Concurrence et différenciation des produits

Coups de projecteurs.....

Thémes

- La différenciation de produits :
 - Effet : multiplier les produits,
 - Motivation : créer des « niches »
 - Chamberlin, contribution pionnière sur le sujet.
- Questions :
 - Positives ...
 - Atténue la concurrence en prix ?
 - Atténue l'instabilité, objection d'Edgeworth (à capacités fixées)), stabilité divinatoire
 - Atténue l'indétermination, ... l'opposition prix quantités ?
 - Change le point de vue sur l'entrée ?
 - Normatives : différenciation et bien être social.
- Les points de vue.
 - Une différenciation exogène (première partie)
 - la logique endogène de la différenciation. (deuxième partie)

Produits différenciés : un cadre d'analyse

- Une théorie avec produits différenciés exogènes :
 - n produits
 - $q_i = D_i(p_1, p_2, ...p_n)$
 - $p_i = P_i (q_1, q_2, ...q_n)$
 - Applications inverses,
 - Matrices Jacobiennes inversibles et définies négatives.
- Hypothéses implicites
 - Consommateur représentatif, pas d'effet revenu ...
 - Industrie, petite / l'économie...
- Substituabilité et complémentarités : prix et quantités.
 - Def 1: $\stackrel{*}{\Rightarrow}$ D_i/ $\stackrel{*}{\Rightarrow}$ p_i > (<) 0 Substituts >; compléments <
 - def 2 : $\Rightarrow P_i/\Rightarrow q_i < (>) 0$
 - Connexions $\ \ \ \ \, D_i/\ \ \ \, p_i>\ \ (<)\ 0$ $\ \ \ \ \ \ \ \, \Phi_i/\ \ \ \, q_i<(>)\ 0.$
 - (propriétés des matrices à diagonale dominante)

Exemples

- « L 'industrie », illustration :
 - Le spectacle : théâtre, cinéma, musique, ...
 - 1 'édition : romans, dictionnaires, essais, beaux livres, journaux
 - Les restaurants, chocolats, !
- Demande « affine » (linéaire)
 - Utilité quadratique
 - $p_1 = a b q_1 cq_2$
 - $p_2 = a' b' q_1 c' q_2$
 - Cas c,c >0, <0
- CES:
 - $U(q_1,...,q_n) = [q_1^{((\bullet-1)/\bullet)} +q_n^{((\bullet-1)/\bullet)}]^{(\bullet/(\bullet-1))}$
 - $D_i(p_1.p_2,...p_n) = [p_i^{(-\bullet)}]/\{\phi_i(p_i^{(1-\bullet)})\}^{1/(1-\bullet)} (=P)$
 - Cas \rightarrow > 1

Commentaire

CES modifié

- $V\{x, [q_1^{((\bullet-1)/\bullet)} +q_n^{((\bullet-1)/\bullet)}]^{(\bullet/(\bullet-1))}\} = V(x,y)$
- $D_i(1, p_1, p_2, ..., p_n) = s(P) [p_i^{(-\bullet)}]/\{ \phi_j (p_i^{(1-\bullet)}) \}$
- s(P): part du revenu sur les biens 1, ...n.

• Commentaire:

- Substituabilité ★, ◆ ★.
 - imparfaite,
 - invariable / nbre de produits.
- Préférence pour la diversité ★, ◆ ※.
 - (convexité)
- Demande à 1 'industrie et demande à 1 'entreprise.
 - Demande à l'industrie : dépend de son prix agrégé, et de n!
 - prix égaux et *, élasticité de q/p = (élasticité de s) -1.
 - Un nouveau produit : baisse de la demande de tous les autres.

Concurrence à la Cournot avec produits différenciés.

• Le modèle et l'équilibre :

- Coûts
- Concept d 'équilibre :
- Un équilibre de Cournot-Nash consiste en la donnée de quantités q*(i) telles que :
- q*(i) est solution du problème :
 - Max : $P[Q^*_{-i}, q(i)] q(i) C_i(q(i))$
 - $Q^*_{-i} = \{_{j \neq i} q^*(j))\}.$

• Remarques préliminaires :

- coincide avec Cournot standard si biens infiniment substituables.
- Traitement analytique très semblable ...
- Caractérisation : $(p_i-C_i)/p_i = (q_i/P_i)(? P_i/? q_i) = e_i > ...$

Equilibre en quantités ...

