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Motivation

Central hypothesis: a Language of Thought

Experimental domains:

» Evidence in adults from logical learning

* Logic and compositionality in children and infants
« Hierarchical biases in children, adults, primates

Cognitive change by learning isomorphisms



Humans have broad algorithmic knowledge
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The “Central Problem” for
cognitive development

How can we start with what a baby knows and end up with
what an ordinary adult knows?

Humans have broad algorithmic knowledge
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FOR k = 1 TO ABS(n)
sum = nl + n2
nl = n2
n2 = sum
NEXT k.
IF n < 8 THEN
itFib = al * ((-1) ~ ((-n) + 1))
ELSE
itFib = nl
END IF

Vivace

fib(1, 1) :- 1. '
fib(e, @) :- 1. il
fib(N, Value) :-

Adis N - 1, Fib(A, Al),
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Working hypothesis of my work

 Learning is like a statistician programming — learners
compose operations in new ways to form generative models
(explanatory theories) of observed data.

- Programs written in the LOT (Fodor 1975)
- Nature provides the primitive + inference mechanisms
- Input drives the creation of specific representations



Simple:

Corﬁplex:

Feldman (2000)
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Universal
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Central hypothesis of my work

 Learning is like a statistician programming — learners
compose operations in new ways to form generative models
(explanatory theories) of observed data.

- Programs written in the LOT (Fodor 1975)
- Nature provides the primitive + inference mechanisms
- Input drives the creation of specific representations



Motivation: broad algorithmic abilities

Central hypothesis: a Language of Thought

Experimental domains:

» Evidence in adults from logical learning

» Logic and compositionality in children and infants
« Hierarchical biases in children, adults, primates

Cognitive change by learning isomorphisms



Predictions of Bayesian-LOT

* Learning curves should follow LOT predictions.
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Compositional learning in adults
(Piantadosi 2011, Piantadosi, Goodman, Tenenbaum 2010, 2016)
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"True"

"False"

"Blue"

"Circle"

"Not circle"

"Circle or blue"

"Circle or triangle"

"Blue or green"

"Circle and blue"

"Circle and not blue”

"Not [circle and blue]”

"Not [circle or blue]"

"Not [ [Not cirle] or blue]”
"Circle xor blue"

"Not [circle xor blue]"

"Circle xor [not blue]”
"Everything iff triangle"

"Size 3"

"Size 2"

"Size 1"

"Size 3 or size 1"

"Size 3 or size 2"

"Size 2 or size 1"

"Size 1 and blue"

"Size 1 or blue"

"One of largest or smallest”
"Not one of largest or smallest”
"One of the largest of its shape"
"Unique largest"

"Unique largest and blue"
"Unique largest or blue"

"One of the largest"

"One of the largest and blue™
"One of the largest or blue"
"There exists a smaller object”
"There exists a smaller blue object"
"Same shape as a blue object"
"Same shape as a [blue object or circle]”
"Same shape as a [blue object or green object]"

"[Same shape as a blue object] and not blue"
"[Same shape as a blue object] or green”
"[Same shape as a blue object] and green"
"[Same shape as a blue object] and circle"
"Same shape as the unique largest"

"Same shape as one of the largest”

"Same shape as one of the largest and blue"
"Same shape as one of the largest or blue"

"Same shape as the unique largest but not the
largest"

"Same shape as one of the largest but not one of the
largest"

"Unique blue object"

"Unique circle"

"The unique element and is [blue or green]"
"The unique element and is [blue and circle]"
"The unique element and is [blue or circle]"
"Unique largest blue object"

"Unique largest [blue or green] object”

"Same shape as the unique largest blue object"
"Same shape as one of the largest blue objects"
"Exists another object with the same shape"
"Exists another object with the same size"
"[Exists another object with the same shape] or blue"

"[Exists another object with the same shape] and
blue"

"Exists another object with the same color"
"Does not exist another object with same shape"

