ → ρu, where ρ := lim ρm and u = lim um.

I Therefore the equations would degenerate into :

∂tω + div x(ωu) = 0, ∂tρ+ div x(ρu) = 0, u = K [ω + ρ],

thus yielding the incompressible Euler equation with vorticity ω + ρ.



Theorem (Moussa-S. 12’)
Let be given

I u0 ∈ L2(F0;R2)⊕ RχH0,
I some smooth compactly supported functions (ωm

0 , f
m
0 )m such that

(ωm
0 , ρ

m
0 )m is bounded in L2(R2)× L1(R2)

m
∫
R2×R2

|ξ|2f m
0 (x , ξ)dxdξ +

∫
R2
|um

0 − u0|2dx → 0, when m→ 0+,

where um
0 := K [ωm

0 + ρm
0 ].

I the corresponding smooth solutions (ωm, f m)m of the Euler-Vlasov
equations.

Then, up to an extraction, (um)m converges in

L∞((0,T ); L2(F0;R2)⊕ RχH0 − w)

to a dissipative solution of the incompressible Euler equation with initial
condition u0.



Idea of the proof
I Let

α :=

∫
R2

(
ωm(t, x) + ρm(t, x)

)
dx =

∫
R2

(
ωm(0, x) + ρm(0, x)

)
dx .

I Consider a smooth (in time/space) vector field v such as

v(t) ∈ L2(F0;R2)⊕ αχH0

and curl v(t) is compactly supported, for all t.
I Let us denote

2Hm
v (t) := m

∫
R2×R2

|ξ − v(t, x)|2f m(t, x , ξ)dxdξ

+

∫
R2
|um(t, x)− v(t, x)|2dx .

I Observe that the modulated energy Hm
v (t) is the sum of two

nonnegative finite terms.
I The proof relies on the dynamics of Hm

v (t).



Open questions

I We considered here successively the particle limit ε→ 0, the
mean-field limit N → +∞ and finally the gyroscopic limit m→ 0.

I Is that possible to proceed in a different order ? To consider
correlated limits in order to cover a larger range of parameters ?

I Control issues ?
I Does there remain something of this with some viscosity ?



Thank you for your attention !


