Life in 1-consensus

Yehuda Afek, Eli Daian, Eli Gafni, Giuliano Losa

Classifying <u>Deterministic</u> Shared Memory Objects

- Computability = the **power to solve tasks wait-free**
 - = non-blocking

Deterministic Objects

- Linearizable concurrent state machine
- Atomic R/W Reg's
- Stack, Queue, F&Add, ...
- CAS,

deterministic object = DFSA

Task (deterministic and non-det.)

Input-vector \rightarrow Output-vector function: (0,2,5,14,1) \rightarrow {(2,5,5,2,5),(2,2,2,2,2).....}

••••

.

- Consensus (agreement & validity)
- Set-Consensus (set-agreement)
- Immediate Snapshot

Classifying <u>Deterministic</u> Shared Memory Objects

Computability = the **power to solve tasks wait-free** = non-blocking

- Standard asynchronous shared memory
- Shared **deterministic** objects
- Interested (only) in wait-free linearizable implementations of tasks == non-blocking!

Object O Consensus Number

Cons#(O) = C=Max number of processors that can do w-f consensus with any number of O and Reg's

Herlihy's Consensus Hierarchy

- If cons#(O1)<cons#(O2) → O1 cannot implement O2
- Object in L_k is universal for **k processes** (implements any O)
- Is level k complete? different objects in L_k can implement each other in a system with n>k processes?

Common 2 [AWeisbergerWeisman 1994]

- Test&Set from 2-cons
 <u>Yes</u>
- Fetc&Add from 2-cons
 Yes
- SWAP from 2-cons
 <u>Yes</u>
- Stack from 2-cons
 <u>Yes</u>
- Queue from 2-cons

??

Set-Consensus

- Soma Chaudhuri 1990:
- (n,k)Set-Consensus:
- Agreement output-vector is a set of at most k different values
- Validity each value is an input of some process

[HS, BG, SZ 1999] Atomic R/W cannot w-f solve (n,k)setconsensus, n>k>1

Borowsky Gafni 1993

- Roughly, n>l and k>j: (l,j)set-consensus implements (n,k)set-consensus if k=j*n/l (use n/l copies of (l,j)set-consensus)
- More precisely (dealing with remainders):if and only if
- $k \ge j$,
- *n/k ≤ m/j*, and
- either $k \ge j \left[n/m \right]$ or $k \ge j \left\lfloor n/m \right\rfloor + n m \left\lfloor n/m \right\rfloor$.

AEllenGafni 2016

- AABBA
 - cons#(AABBA)=2=(2,1)sc

- Set-consensus Power (AABBA) = (5,2)
- $-BG \rightarrow (2,1)$ set-consensus cannot do (5,2)set-consensus
- FLP (bivalent) proof cons#(AABBA)<3, =2 !</p>
- \rightarrow counter example for common2 !!

Common 2 🛆

AEllenGafni 2016

- AABBCCBA (= (8,3)) implements AABBA
- AABBA does not implement AABBCCBA

Comparing the Hierarchies

Herlihy's Hierarchy

- Uses consensus
 - Deterministic task
- Classifies deterministic objects

AEG

- Uses set consensus
 - Nondeterministic task
- Classifies deterministic objects

WRN_k OBJECTS

• A[0], A[1], ..., A[k-1] Registers, initially \bot

- WRN(i,v):
 - Write $v \rightarrow A[i]$
 - Return A[(i+1) mod k]

Want to Prove that WRN_k is:

Stronger than registers

Weaker than 2-consensus

Registers < WRN $_k$ < 2-consensus

WRN_k is Stronger than Registers

• Theorem:

• Set consensus cannot be solved using registers [HS, SZ, BG 1993]

Idea: Solve set consensus using WRN_k

(k, k - 1)-Set Consensus using WRN_k

• Each process assigned with index

• Uses WRN_k with that index

Example – 3 processes

Example – 3 processes

Solution for 3 Processes out of Many

Solution for k Processes out of Many

• Proof:

- The processes get exactly k names in $\{0, 1, \dots, 2k 2\}$
- It's a k-sized subset of $\{0, 1, ..., 2k 2\}$
- Let its index be ℓ^*

• One process must lose until iteration $\ell^* + 1$

Want to Prove that WRN_k is:

Stronger than registers

Weaker than 2-consensus

Registers < WRN $_k$ < 2-consensus

The Critical State WRN(i_p , v_p) WRN(i_q , v_q) 0 is 1 is decided decided

Want to Prove that WRN_k is:

Stronger than registers

✓ Weaker than 2-consensus

Registers < WRN $_k$ < 2-consensus

Remains Open [AEG cojecture]

WRNk is a deterministic object WRNk s.t.,:

Reg's < WRNk < 2-consensus ??