- Remarques préliminaires (suite)
 - Si conditions « standard » sur P,
 - unicité de la meilleure réponse et continuité.
 - Si substituabilité + cdts dérivées secondes croisées du profit:
 - fonctions de réaction décroissante vis à vis de chaque q_i, +
 - Saut vers le haut.
 - Si complémentarités suffisamment fortes,
 - le jeu est super-modulaire :
 - Fns de meilleure réponse croissante, voir plus bas
- Propriétés
 - Existence et unicité
 - Oui
 - Pas nécessairement.

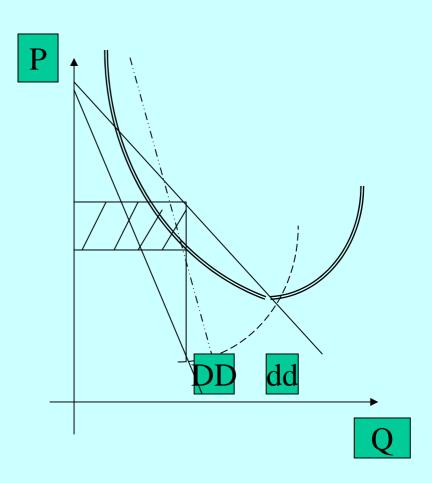
Equilibres en prix ...


- Modèles et définitions :
 - Un équilibre de Bertrand-Nash consiste en / prix p*(i) tels que :
 - p*(i) est solution du problème :
 - Max : $D_i(P^*_{-i}, p(i)) p(i) C_i(D_i(p(i)))$
 - $P^*_{-i} = (p^*(j)).$
- Commentaires
 - Bertrand : répondre à toute la demande ...
 - Caractérisation :...
 - $(p_i-C_i)/p_i = 1/s_i$, mais $1/s_i < e_i$ Donc...
- Cas / substituabilité brute
 - Si $^2D_i/^2p_i \approx p_i > 0$ (cas linéaire), le jeu est supermodulaire.
 - Ou un jeu modifié (élasticité propre croît prix des autres (CES)
 - Prix sont des compléments stratégiques.

Jeu super modulaire.

- Théorème de Tarsky :
 - F, fonction ★ de S dans S, S treillis complet
 - L'ensemble des points fixes E est non vide et est un treillis complet
 - Applications : S ⋈ Rⁿ, produit d'intervalles dans R,
 - sup E et inf E sont points fixes
- Fonctions super modulaires :
 - G: Rⁿ **♣** R, (strict) supermodulaire **@**
 - $\frac{1}{2}G/\frac{1}{2}x_j \frac{1}{2}x_j > 0$
 - Soit $f(t) = \max_{x} G(x,t)$, G strict. Supermodulaire sur X, $\gg t$
 - Alors la correspondance f est *
 - X compact et g SCS en x, f compact
- Jeux supermodulaires :
 - Espace de stratégies compact.
 - Utilité de chaque agent dépend de a_i , a_{-i}
 - (strict.) supermodulaire.

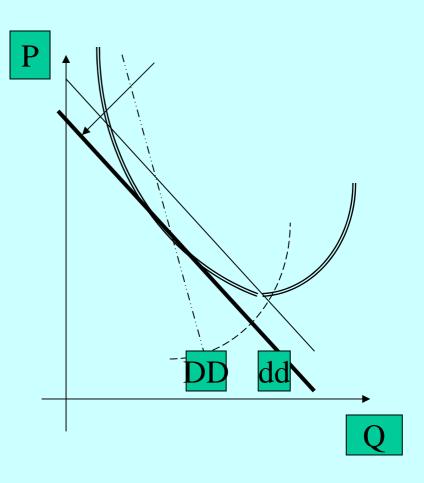
Tarsky et les jeux supermodulaires


- Equilibres dans les jeux supermodulaires :
 - L'ensemble des équilibres est non vide et a un plus grand et un plus petit élément
 - Fn de meilleure réponse ★
- Commentaire
 - Les équilibres entre Min [], Max []
 - Coordination des anticipations sur l'ensemble
- Exemple : jeu 1-dim sym.

Retour sur Chamberlin.

• Le cadre :

- Gd nombre biens différenciés.
 - Ex : CES symétrique.
- Demande s'adressant à une entreprise
 - prix agrégé, son prix
- Problème standard pour l'entreprise
 - Pas d'effet sur le prix demande agrégé
 - Monopole
 - Prix quantités équivalentes.
- DD


Retour sur Chamberlin.

