Le monde des produits différenciés.

Rappel.

Le cœur des modèles de différenciation.

Usages.

Faits stylisés comparés : rappel

- Les biens échangés..
 - > Multiplication, entre le 19ième siècle et le 20ième siècle.
 - > Commerce intra-industrie
 - Commerce Nord-Nord prépondérant jusqu'en 1980, 4/5 du commerce total en 1995..
 - > Pays UE, 75% intra-UE.
- ➤ Le rôle des entreprises.
 - > 1/3 du commerce mondial est du commerce intra-firmes.
 - > Multi-nationales, firme sans frontière..
 - > Rôle dans la diffusion du progrès technique
- ➤ Incompatible avec la vision HO-Ricardo.
 - ➤ Le commerce est inter-industries
 - L'industrie est la référence pertinente, non la firme.
- > Est-ce exact?
 - Ricardo HO à plusieurs biens.
 - Puis, la nouvelle théorie du CI.

Ricardo et HO avec plusieurs biens.

- > Retour sur la théorie Ricardienne. (Dornbusch, Fisher, Samuelson)

 - Un continu de biens, 2 pays.
 Des rapports de coûts de production variables a(z), b(z), (A, B)
 - > Implicitement un seul facteur.
 - Le commerce échange du travail de A contre le travail de B.
 - > Des coûts de transport iceberg.
- ▶ L'équilibre.
 - > Trois catégories de biens,
 - Décisifs, les ratios a(z)/b(z)
 - > z/a(z)/b(z)<t, (>q) produit en A (B)et exportés en B, (A)
 - > q>a(z)/b(z)<t, produits dans les deux pays...
- > HO, les coûts intérieurs sont endogènes
 - > Dépendent dotations factorielles, des technologies
 - Plus complexe.
- > Dans tous les cas,
 - > Pas vraiment de commerce intra-industrie ?
 - Même si des effets efficacité des entreprises (Eaton-Kortum).
 - Généralisation, (Costinot)
- > Passer à la « nouvelle théorie ».

Le cœur des modèles : la différenciation

> Hypothèse :

- > Un bien final composite, des composants substituables.
- \triangleright Élasticité de substitution fixe, sigma, σ (Dixit-Stiglitz).
- \triangleright Ecriture avec un continu : \int au lieu de \sum
- > σ >1, les biens sont « assez » substituables.

$$X = \left[\int_{0}^{N} x(i)^{(\sigma-1)/\sigma} di\right]^{\sigma/(\sigma-1)}, \dots, \sigma > 1, \dots, x(i) = x, X = xN^{\sigma/(\sigma-1)}$$

$$\sigma = 2, \dots, X = \left[\int_{0}^{N} \sqrt{x(i)} di\right]^{2}, \dots, X = xN^{2}$$

$$\sigma = 3, \dots, X = X = \left[\int_{0}^{N} x(i)^{(2/3)} di\right]^{3/2}, \dots, X = xN^{3/2}$$

- > Autre interprétation : X est une production intermédiaire, x(i) sont des inputs
 - Croissance = croissance de la variété des technologies, (innovation)
 - > donc croissance du nombre des inputs.

Le cœur des modèles : la différenciation

> Hypothèse:

- > Un bien final composite, des composants substituables.
- \rightarrow Élasticité de substitution fixe, $\sigma > 1$, (Dixit-Stiglitz).

$$X = \left[\int_{0}^{N} x(i)^{(\sigma-1)/\sigma} di\right]^{\sigma/(\sigma-1)}, \dots \sigma > 1, \dots x(i) = x, X = xN^{\sigma/(\sigma-1)}$$

$$\sigma = 2, \dots X = \left[\int_{0}^{N} \sqrt{x(i)} di\right]^{2}, \dots X = xN^{2}$$

$$\sigma = 3, \dots X = X = \left[\int_{0}^{N} x(i)^{(2/3)} di\right]^{3/2}, \dots X = xN^{3/2}$$

- ► Interprétation / consommation : Préfèrence pour la variété ($\sigma = 2$).
 - > Consommation x de N variétés \rightarrow xN² de bien agrégé.
 - > Rendements croissants par rapport à la variété.
 - > Si chaque variété produite à rendements constants...
 - ▶ Planificateur produit Y/N de N variétés X→→YN agrég
 - > Assurerait consommation sans limite si N tend vers l'infini!!
 - > Pour plus de réalisme, la production d'une variété a un coût fixe.

