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Nordheim Equation for bosons
Homogeneous isotropic gas: the density function of particles of energy ε at time
t, is independent of the space variable x: f ≡ f(t, ε).

∂f

∂t
(t, ε1) =

∫
D(ε1)

w (ε1, ε3, ε4) q(f)dε3dε4

q (f) = f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)

fi = f(εi), i = 1, 2, 3, 4,

ε2 = ε3 + ε4 − ε1
D (ε1) = {(ε3, ε4) : ε3 > 0, ε4 > 0, ε3 + ε4 ≥ ε1 > 0}

w (ε1, ε3, ε4) =
min

(√
ε1,
√
ε2,
√
ε3,
√
ε4
)

√
ε1

.

L. W. Nordheim, 1928.
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Why?

The question is: do the solutions of that equation blow up in finite time or not?

Mathematical problem: blow up for a Boltzmann type equation.

Motivated by the Bose Einstein condensation.

Related with formation of a Dirac measure at zero energy.
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Gas of Bosons at Equilibrium I
• Density of non relativistic bosons in non interacting isotropic gas at equilibrium:

F (p) = 1

eβ(|p|2−µ)−1
, β > 0, µ ≤ 0.

• β = 1/T , where T is the temperature of the gas, p momentum of the particles.

• If we define: M(F ) =
∫
R3 F (p)dp, E(F ) =

∫
R3 |p|2F (p)dp, then:

M(F ) ≤ C0E(F )
3
5, C0 =

ζ(3
2)

ζ(5
2)

3
5

(
4π
3

)3
5.

• If M ≤ C0E
3
5, there is F such that M(F ) = M and E(F ) = E.

Remark: M ≤ C0E
3
5 ⇐⇒ T ≥ Tcr

where Tcr = Tcr(M) is a critical temperature.
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Equilibrium II
Another family of equilibria (super critical):

F (p) =
1

eβ|p|2 − 1
+ α δ(p), α > 0

are such that: M(F ) > C0E(F )
3
5 (⇐⇒ T < Tcr.)

The presence of a Dirac measure is the precise formulation (in this setting) of the
presence of a B-E condensate (S. N. Bose 1924, A. Einstein 1925):

Below a critical temperature a macroscopical fraction of particles appears at the
minimum energy level of the system.

All the particles in the condensate are described by the same wave function.

Predicted in ’24-’25 and first observed by E. Cornell, C. Wieman & al. in 1995.
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Non equilibrium.
For a spatially homogeneous, isotropic, weakly interacting gas:

∂f

∂t
(t, ε1) = Q(f)(t, ε1) ≡

∫
D(ε1)

w (ε1, ε3, ε4) q(f)dε3dε4

q (f) = f3f4(1 + f1)(1 + f2)− f1f2(1 + f3)(1 + f4)

ε = |p|2, ε2 = ε3 + ε4 − ε1
D (ε1) = {(ε3, ε4) : ε3 > 0, ε4 > 0, ε3 + ε4 ≥ ε1 > 0}

w (ε1, ε3, ε4) =
min

(√
ε1,
√
ε2,
√
ε3,
√
ε4
)

√
ε1

L. W. Nordheim, Proc. R. Soc. Lond. A, 1928.

For all the equilibria F we have: Q(F ) = 0.

(In the Boltzmann equation for classical particles: q (f) = f3f4 − f f2)
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Condensation and evolution
Since a BE condensation is observed in the experiments... one expects a Dirac
mass to appear in finite time in the density function of the particles that solves
the Nordheim equation.

In E. Levich & al. 1977: first attempt to describe delta formation in Nordheim’s
equation.

Nordheim evolution equation makes sense for radial distributions of the form
f(t) + n(t)δ (D. V. Semikoz & al. 1995), and even for general radial measures
(X. Lu ’05, see below).

First relation between B-E condensation and blow up for the Nordheim equation:
B. S. Svistunov in J. Moscow Phys. Soc. 1991.