"Does not exist another object with same shape and
color"

"Every other object with the same shape is the same
color"

"[Every other object with the same shape is same
color] or blue"

"[Every other object with the same shape is same
color] or circle"

"Every other object with the same shape is not the
same color"

"There exists another blue object with the same
shape”

"There exists another object with the same shape, and
one with the same color"

"There exists another object with the same shape, and
a different one with the same color "

"There exists another object with the same shape that
has another with the same color"

"Shares a feature with every object"

"Circle implies blue"

"Blue implies circle"

"[Not blue] implies circle"

"[Not blue] implies [not circle]"

"Blue implies size=1"

"[Circle or triangle] implies blue"

"[Circle and blue] or [triangle and green]"
"Circle or blue or [triangle and green]"

"Circle or [blue and triangle]"

"Circle or [blue implies triangle]"

"There exists a blue object of the same shape"
"Same size as a circle"

"Same shape as another object which is blue"

"Same shape as another object which is [blue or
green]”

"Same shape as a [blue or green] object (potentially
itself)"

"The unique object that is [blue or circle]"
"The unique object that is [blue or green]"
"The unique object that is [blue and circle]"
"The unique object"

"Same size as the unique blue object"

"Unique smallest"

"One of the smallest”

"One of the smallest of its shape"”

"The unique smallest of its shape"

"Exactly one other element is blue"

"Exactly one element is blue"

"Exactly one other element is the same color"
"Same shape as exactly one blue object"
"Same shape as exactly one other blue object"
"Every other object with the same shape is blue"
"Every object with the same shape is blue"

"Every-other-atleastone object with the same shape is

blue”

"Every-atleastone object with the same shape is the
same color”

"Every-other-atleastone object with the same shape is

not the same color"
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Summary of language comparison

(Piantadosi 2011, Piantadosi, Goodman, Tenenbaum 2010, in prep)
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Grammar H.O.LL
FULLBOOLEAN -16315.27
CNF -16333.59
DNF -16368.31
BICONDITIONAL -16385.01
IMPLIES -16442.40
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SIMPLEBOOLEAN  -16490.51
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3~4 year olds' inferences

follow model predictions
(Piantadosi & Aslin in prep)
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Summary

« Learner's inferences in controlled laboratory tasks follow
what you would expect from LOT theories.

« In fact, we can reverse engineer their LOT's components
from behavior.



Motivation: broad algorithmic abilities

Central hypothesis: a Language of Thought

Experimental domains:

» Evidence in adults from logical learning

» Logic and compositionality in children and infants
« Hierarchical biases in children, adults, primates

Cognitive change by learning isomorphisms



Predictions of Bayesian-LOT

* Learning curves should follow LOT predictions.
 Children should be able to compose mental operations.



Compositionality in 3-4 year olds
(Piantadosi & Aslin, in prep)

Training

Testing



Compositionality in 3-4 year olds

1.0 -
N=21
0.8
B
O
0.6
3 I
S 1
§0.4
o
0.2
0.0=

1 box (training)



Compositionality in 3-4 year olds
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Compositionality in 3-4 year olds

« Conceptual combination through composition essentially
for “free” by this age.



Infant test of compositionality
(Piantadosi & Aslin, in prep)

e Familiarization:




Infant test of compositionality
(Piantadosi & Aslin, in prep)

« Familiarization:

Correct composition

OR

Only function 1

OR

Only function 2




Predictions

Incorrect knowledge of composition Correct compositionality
Expect "First" Expect "Second" Expect "Correct"”
Q )] Q
= E =
Y4 = ¥4
(@] @] o]
b = S
First  Second Correct First Second Correct First  Second Correct

OR OR

Correct composition Only function 1 Only function 2
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Summary

 Itis as though 9mo infants expect only the second function
to have applied.

