Active documents and Active XML

y 4

e ar
j j smati ¥ 5
lnformauques,mathemauques }N,(V- D E F R A N C E
W P o o
e '\:,');\‘ <

Organization

Introduction
Modeling data intensive distributed systems

Query optimization in distributed systems
Monitoring in distributed systems
Task sequencing in distributed systems

Conclusion

Introduction

Context: Web data management

Scale: lots of servers, large volume of data
Servers are autonomous (heterogeneous also)
Data may be very dynamic, heavy update rates

Peers are possibly moving

The focus in this class

Relation Tree

Centralized Distributed

Precise data Incomplete, probabilistic

N2 20N ZN 2

Precise schemas Ontologies

The lesson from the past

The success of the relational model with 2D-tables on local
servers

— Alogic for defining tables

— An algebra for describing query plans over tables

We should do similarly for trees in a distributed environment
— Alogic for defining distributed trees and data services
— An algebra for optimizing queries over trees/services

Roadmap

1. Modeling: the AXML model of active documents

Key concept for

Data management

— Views: to capture intentional data
— Streams: to capture exchanges of data and evolution

— Key concept for
2. Optimization: an algebra for AXML)

Monitoring: based on AXML documents evolution

Modeling data intensive distributed systems

Active XML

Based on Web standards:
XML + Web services + Xpath/Xquery
|Idea: Exchange XML documents with embedded function calls

Active XML: Unordered, unranked, labeled, evolvingtrees &P
— Internal nodes are labeled by tags
— Leaves are labeled by tags, data, or function symbols . '
) A E i ! Y O
— Set semantics: No isomorphic sibling sub-trees

The functions are interpreted as calls to external services

— Embedding calls in data is an old idea in databases

root@pl Example

songs |
\ w
@ (i i O O o i O
Isongs@p2 !songs@p3 Isongs@p
O O

tIT ml t2 m2 t3 m3 If3 t4 m4 t5 m5 IfS

S

o0t @p1(Query root/songs/t

songs

D O O Q
‘ Isongs@p2 !songs@p3 Isongs@p1l
O O

m2 t3 m3 If3 t4 m4 t5 m5 If5

root@p1() root//t[//singer/“Brel”]

songs()
® O ©, O O @
Isongs@p2 !songs@p3 Isongs@pl
® O Q000 O Q0O
t1 ml t2 m2 t3 m3 If3 t4 m4

Push queries to data sources
— lsongs@p3: root//t[//singer/“Brel”]
— lsongs@p?2 root//t[//singer/“Brel”]
— lsongs@p1l: root//t[//singer/“Brel”]
— Distributed query/subquery (or Magic Set)

11

.- songs@p1(x, y), P(x) This is distributed datalog over trees

:- songs@p1(x, y), P(x) :- songs@p2(x, y), P(x)

- songs@p2(x, y), P(x) :- songs@p3(x, y), P(x)

Fun issues: The semantics of calls

When to activate the call?
— Explicit pull mode: active databases
— Implicit pull mode: deductive databases
— Push mode: query subscription

What to do with its result?
How long is the returned data valid?

Sending an AXML documents: evaluate the service
calls before sending or not?

13

Exchanging AXML data

newspaper

tisse...

T

“06/10/2003” city “Exhibits”

Le Monde “phris”

Web services exchange intentional documents

Materialization can be performed
— by the sender, before sending a document or
— by the receiver, after receiving it.

14

Exchanging AXML data

newspaper

T

“06/10/2003” city “Exhibits”

Le Monde “phris”

Web services exchange intentional documents

Materialization can be performed
— by the sender, before sending a document or
— by the receiver, after receiving it.

15

Some reasons for not materializing data
before sending the document

Freshness
— The receiver will get up-to-date information when needed

Security
— Only the receiver has the credential to call the service

— One needs to record who is actually using the data

Performance
— To save on the bandwidth of the sender

To delegate work to someone else

How to specify it: casting based on types = jewel section

16

Complex issues

Brings to a unique setting

distributed db
deductive db
active db
stream data

warehousing & mediation

This seems to us necessary for capturing all the facets of data
management in distributed systems

This is unreasonable? Yes!