No (regular) equilibrium → blow up in finite time ?? (H. Brezis et al. Adv. Diff.
Eq. 1996 for a non linear heat equation).
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Existence of Mild Solutions
Theorem. Suppose that f0 ∈ L∞ (R+; (1 + ε)

γ
) with γ > 3. There exists

T > 0, depending only on ‖f0 (·)‖L∞(R+;(1+ε)γ), and there exists a unique

mild solution, f ∈ L∞loc ([0, T ) ;L∞ (R+; (1 + ε)
γ
)) in the sense of the previous

definition.
The solution f satisfies (mass & energy conservation):∫ ∞

0

f0 (ε) εrdε =

∫ ∞
0

f (t, ε) εrdε , t ∈ (0, T ) , r =
1

2
,

3

2
.

The function f is in W 1,∞ ((0, T ) ;L∞ (R+)) and it satisfies the equation for
a.e. ε ∈ R+ and for any t ∈ (0, Tmax) . Moreover, f can be extended as a mild
solution to a maximal time interval (0, Tmax) with Tmax ≤ ∞. If Tmax < ∞ we
have:

lim
t→T−max

‖f (t, ·)‖L∞(R+) =∞.
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Blow up Theorem
Theorem. Suppose that f0 ∈ L∞ (R+; (1 + ε)

γ
) with γ > 3. Define:

M = 4π

∫ ∞
0

f0 (ε)
√

2εdε, E = 4π

∫ ∞
0

f0 (ε)
√

2ε3dε

Let f ∈ L∞loc ([0, Tmax) ;L∞ (R+; (1 + ε)
γ
)) be the mild solution of the radial

Nordheim equation with initial data f0, where Tmax is the maximal existence
time. Suppose that:

M > C0E
3
5.

Then:
Tmax <∞,

and

lim
t→T−max

||f(t)||L∞ = +∞.
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Previous references:
1.- E. Levich & V. Yakhot Study a more general Boltzmann type equation:

∂f

∂t
(t, ε) = Q(f)(t, ε) + Q̃(f)(t, ε)

Q̃ describes collisions of bosons with a heat bath of fermions.

Collisions with the heat bath form a peak for f at small values of ε.

1.-A (Phys. Rev. B.’77): Q(f) + Q̃(f) drive f close to an equilibrium of Q(f).

Then Q̃(f) is dominant −→ self similar Delta formation in infinite time.

1.-B (J. Low Temp.’77): When f >> 1: neglect Q̃ (quadratic) in front of Q
(cubic). Consider a simplified version of the Nordheim equation. Explicitely
solvable. −→ self similar Delta formation in finite time:

√
εf(t, ε) ⇀ Cδ(ε), as

t→ t0.

10



2.- D. V. Semikoz & I. I. Tkachev (PRL ’95) On the ground of numerics and
previous work by B. S. Svistunov (J. Moscow Phys. Soc. ’91) , propose that the
Nordheim equation has solutions of the self similar form:

f(t, ε) = C(tc − t)−αφ
(

ε

(tc − t)β

)
for some constants tc > 0, C,α, β and φ a bounded integrable function satisfying:

−α
β
φ+ xφ′ =

∫ ∫
D(x)

q(φ)w(x, x2, x3, x4) dx3dx4

3.- Similar in R. Lacaze, P. Lallemand, Y.Pomeau & S. Rica (Physica D ’01).

• Several mathematical results on the existence of solutions by X. Lu (’02, ’05),
A. Nouri ’07, L. Arkeryd & al. ’12. A general presentation by H. Spohn ’10.
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Proof of the blow up result

Two different parts:

• In the first we prove a local criteria for blow up.

• In the second we prove that every “super critical” solution satisfies the local
criterium at some finite time.

The first part uses mainly a monotonicity argument and some measure theory to
describe the “local” properties of the solutions.