» Consistent with some working memory limitations, e.g.,

- 1+1+1 fails, but 2+1 and 2-1 succeed (Moher, Tuerk, &
Feigenson, 2012, Baillargeon, Miller, & Constantino,
1994)

- ABA baiting fails but AAB baiting succeeds (Feigenson &
Yamaguchi 2009)

« A possible generalization: infants can't multiply update a
mental model



Compositionality: summary

« This kind of composition not apparent in early
development.

* Plausibly due to memory limitations, tracking and
representing multiple operations.

« Ability emerges in at least some capacity by 3~4 years.

 May not make sense to think of the very earliest learning in
terms of compositional hypothesis testing

« But it explains generalization patterns well in 3-4 year olds.



Motivation: broad algorithmic abilities

Central hypothesis: a Language of Thought

Experimental domains:

» Evidence in adults from logical learning

» Logic and compositionality in children and infants
« Hierarchical biases in children, adults, primates

Cognitive change by learning isomorphisms



Predictions of Bayesian-LOT

* Learning curves should follow LOT predictions.

 Children should be able to compose mental operations.

« Humans should automatically structure thought

hierarchically.

Simple:

Corﬁplex:

red(x)

and(red(x), circle(x))
or(not(red(x)), circle(x))
or(and(red(x), circle(x)), square(x))



Ferrigno, Cheyette, Cantlon, & Piantadosi
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Figure 2
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Figure 2 Response Structure
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Figure 3
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Summary

e Recursive/hierarchical inferences are automatic for
humans, across culture and ages.

 These inferences are possible for monkeys, but not as
natural.



Motivation: broad algorithmic abilities

Central hypothesis: a Language of Thought

Experimental domains:

» Evidence in adults from logical learning

» Logic and compositionality in children and infants
« Hierarchical biases in children, adults, primates

Cognitive change by learning isomorphisms



Predictions of Bayesian-LOT

* Learning curves should follow LOT predictions.
 Children should be able to compose mental operations.

« Humans should automatically structure thought
hierarchically.



Predictions of Bayesian-LOT

Learning curves should follow LOT predictions.
Children should be able to compose mental operations.

Humans should automatically structure thought
hierarchically.

Some challenges

What if infants don't show abilities with primitives we
hypothesize are there?

 From what could you learn something so basic as logic?

How do children learn so many different kinds of
systems?



Human learn many formal systems

Basic logic (e.g., and, or, not, iff)

Natural language logic (e.g. “and”, “or")

First-order logic quantifiers (e.g. V,3)

Second-order quantification (e.g. there exists a property P ...)
Generalized quantifiers (e.g. natural language “most”)
Grammars (e.g. context-free grammars)

Programming languages (e.g. Python, Haskell, Prolog)
Tree structures and relations (e.g. kinship systems)
Dominance hierarchies/relations (e.g. Putin > Trump)
Physics (e.g. block stacking)

Arbitrary graphs (e.g. Boston subway map)

Games (e.g. tic-tac-toe, nim, battleship)

Simulations (e.g. hypotheticals)



Churlso

« What is needed: a mental language in which we can build any
kind of system we need to learn about.

« How can we do this? Learn isomorphisms.

SPRING: (K (k K))
SUMMER ! K

Fau-: (K K)

& v

P -
/‘\) /‘L‘ SPRING
: O " /Succ.

suce : (s ((s s> ) K)

Suc‘

[llustration by Jenna Register



Isomorphism as the
heart of representation

“A mental representation is a functioning
isomorphism between a set of processes in the
brain and a behaviorally important aspect of the
world. This way of defining a representation is
taken directly from the mathematical definition of a
representation. To establish a representation in
mathematics is to establish an isomorphism (formal
correspondence) between two systems of
mathematical investigation (for example, between
geometry and algebra) that permits one to use one
system to establish truths about the other (as in
analytic geometry, where algebraic methods are
used to prove geometric theorems).”

