
A Bororo told me...

(Thoughts on Informatics and distributed computing)

Michel RAYNAL

Academia Europaea

Institut Universitaire de France

IRISA, Université de Rennes, France

Polytechnic University (PolyU), Hong Kong

Distributed computing: A Bororo told me... 1

“In keeping with the spirit with which it has been imbued
since it was founded, the Collège de France is respon-
sible to give its attendees, not granted truths, but the
idea of a free research.”

“Ce que le Collège de France, depuis sa fondation, est
chargé de donner à ses auditeurs, ce ne sont pas des
vérités acquises, c’est l’idée d’une recherche libre.”

Maurice Merleau-Ponty (1908-1961)

“Enseigner c’est réfléchir à voix haute devant les étudiants.”

“Teaching is thinking aloud in front of students.”
Henri Lebesgue (1875-1941)

What is our job?

Distributed computing: A Bororo told me... 2

Une réflexion

un tantinet provocatrice

A thought, somehow provocative

Distributed computing: A Bororo told me... 3

1955, Collection “Terre humaine”(Jean Malaurie)

Incipit : ”Je hais les voyages et les explorateurs.”
(Que voulait-il dire ?)

“I hate travels and explorers” (What did he want to say?)

Distributed computing: A Bororo told me... 4

A translation

A Bororo told me

“Je hais les ordinateurs et leurs applications.”

“I hate computers and their applications.”

Distributed computing: A Bororo told me... 5

In other words

• Informatics is eaten by its applications
It is anti-Chronos (see research credits)

• 1936 : Alan Mathison Turing (1912-1954)

⋆ Foundations of sequential computing

⋆ We know what is computable, and what is not

⋆ Theory preceded applications

• Change of paradigm

⋆ Today: the scheme has reversed

⋆ A lot of applications precede theory ..., but very few fertilize it

⋆ Unfortunately a lot applications are to Informatics what sandwich loaf
is to bread (“sliced and packaged”)

⋆ Informatics cannot be reduced to an application megalopolis

Distributed computing: A Bororo told me... 6

What is our job?

• Understand difficult thinks (in our domain)

• Make things as simple as possible

• Research is the “raison d’être” of universities

• Universe, universality, university, ..., same root!

• Year after year ...

this creates a revolution in ... industry!

“Teaching is not an accumulation of facts.”

Lamport, Teaching concurrency, ACM SIGACT News,
40(1):58-62 (2009)

Distributed computing: A Bororo told me... 7

Distributed computing for dummies

“A distributed system is one in which the failure of a
computer you didn’t even know existed can render your
own computer unusable” (L. Lamport)

Distributed computing: A Bororo told me... 8

The essence eof distributed computing

“In sequential systems, computability is understood
through the Church-Turing Thesis: anything that can
be computed, can be computed by a Turing Machine.

In distributed systems, where computations require coor-
dination among multiple participants, computability ques-
tions have a different flavor. Here, too, there are many
problems which are not computable, but these limits to
computability reflect the difficulty of making decisions in
the face of ambiguity, and have little to do with the in-
herent computational power of individual participants.”

- Herlihy M., Rajsbaum S., and Raynal M., Power and limits of distributed com-
puting shared memory models. Theoretical Computer Science, 509:3-24 (2013)

Intrinsic difficultly : master the uncertainty created by
the non-determinism inherent to distributed executions

Distributed computing: A Bororo told me... 9

A few adversaries (environment)

• Multiplicity of geo-distributed control flows

• Synchrony/asynchrony

• Failures

• Mobility

• Anonymity

• Dynamicity

• Energy consumption (e.g., sensors)

• Et cetera

The (non-deterministic) environment in which runs a
distributed algorithm constitutes one of its inputs

Distributed computing: A Bororo told me... 10

To summarize

Distributed computing is

the added value on top of an
imposed communication

infrastructure

Application layer

︸
︷
︷

︸

Distributed

computingMiddleware

Underlying network

Distributed computing: A Bororo told me... 11

On the distributed computing side

A quick look at the past

A few important dates

Lors de sa Leçon inaugurale le 5 Janvier 1960 (Chaire
d’Anthropologie sociale, 1959-1982) Claude Lévi-Strauss
n’eut de cesse de rappeler le nom de quelques grands
prédécesseurs dont disait-il

“nous nous offrons le luxe d’oublier leur contribution”
“we have the luxury to forget their contribution”