The second part uses more functional analysis arguments. In particular the
entropy and dissipation of entropy.
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The local criterium for blow up
Theorem. Let M > 0, E > 0, ν > 0, γ > 3.
There exist ρ = ρ (M,E, ν) > 0, K∗ = K∗ (M,E, ν) > 0 and θ∗ > 0,
(θ∗ independent on M, E, ν), such that for any f0 ∈ L∞ (R+; (1 + ε)

γ
) with

M(f0) = M , E(f0) = E satisfying:

(i)

∫ R

0

f0 (ε)
√
εdε ≥ νR3

2 for 0 < R ≤ ρ,

(ii)

∫ ρ

0

f0 (ε)
√
εdε ≥ K∗ρθ∗,

the unique mild solution f ∈ L∞loc ([0, Tmax) ;L∞ (R+; (1 + ε)
γ
)) with initial data

f0 and maximal existence time Tmax satisfies:

Tmax < +∞, and lim sup
t→T−max

‖f (·, t)‖L∞(R+) =∞.
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Proof of the local criterium
The proof has several steps:

1© Monotonicity of the cubic part of the collision integral. For any f ∈ L1 (R+) :

·
∫
(R+)

3
dε1dε3dε4w (ε1, ε3, ε4) q3 (f) (ε1)

√
ε1ϕ (ε1) =

=

∫
(R+)

3
dε1dε2dε3 f1 f2 f3Gϕ(ε1 ε2 ε3),

where: q3(f) = f3f4(f + f2)− f f2(f3 + f4)

· ϕ convex =⇒ Gϕ (ε1, ε2, ε3) ≥ 0; ϕ concave =⇒ Gϕ (ε1, ε2, ε3) ≤ 0

(Proved independently by X. Lu )
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We deduce that, if g = 4π
√

2ε f and f solves the Nordheim equation, then:

d

dt

∫
R+
g(ε1)ϕ(ε1)dε1 =

∫
(R+)3

g1g2g3√
ε1ε2ε3

Gϕ(ε1, ε2, ε3)dε1dε2dε3

+
1

2

∫
(R+)

3
dε1dε2dε3w(ε1, ε2, ε3)

g1g2√
ε2

(ϕ3 + ϕ4 − ϕ1 − ϕ2)

We seem to be in good shape but:

Gϕ (ε1, ε2, ε3) vanishes along the diagonal
{

(ε1, ε2, ε3) ∈ (R+)
3

: ε1 = ε2 = ε3

}
.

Very vague intuition:

· If g is “far from a Dirac measure”, then (ε1, ε2, ε3) is far from the diagonal and
Gϕ(ε1, ε2, ε3) does not vanish.

· The quadratic term prevents g to get close to a Dirac measure.
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2© Technical Lemma.

Suppose that b > 1 and define, for all k = 1, 2, . . . :

Ik (b) = b−k
(
b−1, 1

]
, I(E)

k = Ik−1 (b) ∪ Ik (b) ∪ Ik+1 (b)

Pb=

A ⊂ [0, 1] : A =
⋃
j

Ikj (b) for some set of indexes {kj} ⊂ {1, 2, ...}

 .

If A = ∪∞j=1Ikj (b) define: A(E) =

∞⋃
j=1

I(E)
kj

(b) .

Given 0 < δ < 2
3, define η = min

{(
1
3 −

δ
2

)
, δ6
}

.

For any function g ∈ L∞(0, 1) at least one of the following properties is satisfied:
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(i) There exists an interval Ik (b) such that:

∫
I(E)
k

(b)

gdε ≥ (1− δ)
∫ 1

0

gdε

(ii) There exists two sets U1,U2 ∈ Pb such that U2 ∩ U (E)
1 = ∅ and:

min

{∫
U1
gdε,

∫
U2
gdε

}
≥ η

∫ 1

0

gdε.

In that case the set U1 can be written in the form: U1 =
⋃L
j=1 Ikj (b) , for

some set of integers {kj} ⊂ {1, 2, 3, ...} and some finite L, and we also have:

Ikm (b) ∩
(
∪m−1j=1 I

(E)
kj

(b)
)

= ∅ , m = 2, 3, ...L

L∑
j=1

∫
Ikj(b)

gdε

2

≤

(∫
Ik1(b)

gdε

)2

+

L∑
j=2

∫
Ik1(b)

gdε

∫
Ikj(b)

gdε,

∫
Ik1(b)

gdε < (1− δ)
∫ 1

0

gdε.
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Last part of the proof
Using the monotonicity property:

∫ ρ/2

0

g0(ε)dε ≥ m0 =⇒ ∃T0 > 0;

∫ ρ

0

g(t, (ε)dε ≥ m0

4
∀t ∈ [0, T0].