Randy Gallistel




Combinatory logic

Moses Schonfinkel John von Neumann Haskell Curry



A candidate kind of
representation system

« Combinatory logic permits arbitrary computations with only
TWO primitives, both tree manipulations:

e (Kxy) —Xx other notation: K(x,y) — x
e (Sxyz)— ((x2)(y2z) other notation: S(x,y,z) — X(z,y(z))

* Currying — a function without enough arguments can take
the next in line

€.g. (Kx)y) = (Kxy) —x



An example

true := (K K)

false := K

and = ((s (8 (8 8))) (K (KK)))
or := ((8 8) (K (KK)))

not = ((S ((S K) S)) (K K))

(or true false) = (((S S) (K (K K))) (K K) K)
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An example

true := (K K)

false := K

and = ((s (8 (8 8))) (K (KK)))
or := ((8 8) (K (KK)))

not = ((S ((S K) S)) (K K))

(or true false) = (((S S) (K (K K))) (K K) K)
— (((8 8) (K (K K)) (KK)) K

— (( 8 (K (K K)) (K K)) K)

— ((8 (K K) ((K (K K)) (K K))) K)
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e Y A A

An example

true := (K K)

false := K

and = ((s (8 (8 8))) (K (KK)))
or := ((8 8) (K (KK)))

not = ((S ((S K) S)) (K K))

or true false) = (((S S) (K (K K))) (K K) K)

(s 8) (K (KK)) (KK)) K)
(s S (K (K K)) (KK)) K)

(8 (K K) ((K (K K)) (KK))) K)
(s (K K) (K (K K) (KK))) K)
(8 (K K) (K K)) K)
S (K K) (K K) K)

(K K) K ((K K) K))

(K K K) ((K K) K))

((K K) K))

(K K K))
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(
(
(
(
(
(
(K
(K
(K K)



Church encoding

« This technique, from mathematical logic, is known as
Church Encoding

» Use one logical system to mimic the behavior of another.






Churlso

My lab has been working on a library to infer church
encodings from simple relational information.

Observed relations Mental Representation
: : spring := (K (K K))
grecwimen Dorring Ll Dk s o om0
Seasons (succ summer) — fall iiiuther : éK K)
(succ fall) — winter I — ((S ((8 8) §)) K
many := (S K K)

(succ one) — two
1, 2, Many (succ two) — many [k (K (S K K))

: Vs one := K
succ many many succ := ((S (S KK)) (K (S KK)))

« How we infer: use ideas from the inductive LOT — prefer
encodings with short running time, simple structure.



Number

(Z)

(succ one) — two
(succ two) — three

(succ three)

— four

succ := K

one := 8

two := (K S)

three := (K (K 8))
four := (K (K (K S8)))

oror0r0rol0re



Magnetism

Core Predicates: p(X), q(X)
Surface Predicates: interacts(X,Y)
Laws:

interacts(X.Y) +—p(X)Ap(Y)
interacts(X,Y) «<+— p(X)Aq(Y)
interacts(X.,Y) <«—interacts(Y,X)

p(X): mi'gfem “non-magnetic objects”

-
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qQ(Xx): ”mﬂggeiic objects”
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Ullman, Goodman, & Tenenbaum (2012)



(attract pl p2) -» True
(attract p2 pl) -» True
(attract pl nl) — True
(attract pl n2) — True
(attract p2 nl) — True
(attract p2 n2) — True attract := ((S S) (K I))
(attract nl n2) -+ True nl = K
M tis (attract nZ nl) -»+ True n2 1= K
asnetism (attract nl pl) — True pZ := (K K)
(attract nl p2) — True pl := (K K)
(attract n2 pl) — True
(attract n2 p2) — True

; and one single example

(attract nl x) — True



(attract pl p2) -» True
(attract p2 pl) -» True
(attract pl nl) — True
(attract pl n2) — True
(attract p2 nl) — True
(attract p2 n2) — True attract := ((S S) (K I))
(attract nl n2) -+ True nl = K

