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Outline

|. Motion of a 2d rigid body in a perfect incompressible fluid. The
Cauchy problem.

[I. The particle limit (¢ — 0).
[1l. The mean-field limit (N — +00).
IV. The gyroscopic limit (m — 0).

» ¢ > 0: rigid body diameter,
» N € N* : number of particles,

» m : individual mass of the particles.



Part |.

Motion of a 2d rigid body in a perfect
incompressible fluid. The Cauchy
problem.



Position of the rigid body

We consider the motion of a solid body occupying, at time t, the domain
S(t) = 7(t)So,

where

» So C R? is a closed, bounded, connected and simply connected
regular domain, which denotes the initial position of the solid.

» 7(t) € SE(2) can be decomposed into
7(t) - x = h(t) + Q(t)(x — h(0)),

where
> h(t) is the position of the center of mass of S(t), and we will assume
that h(0) = 0.
> Q(t) is the rotation matrix :

cosf(t) —sinf(t)

Q(t) = sind(t) cosO(t) |’

and satisfies Q(0) = Id, that is 6(0) = 0.



Velocity of the rigid body

The body velocity is given by
us(t,x) := £(t) + r(t)(x — h(t))*,

where
> ((t) := H'(t) is the velocity of the center of mass,
> r(t) :=0'(t) is the angular velocity of the body, and

» the notation x* stands for x* = (—x2, x1), when x = (x1, x2).



A solid in a perfect incompressible fluid

» We consider the motion of a solid body immersed in a perfect
incompressible fluid occupying

F(t) := R\ S(t).

Hence we consider the incompressible Euler equation in the fluid
domain :

%—t—(u-V)u—l—Vp:O for x € F(t)

divu=0 for x € F(t).
» On the interface between the fluid and the solid there holds :

u-n=ug-n on dS(t).



Newton's law

» The solid motion is given by Newton's law.

» It evolves under the influence of the fluid pressure on its surface :

mh" (t) = / pnds and Jr'(t)= / p(x — h(t))* - nds,
oS(t) oS (t)

where m > 0 and J > 0 denote respectively the mass and the
moment of inertia of the body.



Initial data

We prescribe the initial velocities :
> Ult—o = up is
> in the Holder space
Cl’/\(fO;RZ),
where X € (0,1),
> in the space
L*(Fo; R*) © RyHo,
where
Ho(x) :=

> and satisfies div up = 0 in Fo,
» (£(0),r(0)) = (o, r0) is in R? x R,
with the compatibility condition at the interface :

Ug - n = us, - non 08y, with us,(x) := {0+ rox.



Global-in-time existence and uniqueness of classical solutions

Theorem
There exists a unique classical solution

(€, r,u) € CY{]0, +00); R?) x CL([0, +00); R) x Cy ([0, +00); CHA(F(1))).

References : Ortega-Rosier-Takahashi (2007) in the case of finite energy,
Glass-S (2012) for the general case.



Why should we bother with infinite energy ?

The fluid part of the system can also be written thanks to the vorticity :

{ Orw +div (wu) =0 in F(t),

Wit=0 = o,
and

curlu=w in F(t),

divu=0 in F(t),

u-n=ug-n on 9S(t),

|im|X|_>+Oo u(t X) =0,

faS(t u(t,x) - TdS—faS up(x) - 7ds (Kelvin's law).



Why should we bother with infinite energy ?

» In particular the unique regular vector field H such that

curlH=0 in Fo,
div H=0 in Fy,
H-n=0 on 08,
|im‘x|_>+oo H(X) = 0,
faSoH-Tds: 1.

behaves like Hp at infinity, and therefore is not in L?(Fp).

» Still it is a steady (irrotationnal) solution of the Euler incompressible
equations in Fp.

» For fluid velocities which are potential in F, stationary and constant,

say equal to v, at infinity, D'Alembert’s paradox states that the
fluid does not influence the dynamics of the solid.

