Long-Term Debt Pricing and Monetary Policy Transmission under Imperfect Knowledge

Stefano Eusepi, Marc Giannoni and Bruce Preston

The views expressed are those of the authors and are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System
Motivation

- Macroeconomic models depend on household and firm expectations

- Policy design
 - Not enough to observe some history of beliefs
 - Need a theory of the determination of beliefs: rational expectations

- Rational expectations policy design
 - Heavy reliance on managing expectations through announced commitments
 - What are the consequences of imprecise control of beliefs?
Motivation II

- For example, Bernanke (2004):

 “[...] most private-sector borrowing and investment decisions depend not on the funds rate but on longer-term yields, such as mortgage rates and corporate bond rates, and on the prices of long-lived assets, such as housing and equities. Moreover, the link between these longer-term yields and asset prices and the current setting of the federal funds rate can be quite loose at times.”
The Agenda

- Simple model of output gap and inflation determination

- One informational friction:
 - Agents have an incomplete knowledge about the economy

- Explore constraints imposed on stabilization policy by financial market expectations
 - What if the expectations hypothesis of the yield curve does not hold?
 - Is the zero lower bound on nominal interest rates an important constraint?
Asset Structure and the Fiscal Authority

- Exogenous purchases of G_t per period

- Issue two kinds of debt
 - B^s_t: One period debt in zero net supply with price $P^s_t = (1 + i_t)^{-1}$
 - B^m_t: An asset in positive supply that has the payoff structure
 \[\rho T^{- (t+1)} \text{ for } T \geq t + 1 \]

- Let P^m_t denote the price of this second asset. Asset has the properties:
 - Price in period $t + 1$ of debt issued in period t is ρP^m_{t+1}
 - Average maturity of the debt is $(1 - \beta \rho)^{-1}$
Log-linear approximation of Euler equations for each kind of bond holdings implies

\[\hat{i}_t = -\hat{P}_t^s = -\hat{E}_t \left(\hat{P}_t^m - \rho \beta \hat{P}_{t+1}^m \right) \]

- Restriction on asset price movements

- Combined with transversality

\[\hat{P}_t^m = -\hat{E}_t \sum_{T=t}^{\infty} (\rho \beta)^{T-t} \hat{i}_T \]

- Asset price is a function of fundamentals: the expectations hypothesis of the term structure holds; does not imply interest-rate expectations consistent with monetary policy strategy

- Call: Anchored Financial Market Expectations
Optimal Spending Plans I

- Assume agents understand fiscal policy is Ricardian

- When the expectations hypothesis of the term structure holds — aggregate demand relation of the form

\[
\hat{C}_t^i = -\hat{E}_t^i \sum_{T=t}^{\infty} \beta^{T-t} [\beta (i_T - \pi_{T+1})]
\]

\[
+ \bar{s}_C^{-1} (1 - \beta) \hat{E}_t^i \sum_{T=t}^{\infty} \beta^{T-t} \left[\left(\frac{\theta - 1}{\theta} \right) (1 + \gamma^{-1}) \hat{w}_T + \bar{\theta}^{-1} \hat{r}_T \right]
\] (1)

- Example of permanent income theory

- Independent of the average maturity structure of debt; Isomorphic to an economy with one-period debt — i.e. $\rho = 0$

- Independent on long-debt-price expectations
Asset Pricing: Theory II

- Under non-rational expectations and incomplete markets: exist alternative ways to impose no-arbitrage

- Consider pricing the asset directly

\[\hat{i}_t = -\hat{E}_t^i \left(\hat{P}_t^m - \rho \beta \hat{P}_{t+1}^m \right) \]

in all periods \(t \)

 - Given monetary policy and expectations, asset price determined. No-arbitrage consistent forecasts of the short-rate can then be determined by

\[\hat{E}_t^i \hat{i}_T = -\hat{E}_t^i \left(\hat{P}_T^m - \rho \beta \hat{P}_{T+1}^m \right) \]