Distributed computing: A Bororo told me... 12

A few Distributed Computing related dates

1981

1983

1985

1985

1974

1978

1965

Simplicity in mutex algorithms (P 81)

Asynchronous randomized Byzantine consensus (B 83,R 83) (DA 2015)

Liveness (progress condition) (AS 85) (DA 2018)

1987 Fast mutual exclusion (L 87)

1991

Transactional memory (HM 93, ST 97) (DA 2012)

1995 Shared memory on top of asynchronous message-passing systems

Weakest information on failures to solve consensus in the1996

2008

Distributed recursion (GR 10, LSP 82)

despite a minority of process crashes (ABD 95) (DA 2011)

Byzantine failures in synchronous systems (LSP82 ,PSL 80) (DA 2005)

Concurrent reading and writing (L 77, P 83)

Mutual exclusion from non-atomic read/write registers (L 74)

1977, 1983

1980, 1982

1993, 1997

1982, 2010

presence of asynchrony and process crashes (CHT 96, CT 96) (DA 2010)

Scalability, accountability (N 08)

Distributed state machine (L 78) (DA 2000)

Impossibility of asynchronous determinisitic consensus in the presence of process crashes (FLP 85) (DA 2001)

1978-2016 Distributed universality (L78, H91,GG 11, RST 16)

Mutual exclusion from atomic read/write registers (D 65)

Wait-free synchronization (H 91) (DA 2003)

Distributed computing: A Bororo told me... 13

The future?

“Prediction is very difficult, especially when it is about
the future.” (Niels Bohr, 1885-1962)

• No prediction, only an “LL(k)” view (with k small!)

• A gentle advice (?) to PhD students to select a good
PhD topic:

Consider a “good” topic in a “good” research team,
and then work hard

⋆ “good” 6= trendy, catchword, popular, buzzword, ...

⋆ You must choose so that you will not go the garbage when your ad hoc
PdD topic will go to the garbage

Distributed computing: A Bororo told me... 14

The world is distributed
⇒

DC is fundamental!

A few DC problems

Distributed computing: A Bororo told me... 15

A few important topics (1)

Distributed recursivity

• Recursion parameter is

⋆ not related to the input values

⋆ related to nb of processes seen as participating

⋆ Hence, it is failure-related

(a hidden ”input” of the execution!)

- Lamport L., Shostak E., and Pease M.C., The Byzantine general problem. ACM
Transactions on Programming Languages and Systems, 4(3):382-401 (1982)

- Gafni E. and Rajsbaum S., Recursion in distributed computing. Proc. 12th Intl
Symp. on Stabilization, Safety, and Security of Dist.Syst., Springer LNCS 6366,
pp. 362-376 (2010)

- Raynal M., Concurrent programming: algorithms, principles and foundations.
Springer, 515 pages (2012)

Distributed computing: A Bororo told me... 17

A few important topics (2)

Which relations between SM and MP?

• The d-solo model:

⋆ 1-solo model = wait-free read/write model

⋆ n-solo model = wait-free message-passing model

- M. Herlihy, S. Rajsbaum, M. Raynal, and and J. Stainer, From wait-free
to arbitrary concurrent solo executions in colorless distributed computing.
Theoretical Computer Science, 683:1-21 (2017)

⋆ On the computability side:

1-solo ≻ · · · d-solo ≻ (d+1)d-solo ≻ · · · ≻ n-solo

⋆ non-trivial task: (d, ǫ)-approximate agreement

• Objects weaker than read/write registers?

Distributed computing: A Bororo told me... 18

A few important topics (3)

Trading t-resilience for efficiency

• Example: Byzantine world (Byz reliable broadcast)

• t = max nb of Byzantine processes

• Main issue: ensure that if a correct process delivers
a message m from another process pj (be pj correct

or Byzantine), all correct processes delivers the very
same message m

fault communication steps number of
resilience message types messages

Bracha’s algorithm n > 3t 3 2n2 − n− 1
Imbs-Raynal’s algorithm n > 5t 2 n2 − 1

- G. Bracha, Asynchronous Byzantine agreement protocols. Information & Com-
putation, 75(2):130-143 (1987)

- D. Imbs and M. Raynal, Trading t-resilience for efficiency in asynchronous Byzan-
tine reliable broadcast. Parallel Processing Letters, Vol. 26(4), 8 pages (2016)