• Le cadre :

- Gd nombre biens différenciés.
 - Ex : CES symétrique.
- Demande s'adressant à une entreprise: prix agrégé, son prix
- Libre entrée :
 - ★ le nbre de produits,
 ★ demande de chacun,
 - Effet /industrie?

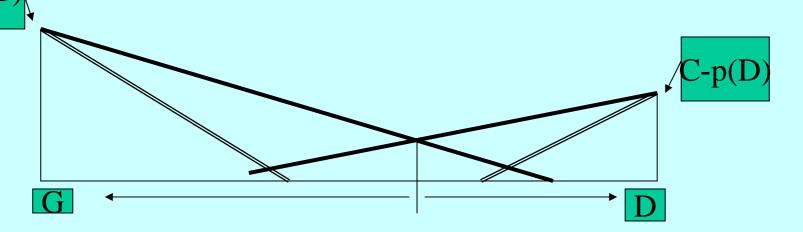
Résultat

- « Tangence » courbe de coût moyen et courbe de demande
- Critiques.
 - O. Hart : réplication substitution économie limite.
 - Chamberlin Bertrand
 Edgeworth: voir dernier
 cours ' (ref. Benassy)

La différenciation endogène : prolégomènes

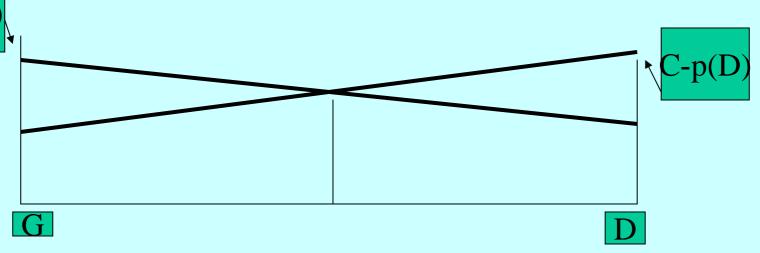
• Une vision générale de la différenciation

- Inspirée de Lancaster.
 - Point de départ : espace des attributs
 - Confort, vitesse, espace intérieur, sécurité.
- Un bien : un point dans l'espace des attributs
 - Utilité sur l'espace des attributs.
 - Explication. complémentarités substituabilités.
 - Plus fondamentale, plus spéculative.


Concurrence

- Choix d'une position dans l'espace des attributs.
- Quelle dimension pour l'espace ?, quelle structure ?

Exploration


• Dimension 1, structures variées.

Concurrence « horizontale »

- Concurrence « spatiale » :
 - Consommateurs uniformément répartis sur une route : (longueur 1)
 - Un bien homogène vendu en G ou D, (extrémités), produit coût nul.
 - Coût de transport t (linéaire), achètent 1 unité de bien, Cst/ payer = C
 - Métaphore pour concurrence différenciation horizontale.
- Définition de l' « hinterland » :
 - Pour un couple de prix p(G), p(D) --- « hinterland »
 - Avec ou sans recouvrement (concurrence)

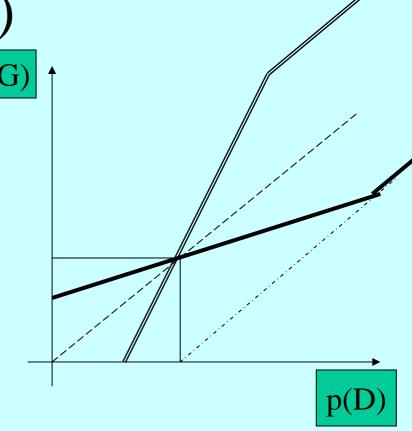
Différenciation « horizontale »

- Cas:
 - Longueur 1, coût de production nul, C > 3t (forte concurrence).
- Equilibre (de Nash) en prix.
 - p(G)=p(D)=t, profit Mt/2 pour chacun.
 - Intuitif
 - Pas évident : C- p(G) -ht= C- p(D)-(1-h)t --- (1-2h) = [p(G) p(D)]/t

15

- $2h = 1-[p(G)-p(D)]/t ---- 2profit = p(G)-[p(G)]^2/t + p(G)p(D)]/t$
- 2(p(G)/t = 1+p(D)/t ---- p(G) = [t + p(D)]/2, si p(D) < p(G) +t.