 - Because interest rate projections are not directly related to current interest rates — expectations hypothesis need not hold
Demand then determined by

\[
\hat{C}_t^i = -\hat{E}_t^i \sum_{T=t}^{\infty} \beta^{T-t} \left[\beta \left(\rho \hat{P}_{T+1}^m - \hat{P}_T^m \right) - \pi_{T+1} \right]
\]

\[
+ \tilde{s}_C^{-1} (1 - \beta) \hat{E}_t^i \sum_{T=t}^{\infty} \beta^{T-t} \left[\left(\frac{\bar{\theta} - 1}{\bar{\theta}} \right) \left(1 + \gamma^{-1} \right) \hat{w}_T + \bar{\theta}^{-1} \hat{r}_T \right]
\]

- Nest anchored expectations model when \(\rho = 0 \); since \(\hat{E}_t^i \hat{r}_T = -\hat{E}_t^i \hat{P}_T \)

- In this case forecasting bond prices and forecasting interest rates equivalent

 * As maturity increases this divergence increases
Beliefs Formation

- Agents construct forecasts according to

\[\hat{E}_t^i X_{t+T} = a_{t-1}^X \]

where \(X = \{ \pi, \hat{w}, \hat{r}, \hat{i}, \hat{P}_m \} \) for any \(T > 0 \).

- In period \(t \) forecasts are predetermined.

- Beliefs are updated according to the constant gain algorithm

\[a_t^X = (1 - g) a_{t-1}^X + g X_t \]

where \(g > 0 \)

- With i.i.d. shocks and zero debt nests the REE

 * Learning only about the constant
Beliefs Formation II

- Under anchored expectations, based on interest-rate data:
 \[\hat{E}_t^{i^T} = a_t^i \]

- Under unanchored expectations, based on bond-price data:
 \[\hat{E}_t^{i^T} = -\hat{E}_t \left(\hat{P}_T^m - \rho \beta \hat{P}_{T+1}^m \right) \]
 \[= -(1 - \rho \beta) a_{t-1}^{pm} \]
 - In general they are not equal
 - Equivalent when \(\rho = 0 \)
Calibration

- Discount factor is $\beta = 0.99$

- Labor supply elasticity $\gamma^{-1} = 2$

- Nominal rigidities $\alpha = 0.75$

- Elasticity of demand across differentiated goods $\bar{\theta} = 8$
Unanchored Expectations and Simple Rules

- Consider the case of a simple Taylor rule

\[\hat{\iota}_t = \phi_\pi \hat{\pi}_t + \phi_y x_t \]

- Use notion of “robust stability”
 - Dynamics converge for a given gain coefficient
 - Distinct from E-stability
Figure 1: Robust stability regions for different maturity structures. The three contours correspond to different Taylor distinguished by their respond to the current output gap.
Intuition

• Aggregate demand can be written

\[x_t = -\hat{\eta}_t + \hat{E}_t \rho \beta \hat{P}_{t+1}^m + \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} \left[\beta (1 - \rho) \hat{P}_{T+1}^m + \pi_{T+1} \right] - \hat{A}_t \]

\[+ \bar{s}_C^{-1} (1 - \beta) \hat{E}_t \sum_{T=t}^{\infty} \beta^{T-t} \left[\left(\frac{\bar{\theta} - 1}{\bar{\theta}} \right) (1 + \gamma^{-1}) \hat{w}_{T+1} + \bar{\theta}^{-1} \hat{r}_{T+1} \right] . \]

– For infinite-period debt \(\rho = 1 \): depends only on \(\hat{E}_t \hat{P}_{t+1}^m \)

– Requires aggressive adjustment of current nominal interest rates

• Key mechanism: increasing debt maturity implies arbitrage restrictions in the expectations hypothesis are weaker
Optimal Policy under Rational Expectations

- Consider target criterion

\[\pi_t = -\theta^{-1} x_t \]
Optimal Policy under Rational Expectations II

- Target criterion approach implies
 - Interest-rate policy sufficiently aggressive to guarantee satisfaction of the target criterion
 - Adjustment of policy in response to asset prices
- Both might be thought to confer stabilization advantages
Figure 2: Stability regions in gain-maturity space for the optimal rational expectations target criterion under discretion.
Intuition

• Second distinct mechanism at play

 – For a given average maturity of debt — higher gains imply greater volatility in expectations and therefore require more aggressive adjustment in interest rates which has destabilizing feedback effects

 – As the average maturity rises, arbitrage relationship defining term structure weakens — implies more aggressive policy feasible

• Shifting interest-rate expectations represent an additional constraint on policy