» If there is a circulation v # 0, then the fluid acts on the solid with
the Kutta-Joukowski force F = —yuL

oo



The Kutta-Joukowski force

» |n an irrotationnal flow the calculation of the Kutta-Joukowski force
relies on the following lemma :
Lemma (Blasius’ lemma)

Let C be a smooth Jordan curve, f := (fi,f) and g := (g1, &) two
smooth tangent vector fields on C. Then

[ ends =i ( [ - it _,-g2)dz)*,
706 ) o5 = 55 ( [t~ i)e: — e dz) |

where (-)* denotes the complex conjugation.
» and on Cauchy’s Residue Theorem, using that the Laurent series of
H starts as follows :

1 1
=5 + 0(2—2) as z — 0.

(Hl — IHQ)(Z)



Renormalized energy

» The vector field
b:=u—(a+y)H(t),

o= / w(t,x)dx = / w(0, x) dx.
F(t) Fo

is in L2(F(t)).
» Moreover

where

’H::% m€2—|—(7r2+/ 0 +2(y + )b - H(t)

F(t)

is conserved.
» The “standard” energy would be

5::% m£2+jr2+/ (0 + (v + @)H(1)?|

F(t)

but this is infinite in general.



Smoothness of the body motion

Theorem ( Glass-S-Takahashi (2012), Glass-S (2012).)

Assume furthermore that Sy is analytic.

» Then the motion of the rigid body is analytic in time, that is
(¢,r) € C¥([0,00); R?) x C*([0,0); R)

» Moreover it depends smoothly on the initial data.



References

This theorem extends some results about the smoothness of the
trajectories of the fluid particles :

» Chemin (1991, 1992) : perfect incompressible fluid filling the full
space, trajectories for classical solutions are C°.

» Serfati (1992) : perfect incompressible fluid filling the full space,
trajectories for classical solutions are C“.

» Gamblin (1994) : perfect incompressible fluid filling the full plane,
trajectories for Yudovich solutions are Gevrey 3.

» Kato (2000) : perfect incompressible fluid filling a C*° bounded
domain, trajectories for classical solutions are C°.



A few ingredients used in the proof

The proof uses

» a decomposition into two parts of the pressure which encodes the
added mass effect,

> a precise study of the commutation of the iterated material
derivatives DX, where
D = 3,_» +u- \%

with an equivalent formulation of the problem, in particular with the
div-curl systems satisfied by the two parts of the pressure.



Kirchoff's potentials.

> One introduces Kirchoff's potentials ®1(t), ®(t), P3(t) :
A®; =0 in F(t),

o om (fi=1,2),
‘9"""'—{ (x—h(t)*-n (ifi=3), ©°" )

» The solid equations become

d
[m|d2 o} H /avS(t)p e

o Jllr p(x — h(t))* - nds
LJos()

= / pO,; dx}
L/ 9S(t) i=1,2,3

= / Vp-Vo; dx} .
L/ F(t) i=1,2,3




Decomposition of the pressure

The pressure decomposes as follows :

E !
Vp=— H [V =123~ Vi

where
—Ap=tr{Vu-Vu} for x € F(t),
% =0, forxe dS(t),
u(t,x) =0 as x — oo,
where
o:=V?p{u—us,u—us}—n-(r(u— uS—ﬁ)J‘),
with

p(t, x) = dist(x, 0S(t)).



Added mass effect

We end up with this new equation for the solid :

;-
M |:€:| = / V,u -Vo; dX:| ,
r L/ F(t) i=1,2,3

where

+ / Vo, Vo, dx} .
0 J] { F(t) ! ij=1,2,3

:ZMZ

The matrix M, is a matrix of added inertia, expressing how the fluid
opposes the movement of the solid. It is positive as a Gram matrix.



Weak solutions

There exists some results of global existence of weak solutions.

> Glass-S. (2011) : weak solutions with w := curl u € L2, for which
uniqueness holds true and the motion of the rigid body is Gevrey 3,
if the boundary is analytic.
This corresponds to solutions “a la Yudovich”.

» Glass-Lacave-S. (2011) : weak solutions with w := curlu € L,
where p > 2. These solutions satisfy renormalization properties and
the corresponding velocity v is continuous.

This corresponds to solutions “a la Di Perna-Lions".