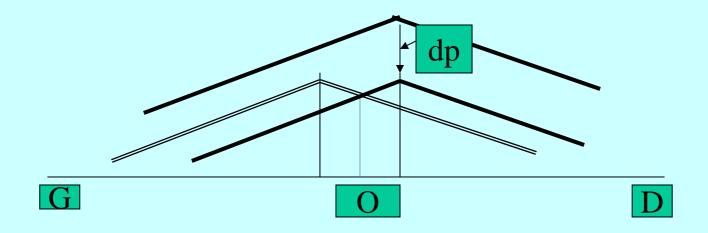
Différenciation horizontale


(suite)

• Rappel:

- 2a = 1-[p(G) p(D)]/t
- $2\text{profit} = p(G)-[p(G)]^2/t + p(G)p(D)]/t$
- 2(p(G)/t = 1+p(D)/t
- p(G) = [t + p(D)]/2,
 - $\operatorname{si} p(D) < p(G) + t$
 - Symétrie

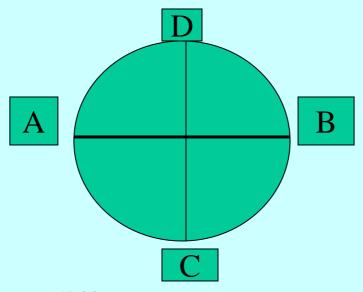
Preuve graphique---


- Prix « compléments stratégiques »
- Très bonnes propriétés de stabilité divinatoire

Concurrence horizontale : premières leçons.

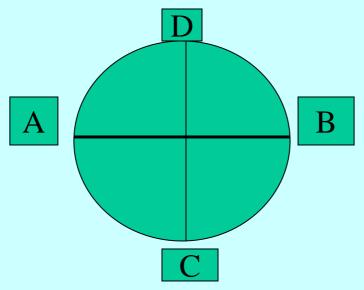
- Reprise de commentaire.
 - Concurrence en prix **★** avec proximité des entreprises (t)
 - Proximité =proximité (attributs) des produits.
 - Positionnement extrême?
- Reprise du modèle : marchands de glace /la plage.
 - Espace des attributs, (localisation) = [0,1]
 - Choix de localisation, (étape1)
 - Puis choix des prix
 - Choix simultané à chaque étape
 - Equilibre parfait, remonter de l'arrière...
- Programme:
 - Concurrence en prix selon la localisation...

Différenciation horizontale, Suite

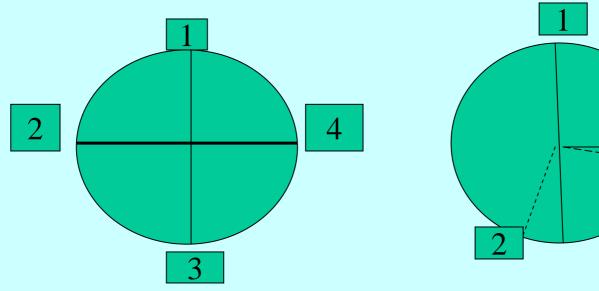

- Cas:
 - les deux entreprises au centre, ou presque au centre...
- Equilibre (de Nash) en prix.
 - En 0 concurrence à la Bertrand (bien homogène), p=0.
 - Aux alentours de 0, concurrence exacerbée : se garder à droite pour G ne suffit plus, il faut se garder à droite et se garder à gauche : pas d'équilibre en stratégies pures.
 - Dans la zone avec équilibre : tend à se rapprocher du centre.

Le principe de différenciation minimale.

Commentaire

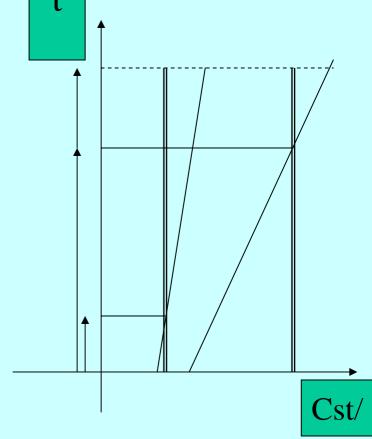

- Le principe différenciation minimale invalide.
 - Différenciation maximale?
 - Cas coûts quadratiques....
- Compromis entre
 - Atténuation de la concurrence en prix.
 - Positionnement accroître l'hinterland.
 - Efficacité sociale du positionnement
- La concurrence pour la différenciation.
 - Atténue la concurrence en prix.
 - Ne stabilise complètement ni ne simplifie.
 - Ne réalise pas « l'optimum social », /en prix / en localisation.