 – Limits scope to react to current macroeconomic developments
Optimal Policy

- Central Bank seeks to minimize

\[
\min_{\{x_t, \pi_t, i_t, P^m_t, a^\pi_t, a^Y_t, a^w_t, a^\Gamma_t\}} \mathbb{E}_0^{RE} \sum_{t=0}^{\infty} \beta^t \left[\pi_t^2 + \lambda_x (x_t - x^*)^2 + \lambda_i (i_t - i^*) \right]
\]

where \(\lambda_x, \lambda_i \geq 0 \) and \(x_t \) the output gap and \(Y = \{P^m, i\} \). Minimization subject to the constraints:

- Aggregate demand and supply

- No-arbitrage equation

- Beliefs

- Disturbances: technology and cost-push shocks
Properties of Optimal Policy

Proposition 1 The first-order conditions representing a solution to the minimization of the loss subject to i) the aggregate demand, supply and arbitrage equations; the no-arbitrage condition; and ii) the law of motion for the beliefs $a_t^\pi, a_t^Y, a_t^w, a_t^\Gamma$ have a unique bounded rational expectations solution for all parameter values. In particular, model dynamics are unique for all possible gains.

- First-order conditions constitute a linear rational expectations model
 - Can be solved used standard methods
 - Does not imply that learning is irrelevant for policy outcomes
Special Case: No uncertainty

- Two limiting results of interest
 - When \(g \to 0 \) and \(\beta < 1 \) then
 \[
 \lim_{T \to \infty} E_t \pi_T = \frac{\kappa \lambda x x^*}{\kappa^2 + \lambda_x (1 - \beta)}
 \]
 - When \(g > 0 \) and \(\beta \to 1 \) then
 \[
 \lim_{T \to \infty} E_t \pi_T = 0
 \]

- Patient Central Banker replicates the optimal commitment policy under rational expectations
 - Price stability is optimal in the long run
Impulse Response Functions: Reintroducing Uncertainty

- Assume $\lambda_i = 0$ and $x^* = i^* = 0$
 - Compare with dynamics under rational expectations
 - Cost-push shock
Figure 3: Impulse response functions in response to a cost-push shock. Gain = 0.15. Rational expectations: red dotted line; learning with anchored expectations: blue solid line; and learning with unanchored expectations: green dashed line.
Implications II

- Anchored expectations:
 - Expectations hypothesis holds which imposes a constraint on current interest-rate movements
 - Inflation and output more volatile

- Unanchored expectations:
 - Current interest-rate policy divorced from interest-rate expectations
 - Inflation and output less volatile; interest rates more volatile
Efficient Policy Frontiers

- Compute

\[\bar{L} = V[\pi] + \lambda_x V[x] + \lambda_i V[i] \]

where \(V[\cdot] \) denotes unconditional variance

- Study variation in

\[V[\pi] + \lambda_x V[x] \]

as tolerated variance in interest-rates varies: that is \(V[i] \)

 - Equivalent to studying the original loss function as \(\lambda_i \) varies
Figure 4: Policy frontiers as weight on interest rate stability is increased. Exogenous disturbance is a cost-push shock.
The Zero Lower Bound on Nominal Interest Rates

- Compute the unconditional probability of being at the zero lower bound in each model

- Requires two additional parameter assumptions.
 - The average level of the short-term nominal interest rate: 5.4% (annualized),
 * corresponds to the average rate of the US 3-month T-bill for the period 1954Q3-2011Q3
 - Under RE and $\lambda_i = 0.08$ calibrate the volatility of the technology shocks to deliver a standard deviation of output of 1.5% (in log-deviations from its steady state) and probability of ZLB being 3.5%
Figure 5: The figure shows the unconditional probability of being at the ZLB as a function of λ_i for the three different models.
Implications

- If financial market expectations unanchored
 - Zero lower bound likely to a relevant constraint on monetary policy
 - True even if substantial weight placed on losses from such variation

- Contrasts markedly with claims that “Zero lower bound on nominal interest rate is of little quantitative relevance in standard New Keynesian models”
 - Chung et. al. 2010, Schmitt-Grohè and Uribe 2007
Conclusion

- Failure of beliefs to satisfy the expectations hypothesis of the term structure limits the efficacy of monetary policy
 - The pricing of public debt places constraints also on optimal monetary policy
 - Can make the zero lower bound constraint on nominal interest rates more severe