Remark

One can also prove the existence of even weaker solutions, for w € LP
with p > 1, or for finite-energy weak solutions for w bounded Radon

measure with symmetry (solutions “a la Delort"). cf. Glass-S. (2012),
Xin-Wang (2012), S. (2012).



Part |1,

The particle limit (¢ — 0).



The problem of a small body

» Question. What can be said if the size ¢ of the solid goes to zero, so
that the body shrinks to a point?

» For e € (0,1), we define
S5 =8y, Fi =R\ Ss.
» We will be interested in the following particular regime of a massive
point in the limit :
m.=m and J. =27,

where m and J are some fixed positive constants.



The problem of a small body, continued

> Let
wo € LP(R?), with p>2, ~€R, (lo,n)<cR?>xR.
» For e € (0,1), we define u§ satisfying
curl u§ = wo in Fg,
divug =0 in Fg,
us-n=(lo+roxt)-n on 9S§,

|im|X‘_>+OO US = 0,
3 — A
fasg us - Tds = .

» What can be said about a sequence of global weak solutions
(5, r5, uf)

associated to these data?



A brief recall of some notations

» Recall that

B (t) = /Ot o (s)ds, 0°(t) = /Ot ¥ (s)ds,

X+

and Ho(x) '= ———
o(x) 27| x|2
> We will also use the Biot-Savart operator K[-] which is the
convolution with Hy, and maps to a reasonable scalar function w the
vector field K[w] solution of

curl Kfw] =w in R?
div K[w] =0 in R
|im‘x|ﬁ+oo K[w](x) =0.



Main result

Theorem (Glass-Lacave-S. 12'). Up to a subsequence,
> (h%,e6°) 25 (h,0) in W2(0, T;R? x R),
> W = win CO([0, T]; LP(R?)),
> one has
Orw +div(wu) =0, u=Klw+7vous)],
mh(£) =7 (W(0) ~ B(e.h(D)) . B = K]
with

(W‘t:07 h(O), h/(O)) = (WO’ 0, EO)



Comparison of the limit system

Our limit system : Euler 4+ massive point vortex
Oww +div(wu) =0, u= Klw+vyons)],
mh'(t) = w(h’(t) — (e, h(t)))l, b= Kwl,
Euler 4+ (massless) point vortex, see Marchioro-Pulvirenti :

Orw +div(wu) =0, u= Klw+ yone)],
W (t) = u(t, h(t)), U= K[w]



Uniform (in €) a priori estimates

» Using
> the renormalized energy
> and the conservations of ||w||ce,

one obtains that, for T > 0, the quantities
1<), elrfl, flu® —vH ||, and diam(Supp(w®))

are bounded on [0, T] independently of ¢.
> Let us point pout that H¢ is of order O(1/¢) on 95§ .. ..

» When & — 0, the added inertia is negligible with respect to the body
inertia.

» One uses a potential approximation of the velocity on the solid’s
boundary, satisfying the interface condition.



Description of the shrinking body's behaviour

The solid equations become

i S - o]

—(e(6°)) Q°(t)ex
+ [a CQ () (k) — us):| +o(1),

converges weak-* to 0 in W1 >

where
> uf = K[w],
> w® is extended by 0 inside S§,

» and o € R? depends only on the geometry.



Part [l

The mean-field limit (N — o0).



N pointwise massive particles in a perfect incompressible

fluid

Let us now generalize the previous system to the case of N pointwise
particles of mass m;, of circulation +; and of position h;(t), moving into a
perfect and incompressible planar fluid :

N
Orw + divy(wu) =0, u(t,x) = Klw+ Y 7idn ),
j=1
) /! _ 3 / ™. h + ~ 5
mihi (t) = i ( hi(t) — Tt hi(t)) ), Ui = Klw+ Z’YJ hj(t)]»
J#i

w|e=o = wo, hi(0) = hio, H;(0) = hj1.



The mean-field limit

» We want to study the mean-field limit of the previous system, that is
the limit system obtained by the empirical measure

1 N
£) = D dihu(o) (o)
i=1

when N goes to infinity, with an appropriate scaling of the
amplitudes.