If we define:

B` =

{
t ∈ [0, T0] :

∫
[0,R`]

g (ε, t) dε ≥ (R`)
θ1

}
, R` = 2−`, ` = 0, 1, 2, ...

then, for L and θ1 > 0 such that 2−θ1L ≤ m0/4: BL = [0, T0]

We look now at the times where the function g satisfies (i) and those where it
satisfies (ii).
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|
0

|
R

|
R
b

|
R
b2

|
R
b3

|
R
b4

|
R
b5

|
R
b6

|
R
b7

I(E)
1 (b, R) in red; I(E)

5 (b, R) in blue

For θ2 > 0 such that 1− 2θ1 − θ2 > 0, define:

b` = 1 + (R`)
θ2 , ` = 0, 1, 2, ..., and the sets

An,` =

{
t ∈ [0, T0] : such that

∫
I(E)
n (b`,R`)

g (t, ε) dε ≥ (R`+1)
θ1

}
, n = 1, 2, 3, ...

A` =

[
log(2)

log(b`)

]
+1⋃

n=1

An,` where: I(E)
k (b, R) =

(
R

bk+2
,
R

bk−1

]
.

We now use: BL =
⋃∞
`=LB` \B`+1 and so:

19



T0 = |BL| ≤
∞∑
`=L

|B` \B`+1| ≤
∞∑
`=L

(|(B` \B`+1) \ A`|+ |A`|) .

The contradiction comes from the estimates of the right hand side.

In the set (B` \B`+1)\A` the function g does not satisfy property (i), so it must
satisfy property (ii).

From the monotonicity property (point 1©) we deduce that, if Tmax ≥ T0, there
exists θ0 > 0 such that, if 0 < min {θ1, θ2} < θ0, we have:

|(B` \B`+1) \ A`| ≤ K (1 + Tmax)R1−3θ1−4θ2
` , 1− 3θ1 − 4θ2 > 0

for some K = K (M, θ1) and for any ` = 0, 1, 2, . . .
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On the other hand, there exists ρ ∈ (0, 1) such that, if ` >
log(1

ρ)
log(2) then:

|A`| ≤ K2 (R`)
1−2θ1−θ2 .

Then: T0 = |BL| ≤
∞∑
`=L

(|(B` \B`+1) \A`|+ |A`|)

≤ K3

∞∑
`=L

Rβ` , (β = min{1− 2θ1 − θ2, 1− 3θ1 − 4θ2} > 0)

=
K3

1− 2−β
RβL.

This gives a contradiction since L may be taken as large as we wish.

Remark: By this local criterium, there exists “sub critical” bounded initial data
for which the mild solution blows up in finite time.
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Final remark.
The Nordheim equation may also be solved in the space of measures.
We say that f is a weak solution with initial datum f0 such that

g0(ε) = 4π
√

2εf0 (ε) ∈M+ (R+; (1 + ε)),

if g (t, ε) = 4π
√

2εf (t, ε) ∈ C ([0, T ) ;M+ (R+; (1 + ε))) satisfies:

−
∫
R+
g0 (ε)ϕ (0, ε) dε =

∫ T

0

∫
R+
g∂tϕdεdt+

∫ T

0

∫
(R+)

3

g1g2g3w√
ε2ε3

Qϕdε1dε2dε3dt+

+
1

2

∫ T

0

∫
(R+)3

g1g2w√
ε2

Qϕdε1dε2dε3dt

∀ ϕ ∈ C2
0 ([0, T ) ; [0,∞)) , Qϕ = ϕ (ε3) + ϕ (ε1 + ε2 − ε3)− 2ϕ (ε1)

• No problem to give sense as far as the measure g does not charges the origin.
• The first global existence proved by X. Lu in J. Stat. Phys. 2005.
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Theorem Let M > 0, E > 0, ν > 0, γ > 3. There exist ρ = ρ (M,E, ν) >
0, K∗ = K∗ (M,E, ν) > 0, T0 = T0 (M,E) and a numerical constant θ∗ > 0
independent on M, E, ν such that for any f0 ∈ L∞ (R+; (1 + ε)

γ
) satisfying

4π
√

2

∫
R+
f0 (ε)

