L'imagerie cérébrale en psychologie cognitive

Stanislas Dehaene Chaire de Psychologie Cognitive Expérimentale

Premier Cours

Neuroimagerie cognitive: principes et limites

Les apports de la neuro-imagerie fonctionnelle en psychologie cognitive

- Objectivisation et désambiguïsation des mécanismes cognitifs
- La mesure des états cérébraux est moins ambiguë que celle d'un temps de réaction

• Décomposition des tâches cognitives en sous-systèmes

- Si, lors de l'exécution de deux tâches cognitives, on observe deux activations cérébrales distinctes, on peut en conclure qu'il existe des mécanismes dissociés.
- [Cependant inversement si, lors de l'exécution de deux tâches cognitives, on observe une seule activation, on ne peut pas conclure avec certitude qu'un même mécanisme est impliqué
- → Difficulté de l' « inférence inverse », depuis l'activation jusqu'à la fonction impliquée.
- → Asymétrie entre association et dissociation (bien connue en neuropsychologie)]
- Mesure du décours temporel des opérations cognitives
- Organisation interne des représentations
- le code neural des représentations mentales

Plan des cours

11 Mai. Neuroimagerie cognitive: principes et limites

18 Mai. Méthode d'adaptation et organisation interne des représentations

1^{er} Juin. Mesure du décours temporel des opérations cognitives

8 Juin. L'imagerie cérébrale peut-elle décoder le contenu de la pensée?

L'appareil utilisé par Mosso pour enregistrer les pulsations du cerveau.

-Observation par Mosso (1881) d'un accroissement des pulsations frontales, probablement lié à une augmentation du débit sanguin, lors que le patient fait des calculs arithmétiques

-Observation similaire par Fulton (1928) d'un bruit acoustique lié à une malformation vasculaire occipitale.
« C'était l'effort pour discerner des objets présentés à la limite de la visibilité qui entraînait une augmentation du bruit ».
-« Couronne thermométrique » de Paul Broca

HISTORICAL MILESTONES IN BRAIN MAPPING

J. Hirsch, In S. Laureys (Ed.), Prog. Br. Res 2005

J. Hirsch, In S. Laureys (Ed.), Prog. Br. Res 2005

Le fonctionnement de l'IRM fonctionnelle

(sous l'angle de la psychologie cognitive)

Les principes de l'IRM fonctionnelle

-La **résonance magnétique nucléaire** consiste en l'absorption par un noyau atomique pourvu d'un spin non-nul (par exemple le proton), d'un rayonnement électro-magnétique d'une fréquence particulière, en présence d'un champ magnétique.

- Le retour à l'équilibre des spins entraîne l'émission d'une onde électro-magnétique mesurable à distance, dont les constantes de relaxation (T1, T2) caractérisent différents tissus.

- L'utilisation de gradients pendant la mesure permet de sélectionner une coupe, et de coder en fréquence et en phase l'origine spatiale des signaux à l'intérieur de cette coupe.

- Comment rendre le signal RMN sensible à l'activité cérébrale?

 La déoxy-hémoglobine est paramagnétique et perturbe le signal RMN (effet sur le T2 apparent ou T2*)

- L'activité cérébrale entraîne:

- une surconsommation d'oxygène, mais également une augmentation du débit sanguin

- Le ratio oxy/déoxy hémoglobine augmente
- La susceptibilité magnétique diminue
- Le paramètre T2* augmente
- Le signal IRM augmente.

Etat de contrôle

L'IRM fonctionnelle en pratique

Contraintes:

- Champ magnétique intense
- Bruit
- Espace étroit
- Résolution spatiale et temporelle médiocre (~1 mm/500 ms)

G. Boynton

G. Boynton

Enregistrement d'une série temporelle d'activité

- Chaque coupe peut être acquise en quelques dizaines de millisecondes
- Cependant il faut environ 40-50 coupes de 3 mm pour couvrir tout le cerveau
- D'où un TR (temps de répétition) de 1.5 à 3 secondes

Création d'une « carte statistique » (statistical parameter map ou SPM)

G. Boynton

G. Boynton

La fonction hémodynamique

Propriétés essentielles de la "réponse BOLD" mesurée en IRMf

- La réponse est lente, elle atteint un pic en environ 5 secondes
- La réponse à plusieurs stimuli est largement **additive** pour peu qu'ils soient suffisamment espacés dans le temps

Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. *J Neurosci, 16*(13), 4207-4221.