» We therefore consider now the solutions of

Oww + divy(wu) =0, u(t,x)=Klw+ — Zéh ]

1
H(e) = (D) = (. hi(e)) s B = Klw+ =S bl
J#i
w|t=0 = wo, hi(0) = hig, H;(0) = h; ;.



An Euler-Vlasov system

In the case of several massive vortices, in the mean-field regime, one
obtains :

Orw + div x(wu) = 0,
Of +&-Vif +Ve-[f(€—u)t]=0,

u = Klw + p] and p::/ fd¢.
R2



Comparison of different sprays models

» Our model : Euler-Vlasov in 2d, coupled by a gyroscopic force.

» Spherical particles in a 3d potential flow. No gyroscopic force, but
thicker spray with some added mass effect.
cf. Russo-Smerecka, Herrero-Lucquin-Perthame, Jabin-Perthame.

» Vlasov-Stokes in 3d, coupled by the Brinkman drag force.
cf. Jabin-Perthame, Desvillettes-Golse-Ricci.



The Cauchy problem for the Euler-Vlasov system

For this system, one can prove (Moussa-S. 12') :

» a well-posedness result “a la Dobrushin” in the space of Radon
measures when the Biot-Savart kernel Hy is regularized into a
Lipshitz kernel.

> the existence of weak solutions, for wg € (L*/3 N L1)(R?),
fo € (L>° N LY)(R? x R?) such that the kinetic energy of the
dispersed phase is finite :

/ fol(x, €)[€[2dx d < +oo,
R2 xR2

» the uniqueness of solution for solutions “a la Loeper”, with the main
assumption that p € L>((0, T) x R?),

» the persistence, globally in time, of regularity, “a la Degond”.



Part V.

The gyroscopic limit (m — 0).



» We investigate the behavior, when the individual mass m of the
particles converges to 0, of the system :

Orw™ + div  (wmu™) =0,
O™ + div , (F7E) + %divdf’"(f —u™*t) =0,

u™ = K[w™ + p™] and p™ ::/ fmde.
R2

» One may guess that in the limit m — 0T the density of particles
becomes monokinetic with a velocity £ = u so that

jm = / fedé — pu, where p:=Ilimp™ and u = lim u™.
RZ
» Therefore the equations would degenerate into :

Ow +divy(wu) =0, dhp+dive(pu) =0, uv=Klw+p],

thus yielding the incompressible Euler equation with vorticity w + p.



Theorem (Moussa-S. 12')
Let be given
> ug € L?(Fo; R?) @ RyHo,
» some smooth compactly supported functions (w{', fy")m such that

Wl p™)m is bounded in [2(R?) x L}(R?
0 P0

m €12 fa™ (x, &) dxd € —|—/ lud — uo|?dx — 0, when m — 0T,
R2 xR2 R2
where uf’ = Klw§ + pg']-
» the corresponding smooth solutions (w™, ™), of the Euler-Vlasov
equations.

Then, up to an extraction, (u™),, converges in
L=((0, T); L3(Fo; R?) @ RxHo — w)

to a dissipative solution of the incompressible Euler equation with initial
condition ug.



ldea of the proof

> Let
= /R2 (w™(t, %)+ p™(t,x))dx = /R2 (w™(0,x) + p™(0, x)) dx.
» Consider a smooth (in time/space) vector field v such as
v(t) € L?(Fo; R?) @ arxHo

and curl v(t) is compactly supported, for all t.

» Let us denote
(e = m [ 6= (e 0P (ex e
R2xR2

+ lu™(t, x) — v(t, x)|*dx.
Rz

» Observe that the modulated energy H7(t) is the sum of two
nonnegative finite terms.

» The proof relies on the dynamics of H™(t).



Open questions

» We considered here successively the particle limit € — 0, the
mean-field limit N — 400 and finally the gyroscopic limit m — 0.

» Is that possible to proceed in a different order? To consider
correlated limits in order to cover a larger range of parameters?

» Control issues?

» Does there remain something of this with some viscosity ?



Thank you for your attention !