17

Query optimization in distributed systems

AXML system

A system = a set of peers

— Each peer provides storage and query
processing

— Each peer hosts active documents
Extensional data
Intentional data (query calls in the document)

Problem:

Given a query g at some peer
evaluate the answer to g with
optimal response time

Optimizer

4

Query
processor
4

Communication

7

Stats
Workspace

Peer

AXML
docs

19

Local and global query processing

Local processing

0®F |nput/output streams

Local query optimization

output
stream

= ¢

X =3

e

-

-

input stream

input stream

Global processing
@ Streams for communications

Global query optimization

o Delegate work to other peers

N

20

Example 1: Local and global optimization

p3 asks for o (R@p1 U S@p2)

Local Global
Rewriting: Rewriting:
o Selection & Q Push
Union selections

commute

to sources rcv, ' rcv, l

rcv, rcv, rcv, l rcv, l Peer 3

Peer 3 Peer 3

| snd; | | snd,

snd, snd, snd, | | snd, . -

R S R S R S

Example 2: MapReduce

Peer 3

() (-

jicaics rcv rcv)
ware 1 2 4) ware 2

snd.
(™
R

The Active XML algebra

Passive nodes root a b
Annotated with labels

Query nodes q root
Annotated with queries \
snd, b
For instance Tree-Pattern-Queries / \

Receive nodes

eV, eV,

eV,

TCV, |

Evolution of a system

A system evolves by activating:
— aquery node

— asend/receive node on an internal channel

— areceive node on an input channel

Equivalence problem for AXML systems

No query TPQ TPQ with TPQ with TPQ with
XPath joins joins constructor
No input PTIME PTIME PTIME Undecidable
Input PTIME ? Undecidable

Complexity increases with:
— richer query language
— the presence of input

Axiomatization of equivalence in absence of queries

Optimization

As usual

Use algebraic rewriting rules

Use simplistic estimators for query plans
Use heuristics to prune the search space

Examples of performance optimization
techniques

Externalize data in devices with limited capabilities
— Cell phone, tablets, home appliances...
— Limited storage space, computational power, network bandwidth

Replicate documents and services
— Toallow for “local” computation
— Toincrease parallelism

27

Externalize

28

Monitoring in distributed systems

Monitoring distributed systems

Distributed applications are often very dynamic
— Content change rapidly
— Intense communications
— Peers sometimes come and leave

Complex and hard to control such systems
— Many peers
— Peers are distributed & autonomous
— Peers are sometimes unreliable and selfish

Goal: monitor such systems

30

Architecture

Axlog
processor

Streams

Axlog principle = active document & query

Incoming streams of updates

The outgoing stream is defined
by a query Q (e.g. TPQ)

Each time an incoming
message arrives, it modifies
the document so possibly
the query result

The output stream specifies
how the view is modified

Incremental view maintenance

AXML document

32

Axlog engine

Datalog is used to evaluate queries with benefit from

— Incremental view maintenance in datalog A technique
— Query optimization in datalog MagicSet
— Constraint query languages cQL

Specific techniques
— Push queries to the sources to avoid loading irrelevant data
— Use of FSA on XML inputs: YFilter

33

Task sequencing in distributed systems

Task sequencing and verification

v

_ C eer D TN
* Task sequencing is a major difficulty for 3?‘:’ > <SPS
. . 4 7\ i —\/’\4
distributed systems ‘!,// (oS «@
— Difficulty to integrate workflow and database <2

9

systems

DBMSs exchanging data

* Verification of temporal properties is hard
— Typically verification is harder than evaluation

* Evaluating an FO query is ptime data complexity
» Verifying that Q € Q’ is undecidable

— Verification will be the topic of the seminar by
Victor Vianu

Example:
Dell Supply Chain

AXML as business artifacts

Concept introduced by IBM
[Nigam & Caswell 03, Hull & Su 07]

Data-centric workflows

— A process is described by a document
(possibly moving in the enterprise)

— The behavior of an artifact is specified
by some constraints on its evolution

Vs. state-transition-based
workflows

e Based on some form of state transition
diagrams (BPEL, Petri,...)

* Mostly ignore data

webOrder id=7787780
Customer

Name: John Doe

Address: Sévres
Product: committed

Ref: PC 456
Factory: Milano

Parts: waiting

orderDate: 2009/07/24

Site: http:// d555.com

Payment: done
Bank-account ...