Différenciation et choix du consommateur.

$$P = \left[\int_{0}^{N} p(i)^{-(\sigma-1)} di\right]^{-1/(\sigma-1)} \dots x(i) = \left(p(i)^{-\sigma} / P^{-\sigma}\right) (E/P)$$

$$.P = \left[\int_{0}^{N} p(i)^{-(\sigma-1)} di\right]^{-1/(\sigma-1)} = pN^{-1/(\sigma-1)}, si...p(i) = p, \dots$$

$$x = (E/pN), ...X = (E/pN)N^{\sigma/(\sigma-1)} = E/pN^{-1/(\sigma-1)} = E/P...$$

$$\sigma = 2......P = 1/\left[\int_{0}^{N} \frac{1}{p(i)} di\right] \dots = p/N, \dots x = (E/pN), \dots X = EN/p$$

- La décision du consommateur représentatif.
 - revenu E, prix p(i)
 - La demande : une forme particulièrement simple.
 - > prix du bien, (élasticité) et indice de prix P.
 - \triangleright Cas : p(i)=p, cons composants \searrow avec N.
 - Cons. composite / avec N.
 - > Effet bénéfiques sur le bien-être.
- Facilité analytique :
 - N biens avec une complexification analytique minimale../ monde à 2 biens

Des usages du modèle/ différenciation..

- > Retour sur le « toy model »
 - > N biens, mais sans complexité des relations productives entre secteurs
 - > Très grande symétrie entre les biens,
 - > Le monde ressemble à une économie à un bien...
 - Utilisation,
- > Théorie du commerce,
 - > introduit la préférence pour la variété.
 - Nouvelle théorie.
- Mais aussi dans la théorie de la production
 - > la variété comme facteur de production
 - > La variété : variété d'inputs permettant de produire le « bien moderne ».
 - > Coexiste avec capital et travail dans une fonction de CD généralisée.
- > Et dans la théorie de la croissance endogène..
 - > Rendts croissants production bien moderne, / croissance « endogène ».
 - > La logique de l'innovation.
 - > Recherche à l'époque t, ajouter une innovation aux inputs bien moderne;
 - > Coût instantané, bénéfice, vente ultérieure de l'input avec mark up,

La nouvelle théorie..

Le socle de l'argument..

La logique des gains à l'échange.

- Un premier coup de projecteur.
 - 2 sociétés semblables...
 - Même agent représentatif, (ou nombre d'agents identiques)
 - même nombre de variétés N.
 - > Equilibre initial même prix p pour chacune des variétés.
 - Les sociétés fusionnent, le prix p reste le même..
 - Ici non expliqué...
- 2 cas extrêmes.
 - > 1- Les variétés sont constituées de biens identiques..
 - > 2- Les biens composites sont différents dans chacune des sociétés
- > Alors, 1,
 - > Il ne se passe presque rien, pas de motif à l'échange
- Alors, 2,
 - > La consommation individuelle / chacun des composants divisée par 2,
 - > mais tsfts vers les nouveaux composants.
 - La production totale est inchangée...
 - > La consommation individuelle de bien composite multipliée par 2
- Une nouvelle dimension des gains à l'échange,
 - > gains de variété.

La modèlisation de la production de biens différenciés

- Les conditions de la production des biens différenciés.
 - Un coût fixe, un coût proportionnel, m(i)
 - > Produit par des firmes en concurrence oligopolistique.
- La simplicité de l'équilibre oligopolistique.
 - Voir la demande en $1/p^2$. (sigma=2)
 - La courbe recette a un maximum en p(i) indépendant de E et P,
 - Mark up constant $p(i)=[\sigma/(\sigma-1)]m(i).(2m(i))$
 - Si secteurs identiques : à l'équilibre p*, demande en E/p*N
- Suite : Fermer le modèle.
 - Libre entrée : profit nul,
 - Alors $[\sigma/(\sigma-1)]$ my-my-f=0,
 - > Taille identiques de production, si m(i) indépendant de i.
 - \rightarrow y()=f(σ -1)/m,
 - Restaure une sorte de rdts constants dans la production agrégée.
 - Avec rdts croissants dans la consommation
 - Le travail seul facteur de production...fixe ou proportionnel.
 - Le nombre de variétés sera de ce fait la variable d'ajustement.
 - qui s'imposerait également à un planificateur bienveillant.

L'équilibre : Autarcie versus commerce.