Concurrence sur un cercle


- Métaphore... différente...
 - densité uniforme (1) de consommateurs
 - coût marginal a, fixe c.
- Analyse plus simple :
 - 2 entreprises, coûts de transport linéaire -----localisation/diamètre
 - N entreprises, coûts de production quadratique, localisation symétrique

Concurrence sur un cercle, suite

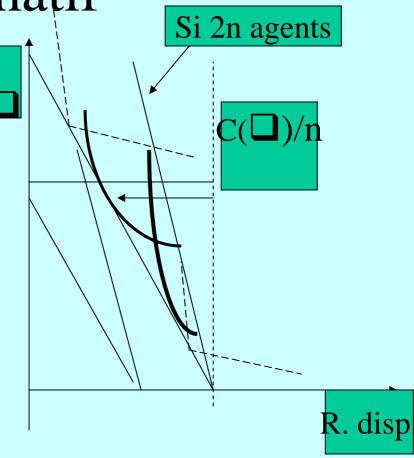
- Solutions symétriques :
 - n entreprises, Coût fixe c, concurrence en prix, circonférence L
 - $p=a+tL^2/n^2$, profit = tL^3/n^3 -c
- Libre entrée :
 - $n*=L(t/c)^{1/3}$, $p*=a+t(c/t)^{2/3}$
 - Concurrentiel: t petit, c petit, L?


Concurrence sur un cercle, suite

- Entrée simultanée
 - -1,2,3,4
- Entrée Séquentielle!
 - 1,2,3

Différenciation verticale et segmentation

- Différenciation hiérarchique : qualités
 - Rang « objectif » /qualité
 - \leftarrow revenus t, 2qualités.
 - Cst/payer $\stackrel{\ }{\ }$ R(t,1), R(t,2)
- Equilibres:
 - 2 quals : std...luxe
 - Bien standard, pauvres, riches peu sensibles qul
 - Autres configurations
 - Tt le monde achète
 - Seul le produit de luxe subsiste ...

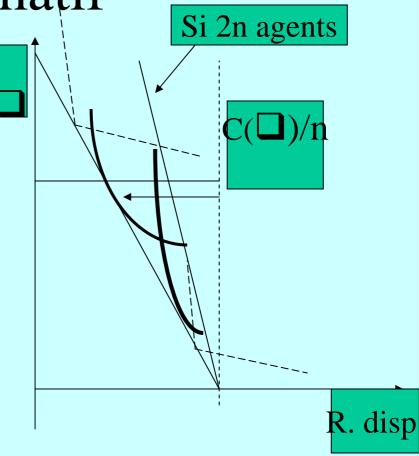

Différenciation verticale : le pt de vue normatif

• Modèle:

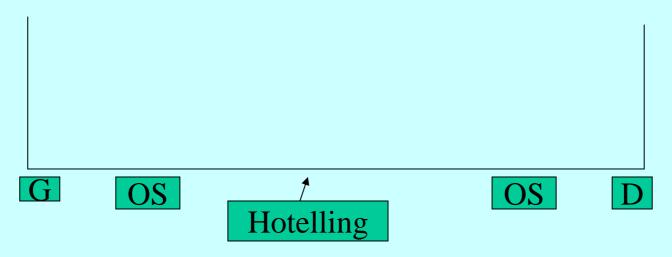
- Combien / qualités offrir ?
- Continu de □ qualités
- Coût fixe A □. N/agents 2n
- Tarification coût moyen
 C(□) /n si n agents ch □.

• Nature du problème :

- Cas 1 : suggéré : accord mutuellement avantageux pour 2 agents
- 1 seule qualité souhaitable monopole social naturel ?


Différenciation verticale : le pt de vue normatif

• Modèle:


- Combien / qualités offrir ?
- Continu de □ qualités
- Coût fixe A □. N/agents 2n
- Tarification coût moyen
 C(□) /n si n agents ch □.