M tis (attract nZ nl) -»+ True n2 1= K

asnetism (attract nl pl) — True pZ := (K K)

(attract nl p2) — True pl := (K K)
(attract n2 pl) — True = := (K K)
(attract n2 p2) — True

; and one single example

(attract nl x) — True
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Dominance
(a b= c>d)

True
(dom
(dom
;7 No
(dom
(dom
(dom
(dom
(dom
(dom
(dom
(dom
(dom
(dom
(dom

= K

a b) — True
a c) — True
information

c)
d)
d)
a)
a)
b)
b)
c)
a)
b)
c)

00000000 oco

SRS TN 0 0 T TR A 6

True
True
True
True
True
True
True
True
True
True
True

a,d

relation

:= (K (K K))
:= (8 (S K))

:= (S K K)

:= (K K)

dom := (((S (K (S (K (8 S (KK))) K)) S
=) (8 (K (8 (K (8§ S (KK))) K)) S)
<) K)

00 oW



Domain Facts Representation
Reversal (reverse = y) — (y x) reverse := ((8 (K (8 (S KK)))) K)
True = (K K)
. False := K . -
If-else (ifelse True z y) — = ifelse := ((S ((S K) S)) (S K)))
(ifelse False x y) — ¥y
Identity (identity z) — =z identity := (8 K K)
Repetition (repeat f ) — (f (f x)) mpei}:: ({8 (S (K S) K)) (S K K)
Y = (((8 (K S) K) ((S8 ((8 (K (S (
Recursion (Y f) --» (f (¥ f)) —~K (8 8 (KK))) K)) 8) (8 (8
— (S KK))))) 8)) (8 (K 8) K))
Y := (((S (K S) K) (((8 (K 8) K)
—((8 (8 (K 8) K)) ((8 (K (8 (
) . (f (g (Y f g))) --» (¥* f —K (8 8 (KK))) K)) 8) (8 (K
Mutual recursion
— g) —8) K))})) (8 ((8 (K (8 (K (8

Apply

Tree, List

(apply fz ) — (f =)

(first (pair z y)) — =
(rest (pair = y)) — y

8 (KK))) K)) S8) (S KK)))))
— (8 (K 8) K))
apply = (8 K K)
pair := (((S (K 8) K} (8 (K (8 (K
—+(8 8 (KK)})) K)} 8)) ((8 (K

—+(5 (K (§ S (KK))) K)} §) (S
—+ (K (S (K (88 (KK))) K)) s
1))
first := ((S (SKK)) (K (S K)))
rest := ((S (S KK)) (KK))



Towards neural implementation

 The rules of combinatory logic are simple tree manipulations
(Kxy) —X

(Sxyz)—((x2)(y2)

Output = cons(V,cons(C,cons(A,B)))

* There exist neural implementation:
of these operations

(e.g. tensor product coding,
BOltzcon S : etC . ) Input = cons(cons(A,B),cons(cons(Aux,V),cons(by,C)))

Figure 1: Recursive tensor product network processing a passive sentence

Legendre, Miyata, Smolensky (1990)



Lessons from Combinatory Logic

* There is a real sense in which theories need not assume
cognitive content (cf Fodor) — not even basic logic and
computation.

« A productive metaphor for the development of a LOT: a
simple, Turing-complete dynamical system in which you can
construct a “model” (church encoding) of any other.



General Summary

* | have charted out domains of current experimental and
computational work on the LOT, from infancy and beyond:

» Tight LOT-predictions in adult learning experiments.
* “Free” compositionality in toddlers
* Interesting limitations in infancy

 Biases towards hierarchical/recursive structures across
humans

e Churlso is a neurally-implementable model capable of inferring
any logical structures and generalizing+deducing.

« This work generally pushes the LOT hypothesis out of the
domain of philosophy and into experimental psychology and
machine learning.
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