Delivery: not-active

37

Axml Artifacts move between peers

In webStore

webOrder id=7787780
Customer
Name: John Doe
Address: Sévres
Order selection: on-going
Ref: PC 456
Factory: undecided

Parts: not-active
orderDate: 2009/07/24
Site: http://d555.com
Payment: pending
Delivery: not-active

In pla

webOrder id=7787780
Customer
Name: John Doe
Address: Sévres
Order selection : committed
Ref: PC 456
Factory: Milano
Parts: on-going
orderDate: 2009/07/24
Site: http:// d555.com
Payment: done
Bank-account ...
Delivery: not-active

In delivery

webOrder id=7787780
Customer
Name: John Doe
Address: Sévres
Order selection : committed
Ref: PC 456
Factory: Milano
Parts: done
orderDate: 2009/07/24
Site: http:// d555.com
Payment: done
Bank-account: CEIF-4457889
Delivery: on-going
Address: Orsay

38

/l !\

\WEBSTORE /

/

CREDIT APPROVAL WAREHOUSE ARCHIVE

Sequencing of operations

Different ways of expressing sequencing of tasks
— Guards: preconditions for function calls
— Transition-based diagrams
— Formulas in temporal logic

Study how they can simulate each other using some “scratch
paper”

40

A jewel of active documents

The casting problem

Given

— An active document |

— The signature of the functions

— And a target type T
Which functions to call to be sure to reach T?
2-player game

— Juliet chooses which function to call

— Romeo chooses a value within the domain of the
function

Juliet wins if she can reach a documentinT

42

An abstraction: active context-free games

On words instead of trees
— Game (X,R,T)
* X is afinite alphabet
* Rset of CFrules
e Tis aregular target language

— wis the start word

Output: true if Juliet has a winning strategy

Alternation of
3 states (Juliet pick next function to call) and
Y states (the adversary Romeo picks the answer)

43

Examples

* Winning * Losing
a—>abc*; b—>(ba)*b; c>ab
Target abab(ab)*
e Start word aba e Start word ab
* Strategy * No strategy
— Call the second a — Initially #(a)—#(b)=0
— Call all the c’s — Iflcallaorb, #(a) —#(b) <0

— Obtain a word in Target

44

Fun rewriting game

The problem is undecidable in general

Interesting decidable subcases
— MuschollSchwentickSegoufin
— Juliet has to traverse the string from left to right
— No recursion among function calls

— Function call are “linear”

Also in practice, very efficient casting based on unambiguous
grammars

45

Conclusion

Some works around Axml

The Axml system — open-source (on server, on smartphone)

The useful: Replication and query optimization
How to evaluate a query efficiently by taking advantage of replication
The useful: Lazy query evaluation
How to evaluate a query without calling all embedded services
The fun: Casting problem
Which functions to call to “match” a target type
Active context-free games
The exotic
— Diagnosis of communication systems based on datalog optimization
— Access control

— Distributed design
— Probabilistic generation of documents

47

We will come back to distribution

Lesson 6: datalog - recursion is essential
Lesson 7: distributed data management in general

Lesson 8: distributed knowledge bases

Acknowledgements

With many colleagues, in particular:

— Tova Milo (Tel Aviv)

— Luc Segoufin (INRIA)

— Georg Gottlob (Oxford)
— Angela Bonifati (Lille)

— Balder ten Catte (UCSC)

And PhD students
— Omar Benjelloun (Google)
— Pierre Bourhis (INRIA)
— Marco Manna (Calabria)
— Zoe Abrams (Google)
— Bogdan Cautis (Telecom)

And others

Victor Vianu (UCSD)

loana Manolescu (INRIA)

Alkis Polyzotis (UCSC)
Marie-Christine Rousset (Grenoble)
Yannis Katsis (UCSD)

Bogdan Marinoiu (SAP)

Alban Galland (INRIA)

Nicoleta Preda (Versailles)

Emmanuel Taropa (Google)

Spyros Zoupanos (Max-Planck-Institut)

49

y 4

: informatiques g7 mathématiques

Static Analysis and Verification
Victor Vianu, U.C. San Diego

PhD from USC 1983
Sabbaticals INRIA, ENS Cachan, Ulm,

Telecom
Interests: database theory, T
computational logic, Web data ‘." Y
Co-author of Foundations of databases @@’%

— Aka the Alice book

Vianu has served as
— General Chair of SIGMOD, PODS,
— Program Chair of PODS, ICDT

Editor-in-Chief of the J. ACM
ACM Fellow

51