Building an Infinite Hierarchy

• 1 shot WRN_k variant: 1sWRN_k

• 1 sWRN_k $\ge (k, k - 1)$ -strong set election (If p is elected, then p elects itself)

• Details in the paper

Building from Strong Set Election

```
1: shared (k, k-1)-strong set election implementation SSE
2: shared MWMR register Doorway, initially opened
3: shared SWMR register array R[i], 0 \le i < k; initially R[i] = \bot for every i
 4: shared SWMR register array O[i], 0 \le i < k; initially O[i] = \bot for every i
                                      \triangleright i \in \{0, \dots, k-1\} is the index, v \notin \{\perp, \emptyset\} is the value.
5: function 1sWRN(i, v)
       R[i] \leftarrow v
                                                                 \triangleright v is announced at the index i.
 6:
       if Read(Doorway) = opened then
 7:
           Doorway \leftarrow closed
 8:
           if SSE.Invoke(i) = i then
 9:
               return \perp
10:
           end if
11:
       end if
12:
       SR \leftarrow \text{Snapshot}(R)
                                                                             \triangleright SR is a local array.
13:
       O[i] \leftarrow SR
14:
       SO \leftarrow \texttt{Snapshot}(O)
                                                                             \triangleright SO is a local array.
15:
       for j = 0, 1, ..., k - 1 do
16:
           if SO[j][i] = v and SO[j][(i+1) \mod k] = \bot then
17:
18:
               return \perp
           end if
19:
       end for
20:
       return SR[(i+1) \mod k]
21:
22: end function
```

Implementation Directions

Infinite hierarchy in L1

processes	2-setCons	3-setConse	4-setCons	5-setCons	6-setCons	7-setCons
3			Re			
4				8 S=7		
5					CONSO	
6					-6	nsus
7						
8						

processes	2-setCons	3-setConse	4-setCons	5-setCons	6-setCons	7-setCons
3	WRN3		Re			
4				SS=J		
5					CONSO	
6					6	nsus
7						.5
8						

processes	2-setCons	3-setConse	4-setCons	5-setCons	6-setCons	7-setCons
3	WRN3		Re			
4		WRN4		SS=J		
5			WRN5		CONSO	
6				WRN6	. 67	nsus
7					WRN7	.5
8						WRN8

processes	2-setCons	3-setConse	4-setCons	5-setCons	6-setCons	7-setCons
3	WRN3		Re) ~ /		
4		WRN4		SS=J		
5			WRN5		CONSO	
6			2xWRN3	WRN6	. 67	nsus
7					WRN7	.5
8						WRN8

processes	2-setCons	3-setConse	4-setCons	5-setCons	6-setCons	7-setCons
3	WRN3		Re			
4		WRN4		SS=J		
5			WRN5		CONSO	
6			2xWRN3	WRN6		nsus
7					WRN7	.0
8					2xWRN4	WRN8

processes	2-setCons	3-setConse	4-setCons	5-setCons	6-setCons	7-setCons
3	WRN3		Re			
4		WRN4		8 S=J.		
5	Solution Contraction Contracti		WRN5		CONSO	
6	• (Op _{FA} .	2xWRN3	WRN6	26	nsus
7		<td></td> <td></td> <td>WRN7</td> <td>.5</td>			WRN7	.5
8			ذرب		2xWRN4	WRN8

Consensus vs. Set Consensus Power

- We've shown: Registers < WRN_k < 2-consensus
 Consensus number is 1
 - WRN_k solves (k 1)-set consensus

Consensus and set consensus powers are unrelated!

Delporte-Gallet, Fauconnier, Gafni, Kuznetsov

• Set-consensus power vector (Obj)=

(k1, k2, k3,)

where Obj and registers can w-f implement (ki,i)set-consensus and NOT (ki+1,i)set-consensus.

Set Consensus Power Vector

- For an object 0:
 v₀ = (a₁, a₂, ...)
 O and registers solve wait-free *i*-set consensus:
 for a_i processes
 not for a_i + 1 processes
 - a_1 is the consensus number of O

Remaining Open Questions

- For deterministic objects:
 - The case (k, k 1)-set consensus is resolved
 - What about arbitrary (*n*, *m*)-set consensus?
 - I.e., (4,2) or (5,2)
 - Is there a more fine grained hierarchy?
 - More than set-consensus vector power?