Distributed computing: A Bororo told me... 19

A few important topics (4)

• Informatics is a science of abstractions
Informatics is a science of abstractions, and a main difficulty consists in
providing users with a “desired level of abstraction and generality: one that
is broad enough to encompass interesting new situations, yet specific enough
to address the crucial issues”, M. Fischer and M. Merritt, Appraising two
decades of distributed computing theory research. Distributed Computing,
16(2-3):239-247 (2003)

• Classical examples

⋆ Sequential programming languages

⋆ Synchronization side: STM

⋆ Distributed computing

∗ Communication abstractions
∗ Agreement objects
∗ Symmetry-breaking objects
∗ etc.

in the presence of adversaries such as asynchrony,
failures, mobility, etc.

Distributed computing: A Bororo told me... 20

On communication abstractions in DC

send/receive, basic broadcast: network machine language

Relation agreement objects ↔ comm. abstractions

Concurrent object Communication abstraction

Consensus Total order broadcast

Causal memory Causal order broadcast

k-set agreement k-BO-broadcast (DISC’17)

Snapshot object SCD-broadcast (ICDCN’18)

One coin: two faces!

Distributed computing: A Bororo told me... 21

A few important topics (5)

Many other fascinating topics: bulk examples

• Which is the weakest FD for k-set agreement in MP?

• Relation between concurrency and failures

• Anonymity: process anonymity vs memory anonymity

• Unify Process adversary and message adversaries

Distributed computing: A Bororo told me... 22

A few important topics (6)

Objects with no sequential specification

(Beyond distributed “classical” state machines)

• State machine = sequential behavior

• Cooperating distributed state machines

• Beyond distributed state machines

• Distributed objects defined by

⋆ sequential spec.: many consistency conditions

⋆ non-sequential specification: very few results

- A.Castañeda, S. Rajsbaum, and M. Raynal, Unifying concurrent objects and
distributed tasks: Interval-linearizability. Journal of the ACM, 65(6), Article 45,
42 pages (2018)

Distributed computing: A Bororo told me... 23

Not linearizable

A simple example

q

r

p

write snapshot(1)→ {1,2}

write snapshot(3)→ {1,2,3}

write snapshot(2)→ {1,2}

Inconsistent
Time line of an hypothetical omniscient observer

Not allowed to read in the future

Distributed computing: A Bororo told me... 24

... but set-linearizable

q

r

p

write snapshot(1)→ {1,2}

write snapshot(3)→ {1,2,3}

write snapshot(2)→ {1,2}

Time line of an hypothetical omniscient observer

This behavior is not allowed by a sequential specification

Distributed computing: A Bororo told me... 25

Neither linearizable, nor set-linearizable

q

r

p

write snapshot(1)→ {1,2}

write snapshot(3)→ {1,2,3}

write snapshot(2)→ {1,2,3}

Time line of an hypothetical omniscient observer

This behavior is not allowed by a set-sequential specification

Distributed computing: A Bororo told me... 26

Parallel computing versus Distributed computing

A big confusion
Criterion: Which is the main issue to solve?

• Parallel computing: design choice

⋆ Aim: Efficiency

⋆ Mean: leverage data independence

• Distributed computing:

inherent constraints imposed by the environment

⋆ Aim: master uncertainty created by adversaries

⋆ Issue: the behavior of the envirt is an input!

We have to better understand... (some duality?)

M. Raynal, A pleasant stroll through the land of distributed machines, compu-
tation, and universality. Proc. 8th In’l Conference on Machines, Computations,
and Universality (MCU’18), Springer LNCS 10881, pp. 34-50 (2018)

Distributed computing: A Bororo told me... 27

A map of distributed computing models

Message adversaries/failure detectors equivalences

SMPn[adv : ∅] ≃M AMPn,0[fd : ∅] ≃M ARWn,0[fd : ∅]

SMPn[adv :∞] ≃T AMPn,n−1[fd : ∅]

SMPn[adv : SOURCE] ≃T AMPn,n−1[fd : Ω]

SMPn[adv : SOURCE, QUORUM] ≃T AMPn,n−1[fd : Σ, Ω]

SMPn[adv : SOURCE, TOUR] ≃T ARWn,n−1[fd : Ω]SMPn[adv : QUORUM] ≃T AMPn,n−1[fd : Σ]

Afek and Gafni 2013/2015

SMPn[adv : TOUR] ≃T ARWn,n−1[fd : ∅]

TOUR: For each pair of processes pi and pj, and in each synchronous round, is
allowed to suppress either the message sent by pi to pj or the message sent by pj
to pi, but not both

Synchronous system weakened by TOUR and the asynchronous crash-prone RW
system have the same computability power for task solvability

Distributed computing: A Bororo told me... 28

From E.W. Dijkstra to L. Lamport (and all of us!)

