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The observations that we receive from the world are 
stochastic and unfold across time

● Events in our world are fraught with 
uncertainty.

– Because we don't know all the hidden 
causes.

– Because those hidden mechanisms are 
intractable.

– Because there is inherent uncertainty.

The Old Faithful geyser 
erupts every 45 – 125 min.

● Events nevertheless often show some 
regularity. 

● Detecting those regularities can be 
advantageous to adapt our behavior.

RER trains are often late.



  

Our world is not only stochastic, it is also changing, 
making prediction difficult

● Unexpected and sudden changes can occur, making previous estimates no 
longer informative.

Our world is not only stochastic, it is also changing, 
making prediction difficult



  

A seminal experiment by Squires et al. 1976 suggests that 
the brain constantly tracks the statistics of stimuli

EEG recorded during passive listening.
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Y

The P300 amplitude relates to the 
improbability of the current sound given 
the previous ones, suggesting a tracking 
of:
→ The global item frequency
in the entire sequence.
e.g. p(X) = 0.7 vs. p(X) = 0.3.

time



  

A seminal experiment by Squires et al. 1976 suggests that 
the brain constantly tracks the statistics of stimuli

The P300 amplitude relates to the 
improbability of the current sound given 
the previous ones, suggesting a tracking 
of:
→ The global item frequency
in the entire sequence.
e.g. p(X) = 0.7 vs. p(X) = 0.3.

Replication and further computational 
refinements: Mars 2008, Kolossa 2013, 
Lieder 2013, Maheu 2017...

time

→ The local item frequency
in the recent history.
e.g. XXXXX vs. YYYYX.
→ The local alternation frequency
Whether items were repeated in the recent 
history
e.g. YYXXX vs. YXYXX.

EEG recorded during passive listening.

pitch

X

Y



  

● The Bayesien inference computes with conditional probabilities p( - | - ).

● Bayesian inference provides an optimal prediction about future 
observations given the previous ones, and given particular assumptions 
about the generative process, which is called an ideal observer model.

Learning and predicting with Bayesian inference

Observation history

?

Learn the statistics θ of 
observations, given 
assumptions (M) about 
the generative process
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a prediction
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● The inference proceeds with iterations by summarizing observations 
(summary statistics or full distributions) (Gelman, Bishop, Sutton & Barto). 
Tracking improbable (i.e. surprising) events allows a Bayesien learner to 
revise its estimates (Friston 2005).
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Learning and predicting with Bayesian inference

● To apply the Bayesian framework to brain processes, 
one must identify the properties of the inference: 

– What is learned? Which statistics are computed?

– Which observations inform the current estimate?



  

What has been learned? Sequences can be 
characterized by a hierarchy of statistics

More complex statistics and even rules could be envisaged (Dehaene, 
Meyniel et al Neuron 2015), but here we start simple.

Meyniel, Maheu & Dehaene, Plos Computational Biology 2016



  

Which observations inform the current estimate? 
Different inference styles

Fixed belief model
With a perfect integration

Dynamic belief model
With a perfect integration

Models differ in their assumptions about changes in the generative process 
and they weight observations differently

Local integration

Meyniel, Maheu & Dehaene, Plos Computational Biology 2016



  

Our proposal: 
The brain entertains at a minimum 

a “local transition probability model”

The brain constantly evaluates the (un)likelihood of the current observation based on: 

● A tracking of transition probabilities between successive items
● A local integration: estimates are constantly revised based on the most recent 

observations.

The mathematical notion of surprise quantifies the deviation from expectation 
(Shannon 1948): 

surprise = -log
2
(P(actual observation))



  

A qualitative agreement with the P300 data by 
Squires et al. 1976

Global item 
freq. effect

Alternation 
freq. effect

Local effects 
even when no 
global bias

The order 
matters  (order 
reserved)

Stronger 
expectations after 
repetition than 
alternations

Local freq. effect



  

Expectations emerge more rapidly from repetitions 
than alternations



  

A quantitative agreement with the P300 data by 
Squires et al. 1976

DATA
Local transition 

probability model

Meyniel, Maheu & Dehaene, Plos Computational Biology 2016



  

The assumptions of our model (transition probability + 
local estimate) are necessary to account for the data

Learning of item 
frequency

Learning of 
alternation frequency

Learning of transition 
probabilities

Meyniel, Maheu & Dehaene, Plos Computational Biology 2016



  

The local transition probability model accounts for 
classic “sequential effects” in reaction times

A typical reaction time task: Huettel et al., 2002
(predecessors: Hyman 1953, Bertelson 1961; Kirby 1976; 
Soetens, Boer & Hueting 1985, Sommer, Leuthold & Soetens 
1999; Cho & Cohen 2002; … ) 

→ Our model reproduces the gradual build up of expectations with increasing streak length.
→ It also reproduces the asymmetry between repetitions and alternations.
→ The learning of stimulus frequency entails no expectation about alternations.
→ Learning the frequency of alternations (or of repetitions) is symmetric for repetitions and alternations.