Additivité observée en fonction de la durée des stimuli

Boynton, G. M., Engel, S. A., Glover, G. H., & Heeger, D. J. (1996). Linear systems analysis of functional magnetic resonance imaging in human V1. *J Neurosci, 16*(13), 4207-4221.

Le concept de « convolution »

Le signal IRM est bien prédit par la somme des fonctions hémodynamiques associées à chaque stimulus → mathématiquement, cette opération linéaire s'appelle *convolution*

La modélisation des réponses d'IRM par une matrice de régression linéaire

Temps de présentation des stimuli

Convolution avec fonction hémodynamique

Le concept de « base de fonctions » hémodynamiques

Vue d'ensemble du traitement des images d'IRMf

(d'après Geraint Rees)

Relation entre signaux IRM et activité cérébrale

- D'où provient le signal BOLD en IRM fonctionnelle?
- Quels aspects de l'activité neuronale reflète-t-il?

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. *Nature*, *412*(6843), 150-157.

Certaines régions montrent une dissociation entre décharge neuronale, potentiel local, et signal BOLD

•Présentation de stimuli visuels de durée variable (24, 12 ou 4 secondes)

•La décharge neuronale est brève et initiale

•Le potentiel de champ local (LFP), lui, est durable

•Le signal BOLD mesuré en IRM fonctionnelle suit le LFP

-Ainsi, le signal BOLD serait plutôt le reflet de l'intégration postsynaptique, particulièrement dans les synapses glutamatergiques (90% du métabolisme)

-Il peut y avoir un signal BOLD avec **inhibition** des décharges neuronales

- L'IRMf signalerait les **entrées** plutôt que les **sorties** des signaux

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. *Nature*, *412*(6843), 150-157.

Toutefois, dans de très nombreux cas, les trois mesures (décharges neuronales, potentiel local, et signal BOLD) sont étroitement corrélées

Présentation de stimuli visuels de contraste variable
La réponse BOLD est nonlinéaire en fonction du contraste
Les décharges neuronales et le potentiel local également
Les trois signaux sont en étroite corrélation linéaire

Logothetis, N. K., Pauls, J., Augath, M., Trinath, T., & Oeltermann, A. (2001). Neurophysiological investigation of the basis of the fMRI signal. *Nature*, *412*(6843), 150-157.

Chez l'homme, corrélation entre l'activité neuronale et l'IRM fonctionnelle

Décharges neuronales multi-unitaires enregistrées chez deux patients avec électrodes implantées dans le cortex auditif lors de la vision d'un film « Le bon, la brute et le truand »

La prédiction est comparable avec les décharges et le champ de potentiel local

Mukamel, R., Gelbard, H., Arieli, A., Hasson, U., Fried, I., & Malach, R. (2005). Coupling between neuronal firing, field potentials, and FMRI in human auditory cortex. *Science*, *309*(5736), 951-954.

Chez le singe, la sélectivité visible en IRM fonctionnelle est confirmée par l'électrophysiologie

Sélectivité aux visages en IRMf (visages > corps, fruits, objets, mains et images mélangées)

97% des neurones sont ultra-sélectifs aux visages

Tsao, D. Y., Freiwald, W. A., Tootell, R. B., & Livingstone, M. S. (2006). A cortical region consisting entirely of face-selective cells. Science, 311(5761), 670-674.

La résolution spatiale des images

- Elle n'est pas vraiment limitée par la méthode de mesure (IRM du proton) dont la limite spatiale ultime est la diffusion de l'eau
- Seul compte le rapport signal sur bruit
- -Usage d'antennes locales ou d'antennes multiples en réseau
- -Augmentation du champ magnétique permanent (bientôt 11.7 Tesla pour l'homme)
- Le problème du **mouvement** se pose de façon de plus en plus aigüe

Imagerie des colonnes de dominance oculaire chez l'homme

- -Voxels de 0.47 x 0.47 x 3 mm à 4 Tesla
- Antenne locale de 3 pouces
- Choix des coupes pour optimiser l'homogénéité des voxels
- Nombreuses astuces pour corriger le mouvement, enlever les signaux des grosses veines

left-eye ODCs (p<.0025)

DLDRDLDRDLDRDLDRD

345.6 691.2 1036.8 1382.4

Cheng, K., Waggoner, R. A., & Tanaka, K. (2001). Human ocular dominance columns as revealed by high-field functional magnetic resonance imaging. *Neuron*, *32*(2), 359-374.