• Oligopole naturel :

- Cas 2 : préf. pointillé
- N agents de chaque type.
- Optimum 2qualités
 - Demange Henriet (89)
 - Guesnerie Oddou (81)
 - Greenberg Weber (86)

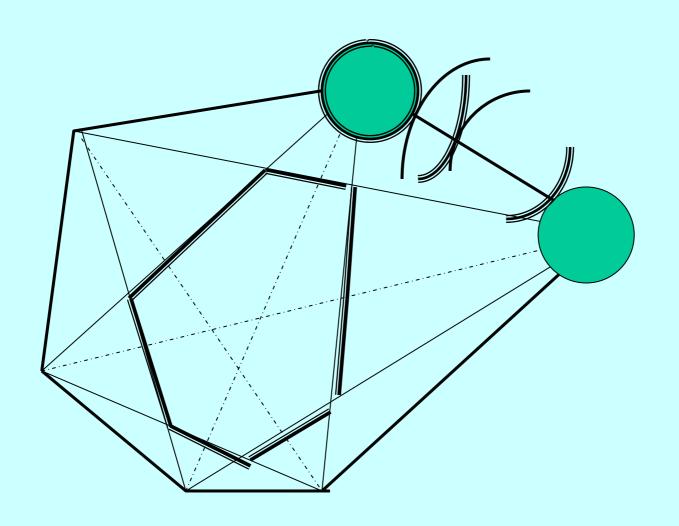
Différenciation horizontale, Suite

- Prix imposé:
 - Equilibre de localisation : Hotelling, différenciation minimale.
 - Equilibre politique à la Downs : « gouverner au centre »
- Intervention ?
 - Optimum social, si deux « marchands », localisation au 2/3, prix zéro
 - Second best : prix imposé, localisation imposée ?

Concurrence politique multidimensionelle à la Downs

• La métaphore :

- 2 partis : chacun propose un programme
- Un programme : un point dans l'espace des attributs.


Le cas unidimensionnel

- Les préférences des électeurs : point préféré, monotone de part et d'autre (uni-modales)
- Il existe un gagnant de Condorcet : le choix préféré de l'électeur médian...

• Le cas multi-dimensionnel:

- Extension avec préférences : bliss point, distance.
- Il existe ensemble minimax/un nombre, pourcentage, minimax,
- La dynamique des élections

Ensemble Minimax dans R².

Différenciation: principales leçons

• Point de vue positif

- Bon modèle différenciation horizontale?
- Atténuation de la concurrence en prix
- Différenciation maximale, moyenne?

• Point de vue normatif

- Trop ou trop peu de variétés ?
- Monopole,
- Concurrence libre entrée :
 - Spence
- Trop ou trop peu de différenciation verticale ..
- Produits de moins bonne qualité chassés ?

Biblio (Suite)

- Benassy, P.J., (1989a), "Market size ans substitutability in imperfect competition: a Bertrand-Edgeworth-Chamberlin model", *Review of Economic Studies*, 56, 217-234.
- Benassy, P.J., (1992), Handbook of Mathematical Economics, North Holland
- Chamberlin, E.H., (1933), *The theory of monopolistic competition (7th edn.1956)*, Cambridge Harvard University Press.
- D'Aspremont, C., J.J. Gabszewicz and J.F. Thisse, (1979), "On Hotelling's stability in competition", *Econometrica*, 47, 1145-1150.
- Dixit, A.K. and J.E. Stiglitz, (1977), "Monopolistic competition and optimun product diversity", *American Economic Review*, 67, 297-308.
- Encaoua, D., (1990), "Différenciation des produits et structures de marché: Un tour d'horizon", *Annales d'Economie et Statistiques*, 16-16, 51-83.
- Gabzewicz J (199) « La concurrence imparfaite », Paris, La Découverte.

Biblio (suite)

- Guesnerie R. C. Oddou (1981) « Second Best taxation as a game », *Journal of Economic Theory*, 25, 67-91
- Greenberg J and S. Weber (1986) « Strong Tiebout equilibrieum under restricted preferences domain », *Journal of Economic Theory*, 38, 101-117.
- Demange G. D. Henriet (1991) « Sustainable oligopolies », *Journal of Economic Theory*, 54, 417-28
- Hart, O.D., (1979), "Monopolistic competition in a large economy with differentiated commodity", *Review of Economic Studies*, 46, 1-30.
- Hart, O.D., (1985b), "Monopolistic competition in the spirit of Chamberlin: A general model", *Review of Economic Studies*, 52, 529-546.
- Mas-Colell, A., (1975), "A model of equilibrium with differentiated commodities", *Journal of Mathematic Economics*, 2, 263-295.
- Shaked, A. and J. Sutton, (1982), "Relaxing price competition through product differentiation", *Review of Economic Studies*
- Spence M (1976) « Product selection, fixed costs and monopolistic competition » *Review of Economic Studies*, 43-2, 217-235