Meyniel, Maheu & Dehaene, Plos Computational Biology 2016



  

The local transition probability model accounts for 
classic “sequential effects” in reaction times

→ The local sequential effects survive even after exposure to long, fully unpredictable sequences
→ Our model captures order effects, e.g. ARRR < RARR < RRAR.
→ There is (again) an asymmetry between repetitions and alternations
→ The model captures subtle effects in the data, such as local minima for RAAR and ARAA
→ The inference based on the stimulus frequency fails to reproduce many aspects of the data.

A systematic investigation of all pattern types in a reaction time task by (Cho et al., 2002)

Meyniel, Maheu & Dehaene, Plos Computational Biology 2016
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The local transition probability model accounts for the 
asymmetric perception of randomness

Rating of the perceived randomness of binary sequences. (Falk, 1975)

O O X O X X O X O X O O O O X X O X O O O 

→ Studies of perceived randomness show a bias for alternations, max around 0.6. (Falk, 1975; Falk & Konold, 1997; Bakan, 1960; 
Budescu, 1987; Rapoport & Budescy, 1992; Kareev, 1992)
→ The perceived randomness can be formalized as a posterior entropy
→ Our model predict an asymmetry of the perceived entropy (that is all the stronger that the integration is local)
→ The asymmetry is specific of our model

Meyniel, Maheu & Dehaene, Plos Computational Biology 2016

→ here, p(alternate) = 12/20



  

INTERIM SUMMARY
A local estimation of transition probabilities constitutes 

a minimum model of human inference about sequences  

The model accounts for:
→ Expectations in various types or measurements: brain signals, reaction times and reports of perceived 
randomness.  
→ “Local effects” on expectations (local frequency, local transition probabilities, order of stimuli)
→ Global effects on expectations: the global frequency of stimuli.
→ The asymmetry between repetitions and alternations (Yu & Cohen 2008 NIPS; Falk & Konold, 1997 Psych Rev)

The model favors recent observations to form expectations
→ The local integration may not due to be a limitation of processing capabilities but rather of an 
assumption of non-stationary. (Yu & Cohen 2008 NIPS; Behrens 2007 Nat Neuro; Meyniel et al 2015 PCB)

→ Angela Yu's claim: the assumption of non-stationarity is the best default assumption. 

The model is principled and parsimonious
→ It is relies on Bayesian inference.
→ It learns transition probabilities, the first building block of sequence knowledge. (Dehaene Meyniel et al. 
2015 Neuron; Wacongne 2012 J Neuro; Strauss 2015 PNAS)

→ It does not need biased priors to account for the asymmetry between repetitions and alternations. (Yu & 
Cohen 2008; Falk & Konold, 1997)

→ It is simple, with only one free parameter controlling the “horizon” of the integration. 



  

Can human subject report explicitly time-varying 
probabilities that they infer from a sequence of 

observation? 
Robinson, Ergonomics 1964

Box of rings

Gallistel et al, Psych Rev 2014



  

Can human subjects explicitly track time-varying 
transition probabilities?

Meyniel, Schlunneger & Dehaene, Plos Computational Biology 2015

Bayesian inversion 
by the Ideal Observer
(infer probabilities given the 
observations)



  

Subjects accurately detect changes in the hidden 
transition probabilities

Subjects detected changes given the evidence provided by the observations presented to them.

Meyniel, Schlunneger & Dehaene, Plos Computational Biology 2015



  

Subjective estimates of probabilities are accurate, 
regardless of the sensory modality

This strong correlation is found when each modality (visual, auditory) are tested separately. 
Results are also highly correlated between modalities, arguing in favor of a high-level inference 
system.

Meyniel, Schlunneger & Dehaene, Plos Computational Biology 2015



  

Meyniel, Schlunneger & Dehaene, Plos Computational Biology 2015

Example portion of sequence and inferred probabilities

Is the inference probabilistic in the Bayesian sense? 
Evidence from the human sense of confidence



Subjects keep track of multiple confidence levels attached 
to the different probabilities they estimate

Meyniel, Schlunneger & Dehaene, Plos Computational Biology 2015



  

Human confidence judgments are rational: they are 
impacted by several factors similarly to the optimal 

inference

When outcomes are more 
difficult to predict (low 
predictability) confidence 
should be lower.

When more data support the 
inference, confidence should 
be higher.

When the current estimates 
need to be profoundly 
revised, confidence should be 
low. 

Meyniel, Schlunneger & Dehaene, Plos Computational Biology 2015



SUMMARY
A Bayesien inference machinery constantly operates to 

extract the statistics of the observed sequence of events

● Our brain is equipped with a powerful machinery for computing statistics 
from sequences of observations.

● This inference machinery operates constantly to predict future observations.

● A central assumption of this inference process is that changes may occur.

● The brain infers, at a minimum, the transition probabilities between 
successive event types.

● This inference Bayesian in essence:

– We entertain degree of belief, even about probabilities

– The inference follows Bayes' rule

– We constantly switch back and forth between estimates and predictions 

● This statistical inference is accessible to introspection. 

● Confidence judgements offer a window on our Bayesian brain (Meyniel, Sigman 
and Mainen, Neuron 2015).
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