- ➤ Les équations de l'équilibre : w*=1, m=1.
 - \rightarrow x*= L/p*N*=y*=f(σ -1), demande/variété =offre (1)
 - $p^* = [\sigma/(\sigma-1)]$, relation prix-salaire (2)
 - \rightarrow N*x*+fN*=L, demande totale de travail égale offre. (3), redondante.
- \triangleright L'équilibre, $\sigma = 2$.
 - \sim N*=L/2f, w*= 1, p*= 2, x*=f.
- > De l'autarcie au commerce :
 - 2 économies semblables, L travailleurs, coûts de transports nuls...
 - Si les variétés sont identiques, rien.
 - Si différentes, alors, même prix et salaires, 2N* variétés...
 - > Cas précédent de gains à l'échange dus à la variété.
- > Commentaire.
 - > 2 pays (identiques). En autarcie n variétés produites dans chaque pays...
 - > Après ouverture, 2n produits commercialisés dans chaque pays,
 - Consommation divisée par 2 par tête..
 - ➤ Accroissement de la variété →accroissement du bien-être.

Commerce avec produits différenciés et coûts de transport.

- > Hypothèse : coûts de transport « iceberg ».
 - > Une partie du bien fond lors du transport
 - > Pour obtenir une unité, il faut envoyer t unités
 - > Ad hoc, mais commode analytiquement.
 - Sous les hypothèses précédentes,
 - > Logique des choix de consommation inchangée....
- ➤ Pourquoi?
 - Voir formule de la demande
 - > Et des indices de prix, en A et B,
 - ...si même prix p dans les deux pays.
 - Plus compliqué si p et p' différent.

$$De....P_A = p/(n_A)^{(\sigma-1)}...\dot{a}...$$

$$P_{A} = p/(n_{A} + \phi n_{R})^{(\sigma-1)},....\phi = 1/(t)^{\sigma-1}$$

$$De.....P_B = p/(n_B)^{(\sigma-1)}...$$

$$\hat{a}...P_B = p/(n_B + \phi n_A)^{(\sigma-1)},....$$

- Mais la logique des gains à l'échange $x_A(i) = [\frac{p}{P_1}]^{-2}(\frac{y}{P_2}) + t[\frac{tp}{P_2}]^{-2}(\frac{y'}{P_2})$
 - > Reste identique...

Les entreprises et le commerce.

> Introduction

- > Dans HO, accent mis sur les secteurs...
 - > Rôle secondaire pour les entreprises...
- > Ici l'accent mis sur les biens.
 - > Plus de place, a priori pour les entreprises et leur hétérogénéité...
- Que va t'il se passer avec des entreprises de productivité différente
 - > Exemple dans la logique précédente
 - $> [\sigma/(\sigma-1)]$ my-my-f=0
 - > Les entreprises plus efficaces, m plus petit, vont produire plus...
 - > Comme d'habitude...
 - > Et exporter plus..
 - Si deux pays avec entreprises hétérogènes, le commerce va booster la production des biens produits par des entreprises « productives

Les entreprises et le commerce.

- Un scénario d'entrée plus réaliste.
 - > Les entreprises paient un premier coût fixe pour jouer.
 - > Elles tirent dans une distribution leur m...
 - N'entrent pas si m trop grand (pas suffisamment de demande pour couvrir le second coût fixe de production)
 - > Si entrent paient ou non un troisième coût fixe pour exporter, condition être suffisamment productives pour exporter suffisamment.
 - L'économie se met en place...
- ➤ Si commerce,
 - > Une nouvelle source de gains à l'échange/ accroissement de variété.
 - > accès plus systématiques aux entreprises les plus productives/ switch vers leurs variétés.
- Un argument assez robuste..
 - > En ligne avec les données sur les firmes exportatrices.
 - > Voir Kramarz.
 - > Mais qui ne rend compte que d'une partie des faits stylisés
 - Quid du dégroupage ?

Sur la robustesse de l'argument.

Un modèle légèrement plus complexe.

Des effets d'agglomération différents.

Des effets commerce moins clairs.

Les effets d'agglomération : Autarcie ou migrations ?

- ➤ Les équations de l'équilibre : w*=1
 - \rightarrow x*= L/p*N*=y*=f(σ -1), demande/variété =offre (1)
 - \rightarrow p*= [$\sigma/(\sigma-1)$], relation prix-salaire (2)
 - ➤ N*x*+fN*=L, demande totale de travail égale offre. (3), redondante.
- \triangleright L'équilibre, $\sigma = 2$
 - $N^*=L/2f$, $W^*=1$, $p^*=2$, $x^*=f$.
- L'instabilité de l'équilibre autarcique.
 - > 2 économies,
 - > Technologies et préférences identiques,
 - L(A), L(B) travailleurs, hypothèse « non-recouvrement des variétés ».
 - > Autarcie : si L(A)>L(B), bien-être en A supérieur au bien-être/B.
 - > Migrations vers le territoire le plus peuplé, avantageuses
 - Si L(A)=L(B), équilibre symétrique mais instable...
 - Nouvel état d'équilibre une seule agglomération.
 - On est dans le cas du « trou noir »..
 - la seule structure stable est l'agglomération universelle.
 - La migration est substitut du commerce !

e modèle complexifié...