√
εdε = M , 4π

√
2

∫
R+
f0 (ε)

√
ε3dε = E∫ R

0

f0 (ε)
√
εdε ≥ νR3

2 for 0 < R ≤ ρ ,

∫ ρ

0

f0 (ε)
√
εdε ≥ K∗ (ρ)

θ∗

there exists a global weak solution f and a positive time T∗ > 0 such that the
following holds:

sup
0≤t≤T∗

‖f (t, ·)‖L∞(R+) <∞, inf
T∗<t≤T0

∫
{0}

√
εf (t, ε) dε > 0.
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This second result may then be seen as closer to the physical phenomena of
condensation in finite time due to the presence of a Dirac measure at the origin.

(In the context of weakly interacting radially symmetric gases, the presence of a
condensate corresponds to a Dirac mass at the origin.)

But this is not clear... The underlying question is: how do we precisely define the
finite time condensation in mathematical terms?

The BE condensation is a transition between two situations. We have defined
precisely the situation before the transition. What is the situation after?

The equations obtained by physicists, describing the weakly interacting isotropic
and spatially homogeneous gas of bosons, after are the following:
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
∂f

∂t
(t, ε) = Q(f)(t, ε) + nc(t)Q(nc, f)(t, ε);

n′c(t) = −nc(t)
∫ ∞
0

Q(nc, f)(t, ε)
√
εdε

where nc(t) is the density of the condensate and Q(nc, f) describes the gas-
condensate interaction.
(Khalatnikov (’64), Kirkpatrick&al. (’85), Gardiner&al. (’98), Stoof (’99))

See recently: H. Spohn in Phys.D 2010 for a general presentation, L. Arkeryd &
al., Arch. Rat. Mech. 2012 for an existence result on the system).

We easily see that if initially, nc(0) = 0 we may expect to have nc(t) = 0 for an
interval of time t ∈ [0, T ∗). A more clear result on finite time condensation would
be the existence of (f, nc) and T0 such that nc(0) = 0 for t < T0 and nc(t) > 0
for t > T0.
In order to have nc(t) > 0 for some t > 0 we need the function t →∫∞
0
Q(nc, f)(t, ε)

√
εdε to become singular at some finite time.-
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Supercritical solutions
1© Using the monotonicity property the first condition of the criteria holds:

2© Entropy, dissipation of entropy, etc...

S [f ] =

∫
R+

[(1 + f) log (1 + f)− f log (f)]
√
εdε

D [f ] =

∫
R+

∫
R+

∫
R+

(1 + f1) (1 + f2) (1 + f3) (1 + f4) [Q1,2 −Q3,4]×

× [log (Q1,2)− log (Q3,4)] Φdε1dε2dε3

Qj,k =
fj

(1 + fj)

fk
(1 + fk)

; Φ = min
{√

(ε1)+,
√

(ε2)+,
√

(ε3)+,
√

(ε4)+

}
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The equation between T1 and T2 gives for some positive constant C(E,M) :

S [f ] (T2)− S [f ] (T1) =

∫ T2

T1

D [f (·, t)] dt

|S [f (t)]| ≤ C (E,M) , 0 ≤ t < Tmax.

3© Using the following estimate:

D [f ] ≥
∫
R+

∫
R+

∫
R+
f (ε1)f (ε2) Ψ

(
Q (ε3)Q (ε4)

Q (ε1)Q (ε2)
− 1

)
Φdε1dε2dε3

with Ψ (s) = s log (1 + s) , Q (t, ε) =
f (t, ε)

1 + f (t, ε)
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We deduce the existence of a sequence tn → +∞ such that

Q (tn, ε) ≡
f (tn, ε)

1 + f (tn, ε)
⇀ e−β∗(ε+α∗).

We deduce the existence of m∗ > 0 and ρ > 0 such that, for all R ∈ (0, ρ) there
exists a sequence tn → +∞ satisfying:

∫ R

0

g (tn, ε) dε = 4π

∫ R

0

√
2εf (tn, ε) dε ≥ m∗.

If R is chosen small enough we may ensure that m∗ > K∗R
θ∗. And the second

condition of the local criterium is fulfilled.
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