Imagerie des colonnes de sélectivité à l'orientation chez le chat

-Voxels de 0.156 x 0.156 x 2 mm à 4.7 et 9.4 Tesla -Utilisation de la réponse précoce (« early dip »)

b

Kim DS, Duong TQ, Kim SG. (2000) *Nat Neurosci* 3, 164 - 169. High-resolution mapping of isoorientation columns by fMRI.

Imagerie de l'activation laminaire dans le cortex visuel du chat

- -Voxels de 0.15 x 0.15 x 2 mm à 9.4 Tesla
- Injection d'un produit de contraste, le MION
- L'activation suit le ruban cortical, et particulièrement la couche IV

Harel, N., Lin, J., Moeller, S., Ugurbil, K., & Yacoub, E. (2006). Combined imaging-histological study of cortical laminar specificity of fMRI signals. *Neuroimage*, *29*(3), 879-887.

Nouvelles méthodes d'imagerie fonctionnelle en IRM

- Sera-t-il possible de mesurer, plus directement, l'activité neuronale?
- Cela pourrait permettre d'améliorer
- -La résolution spatiale
- -La résolution temporelle
- -La spécificité des signaux
- •Première possibilité: développement d'agents de contraste
- -Sensibles au voltage
- -Sensibles à l'expression de certains gènes

•Deuxième possibilité: Trouver un nouveau paramètre lié à l'activité cérébrale et mesurable en IRM

D. Lebihan

L'imagerie de diffusion

-Elle mesure la diffusion des molécules d'eau dans les tissus, dans une certaine direction

- -Elle est sensible à la micro-organisation des tissus:
- -Orientation des fibres de la substance blanche

-Mais aussi, dans le cortex, organisation microscopique des compartiments intra- et extra-cellulaires

L'imagerie de diffusion détecterait-elle un changement de la conformation des neurones corticaux lors de l'activation cérébrale? (par exemple un gonflement des cellules)

2001: Le coefficient apparent de diffusion (ADC) diminue lors de l'activation cérébrale

-Imagerie humaine du cortex visuel à 3T ; Stimulus = damier clignotant -Détection d'une petite diminution de l'ADC

-Suggestion d'une meilleure localisation et peut-être d'une plus grande précision temporelle

Fig. 2. Activation maps of one subject. These SPM maps show the location of the significantly activated voxels. (*Upper*) Activation maps from ADC images ($P_{corrected} < 0.05$). (*Lower*) Activation maps from BOLD images ($P_{corrected} < 0.001$).

Darquie, A., Poline, J. B., Poupon, C., Saint-Jalmes, H., & Le Bihan, D. (2001). Transient decrease in water diffusion observed in human occipital cortex during visual stimulation. *Proc Natl Acad Sci U S A*, *98*(16), 9391-9395.

Multiples réplications par Allen Song (neuroradiologue à Duke University) -Imagerie humaine du cortex moteur à 4T Stimulus -Meilleure localisation et plus grand pourcentage de changement du signal

Song, A. W., Woldorff, M. G., Gangstead, S., Mangun, G. R., & McCarthy, G. (2002). Enhanced spatial localization of neuronal activation using simultaneous apparent-diffusion-coefficient and blood-oxygenation functional magnetic resonance imaging. *Neuroimage*, *17*(2), 742-750.

L'activation par imagerie de diffusion a une meilleure précision spatiale que le signal BOLD

-Imagerie humaine à 4T avec antenne de surface ; Stimulus = damier en rotation
-Chez chaque sujet, meilleure séparation de petites régions visuelles discrétes par le signal de diffusion que par le signal BOLD

Le traçage de fibres est facilité lorsque l'on part des régions identifiées par la diffusion.

Song, A. W., Harshbarger, T., Li, T., Kim, K. H., Ugurbil, K., Mori, S., et al. (2003). Functional activation using apparent diffusion coefficient-dependent contrast allows better spatial localization to the neuronal activity: evidence using diffusion tensor imaging and fiber tracking. *Neuroimage*, *20*(2), 955-961.

L'activation par imagerie de diffusion aurait une meilleure précision temporelle que le signal BOLD

-Imagerie humaine à 4T avec antenne de surface ; tâche de « finger tapping »

-Le démarrage de la réponse de diffusion serait plus précoce et plus raide que celui de la réponse BOLD

Li, T., & Song, A. W. (2003). Fast functional brain signal changes detected by diffusion weighted fMRI. *Magn Reson Imaging*, 21(8), 829-833.

Direct and fast detection of neuronal activation in the human brain with diffusion MRI

Denis Le Bihan^{†‡§}, Shin-ichi Urayama[†], Toshihiko Aso[†], Takashi Hanakawa[†], and Hidenao Fukuyama[†]