> Le contexte.

- Une agglomération.

- u Log M +(1-u)Log X. (continu de variétés).

L(a) agriculteurs, L travailleurs (mobiles).

les 2 biens, M, le bien manufacturé, composite,
$$X = \int_{0}^{N} x(i)^{(\sigma-1)/\sigma} di$$
 produit par du travail mobile

ldentiques avec utilité Cobb-Douglas,

 $X = \int_{0}^{N} x(i)^{(\sigma-1)/\sigma} di$ $X = \int_{0}^{N} x(i)^{(\sigma-1)/\sigma} di$

$$x/N, X = xN^{\sigma/(\sigma-1)}$$

$$P = \left[\int_{0}^{N} p(i)^{-(\sigma-1)} \right]^{-1/(\sigma-1)}$$
$$x(i) = (p(i)^{-\sigma} / P^{-\sigma})(E / P)$$

> L'équilibre dans le secteur productif.

- > Comme précédemment,
- Coût fixe, f et un coût marginal constant m, (travail mobile+ libre entrée.
- \rightarrow Mécanique précédente, Mark up constant p(i)=[$\sigma/(\sigma-1)$]m
- > Taille identiques de production : soit x()= $f(\sigma-1)/m$, et emploi= $f(\sigma)$,
- Nombre d'entreprises liées à la taille de la main-d'œuvre mobile.

Agglomération, la grammaire de l'argument en l'absence de commerce

> L'effet d'agglomération.

- > Si L travailleurs mobiles disponibles,
- > Le nombre de variétés produites est de l'ordre de L.
- ▶ La quantité de bien moderne / L^ρ, ρ=[σ /(σ -1)]

> Conséquence.

- > Profit nul : $PL^{\rho} = wL$, $w/P = L^{\rho-1}$.
- Consommation de bien industriel : u(wL+L(a))=wL. (autarcie).
- \rightarrow w= [u/(1-u)][L(a)/L], plus de travailleurs mobiles, baisse du salaire.
- > Bien-être des mobiles : wP-u / $\left(\frac{w}{P}\right)^u w^{(1-u)}/L^{(\rho-1)u}L^{u-1}$
- de l'ordre de L^{pu-1} ...

➤ Le trou noir...

- > Si ρu-1 est positif, effet d'agglomération dominant.
- « Trou noir », le centre rassemble toute l'industrie, la périphérie se réduit à l'agriculture..
- Commerce limité...
- Si la condition n'est pas remplie, alors la structure symétrique est stable...

De l'autarcie au commerce :

Le nouveau cadre avec coûts de transports..

- ➤ L'argumentaire intuitif : le cas symétrique
 - > Deux régions, n(A)=n(B), prix identiques,
 - > Les indices de prix égaux
 - > Proportionnels à p/($1+\phi$) (σ -1)
 - Le commerce fait baisser l'indice de prix de chacune des régions, ...ce d'autant plus que les coûts de transports sont faibles.
 - > Le nouvel équilibre
 - Même prix, salaire, production de chaque variété.
- Gains à l'échange.
 - > Avérés, croissants avec φ, .
 - > Egalement répartis...
 - > Robuste?
- L'argumentaire plus complexe
 - > si régions de taille différentes (p n'est pas le même dans chaque pays après échange.
 - > Effets termes de l'échange
 - Liés aux questions de migration ... avantageuse de la plus petite région vers la grande ?
 - Résultats ambigus, sur la stabilité de l'agglomération et sur les gains à l'échange.

$$De. P_A = p/(n_A)^{(\sigma-1)}..\dot{a}..$$

$$P_{A} = p/(n_{A} + \phi n_{B})^{(\sigma-1)}, \dots \phi = 1/(t)^{\sigma-1}$$

$$De...P_{B} = p/(n_{B})^{(\sigma-1)}...$$

$$\hat{a}.P_B = p/(n_B + \phi n_A)^{(\sigma-1)},....$$

$$x_{A}(i) = \left[\frac{P}{P_{A}}\right]^{2} \left(\frac{y}{P_{A}}\right) + t\left[\frac{tP}{P_{B}}\right]^{2} \left(\frac{y'}{P_{B}}\right)$$

$$P = pN^{-1/(\sigma-1)}$$
..... P/N) < Moyennep(i)

$$P = [n(A)p(A)^{-(\sigma-1)} + n(B)p(B)^{-(\sigma-1)}]^{-1/(\sigma-1)}$$