We still have

to better

understand

the long path

from mutual exclusion to consensus

the keystones of distributed computing

From physical resources (mutex)

to data virtualization (digitalized distributed objects)
S. Rajsbaum and M. Raynal,
Mastering concurrent computing through sequential thinking: a half-century evo-
lution, To appear in Communications of the ACM (2019)

Distributed computing: A Bororo told me... 29

Additional material

Distributed computing: A Bororo told me... 30

SCD-broadcast: definition

Distributed computing: A Bororo told me... 31

The SCD-Broadcast abstraction: definition (1)

SCD = Set-Constrained Delivery

• Two operations:

⋆ scd broadcast(m): broadcasts a message m

⋆ scd deliver(): returns a non-∅ set of messages

• Five properties:

⋆ Validity:
If a process scd-delivers a set containing a message
m, then m was scd-broadcast by some process

⋆ Integrity:
A msg is scd-delivered at most once by each pro-
cess

Distributed computing: A Bororo told me... 32

The SCD-Broadcast abstraction: definition (2)

• MS-Ordering:
A process pi scd-delivers a message set msi containing
a message m and later a message set ms′i containing
a message m′

⇒
no process scd-delivers first a message set ms′j con-

taining m′ and later a message msj containing m

• Termination-1:
If a non-faulty process scd-broadcasts a message m,
it terminates its scd-broadcast invocation and scd-
delivers a message set containing m

• Termination-2:
If a process scd-delivers a message m, every non-
faulty process scd-delivers a msg set containing m

Distributed computing: A Bororo told me... 33

A simple example

• Messages SCD-broadcast by processes:
m1, m2, m3, m4, m5, m6, m7 and m8

• SCD-deliveries:

⋆ at p1: {m1,m2}, {m3,m4,m5}, {m6}, {m7,m8}

⋆ at p2: {m1}, {m3,m2}, {m6,m4,m5}, {m7}, {m8}

⋆ at p3: {m3,m1,m2}, {m6,m4,m5}, {m7}, {m8}

Distributed computing: A Bororo told me... 34

A simple example: incorrect SCD-deliveries

• Messages SCD-broadcast by processes:
m1, m2, m3, m4, m5, m6, m7 and m8

• SCD-deliveries:

⋆ at p1: {m1,m2}, {m3,m4,m5}, ...

⋆ at p2: {m1,m3}, {m2}, ...

Distributed computing: A Bororo told me... 35

Main features

• Necessary and sufficient assumption: t < n
2

• Distributed software engineering:

All “technical details” are hidden in this algorithm
which is implemented and proved once for all!

• On tne efficiency side

⋆ Assumption:

∗ Let ∆ = message max latency
∗ Local computation: zero cost

⋆ Cost:

∗ Time: 2∆ (2 × network latency)
∗ Messages: n2

Distributed computing: A Bororo told me... 36

SCD-broadcast in action

Implement an atomic snapshot object

The atomic snapshot object was introduced in

- Afek Y., Attiya H., Dolev D., Gafni E., Merritt M., and Shavit N., Atomic
snapshots of shared memory. Journal of the ACM, 40(4):873-890 (1993)

Distributed computing: A Bororo told me... 37

Snapshot object

• array REG[1..m] of atomic read/write registers with
two operations, write() and snapshot()

• MWMR snapshot

• write(r, v) assigns v to REG[r]

• snapshot() returns the value of the full array as if the
operation had been executed instantaneously (atom-
icity consistency)

Distributed computing: A Bororo told me... 38

Example of an MWMR atomic snapshot object

Atomicity line

pi

pj

pk

[v11, v
1
2] [v21, v

1
2] [v21, v

2
2]

REG .snapshot()→ [v21, v
2
2]REG .write(1, v11)

REG .write(2, v12) REG .write(2, v22)

REG .snapshot()→ [a, b]

REG .write(1, v21)

[v11, v
2
2] cannot be output

Distributed computing: A Bororo told me... 39

Snapshot from SCD-broadcast

Local representation of the snapshot object REG

• regi[1..m]: current value of REG[1..m], as known by pi

• donei: Boolean variable

• tsai[1..m]: array of timestamps associated with the
values stored in reg i[1..m]

⋆ tsai[j].date and tsai[j].proc (timestamp of regi[j])

• Lexicographical total order <ts:

⋆ ts1 = 〈h1, i1〉 and ts2 = 〈h2, i2〉

⋆ ts1 <ts ts2
def
= (h1 < h2)∨ ((h1 = h2)∧ (i1 < i2))

Distributed computing: A Bororo told me... 40

Algorithm: snapshot operation

operation snapshot() by pi is
donei ← false;
scd broadcast SYNC (i);
wait(donei); % end of synchronization
return(reg i[1..m]).

• SYNC (i) synchronization message

• allows pi to obtain an atomic value of REG[1..m]

Distributed computing: A Bororo told me... 41

Algorithm: write operation

operation write(r, v) by pi is
donei ← false;
scd broadcast SYNC (i);
wait(donei); % end of synchronization 1
donei ← false;
scd broadcast WRITE (r, v, 〈tsai[r].date+1, i〉);
wait(donei). % end of synchronization 2

Distributed computing: A Bororo told me... 42

Algorithm: message reception

when the message set
{WRITE(rj1, vj1, 〈datej1, j1〉), · · · , WRITE(rjx, vjx, 〈datejx, jx〉),

SYNC(jx+1), · · · , SYNC(jy) } is scd-delivered do

for each r such that WRITE(r,−,−) ∈ the message set do
let 〈date,writer〉 = greatest timestamp in WRITE(r,−,−);
if (tsai[r] <ts 〈date, writer〉)

then let v the value in WRITE(r,−, 〈date,writer〉);
regi[r]← v; tsa i[r]← 〈date, writer〉

end if
end for;
if ∃ ℓ : jℓ = i then donei ← true end if.

Observation: no quorum at this abstraction level!

Distributed computing: A Bororo told me... 43

Comparing cost

• Stacking apatach vs scd-broadcat

• O(n2) messages in both cases

• time:

RW-stacking SCD-broadcast

snapshot n2∆ 2∆

write n∆ 4∆

Distributed computing: A Bororo told me... 44

From atomicity to sequential consistency

Suppress the messages SYNC!

These messages ensure compliance wrt real-time

operation snapshot() by pi is
return(reg i[1..m]).

operation write(r, v) by pi is
donei← false;
scd broadcast WRITE (r, v, 〈tsai[r].date+1, i〉);
wait(donei).

when the message set
{WRITE(rj1, vj1, 〈datej1, j1〉), . . . ,WRITE(rjx, vjx}
is scd-delivered do same as before

Distributed computing: A Bororo told me... 45

Conclusion

Distributed computing: A Bororo told me... 46

Ultimate: the quest of the holly Grail?

• Too many distributed computing models

• Is there a Great Unified Model??

• Our job is also looking for Simplicity

⋆ ”Everything should be made as simple as possible, but not simpler!”
Albert Einstein (1879-1955)

⋆ “Je vous écris une longue lettre parce que je n’ai pas eu le temps d’en
écrire une plus courte.” Blaise Pascal (1623-1662)

⋆ “Simplicity does not precede complexity, but follows it.” ”Alan Perlis
(1922-190), First Turing Award

• Simplicity is difficult, ...

but it must be a central part of our job!,

Distributed computing: A Bororo told me... 47

• Alan Key’s answer to Dan Pendery’s question on the
future “tendencies” to adapt the products of Xeros

The best way to predict the future is to invent it !

• In our quest of the lost universality ,1

The paradise is never lost because it consists of its
own (and infinitely recursive) quest!

1 Remind Rachid’s Inaugural Lecture

“À la recherche de l’universalité perdue.” (In search of the lost universality)

Distributed computing: A Bororo told me... 48

Personal contribution

• Concurrent Programming: Algorithms, Principles and
Foundations. Springer, 515 pages (2012)

• Distributed Algorithms for Message-passing Systems.
Springer, 510 pages (2013)

• Fault-Tolerant Message-passing Distributed Systems:
An Algorithmic Approach. Springer, 492 pages (2018)

Distributed computing: A Bororo told me... 49

