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Structure of my talk 

I will address three gaps in our knowledge: 

 

• Which algorithms for probabilistic inference could be 

implemented in neural systems, given their strong variability? 

 

• How can neural systems learn to create internal models for 

salient probability distributions? 

 

• How are functionally relevant random variables (RVs) 

represented by neurons? 

 



Example:  Variability of spike responses in area V1 of cat: 

each column shows 3 trials with the same stimulus 

[Nikolic, Haeusler, Singer, Maass, PLoS Biol. 2009] 

Virtual all neural systems exhibit substantial  

trial-to-trial variability 



A major source of variability in neural circuits: 

probabilistic vesicle release at synapses 

Common estimates of release probability 

of a vesicle in response to a presynaptic 

spike  are around 0.5 (for neocortex),  

see e.g.  

(Branco, Staras, Nat. Rev. in Neurosci, 2009) 

 

 

In addition vesicles are frequently 

released without a presynaptic spike 

(Kavalali, Nat. Rev. in Neurosci., 2015) 



A note on concepts 

• Trial-to-trial variability is observed in the brain at virtually all spatial and 

temporal scales 

 

• It is not known to what extent this variability is due to deterministic 

dynamics of hidden variables 

 

• From the perspective of the models for computation and learning that I 

will discuss, it does not matter whether this variability results from true 

stochasticity, as long as it can be described well enough by 

probabilistic rules 

 



How deterministic can neural responses get ? 

Bowers, Jeffrey S., and Colin J. Davis. "Bayesian just-so stories in 

psychology and neuroscience." Psychological Bulletin, 2012 

tried to summarize the most reliable neural responses that have been 

found: 

 

• Gur, M., & Snodderly, D.M. (2006). High response reliability of neurons in 

primary visual cortex (V1) of alert, trained monkeys. Cerebral Cortex 

But: these are results for artificial stimuli (and only for selected neurons) 

 

• DeWeese, M. R., Wehr, M., & Zador, A. M. (2003). Binary spiking in 

auditory cortex. Journal of Neuroscience 

But: these reliable responses in anaest. rats were not duplicated in their 

subsequent study of awake rats: 

 

Hromádka, T., DeWeese, M. R., & Zador, A. M. (2008). Sparse 

representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 

 



Which algorithms for probabilistic inference could 

be implemented in neural systems, given their 

strong variability?  

• Belief propagation (message passing) needs to implement complex 

arithmetical calculations, of high arithmetical depth. How could a neural 

system make this calculation noise robust? 

 

• Are there besides stochastic sampling approaches other 

algorithmic/neural implementation approaches for probabilistic 

inference that are compatiable with strong variability? 
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The network consists of 3-layer moduls, 

that each learn the probability table for 

one RV, conditioned on the RVs in its 

Markov blanket: 

 

 

 

 

 

 

 

 

Learning takes place through STDP on 

synapses to hidden layer neurons, that 

are split into  several WTA circuits. 

 

How can neural system learn to create internal 

models for salient probability distributions? 
One step into this direction by (Pecevski et al., under review) 

 

Assumption:  Some external distribution p* generates examples y. 

Goal:  Learn an internal model of p*. 
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A closer look at plasticity in the network modules 

Hidden neurons are needed, because the 

distribution of value assignments to the 

Markov blanket x that causes e.g. z=2 may 

be a mixture of multinomials. 

Each such mixture of multinomials for a 

given value of z is learnt through STDP by 

one WTA circuit of hidden neurons  

Ideally each WTA circuit should have as  

many neurons as there are multinomials; 

hence in this case 4 neurons instead of 2 ;   

but 4 neurons do not improve performance: 
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Application to a standard (but nontrivial)  

probabilistic inference task:  

Explaining away in visual perception  

 (Knill, Kersten,  Nature 1991) 

  The observed contour influences our perception of relative reflectance: 

 

 

 

 

 

 

 

 

 

 

 

 

When the curved contour is occluded (z4 changes from 1 to 0), we  

suddently perceive different relative reflectance of the 2 parts  

(z1 changes from 0 to 1). 
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A rigorous learning theory (EM= Expectation Maximization) implies that 

the Kullback-Leibler divergence between ideal and learnt conditional 

probabilities is locally optimized through STDP  

(this requires a stochastic neural network)  

 
The learning network consists for the example of Knill/Kersten of 4 learning 

modules: 

 

 

 

 

 

 

 

Time courses of the Kullback-Leibler  

divergences for the 4 learning  

modules: 
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Spontaneous firing activity after learning  

approximates the distribution p* that generated  

the examples 

the : 

 

 

 

 

 

 

 

 

 

 

 
 

State probabilities of learnt joint distribution (green) 

and of target distribution p* (black) 

Functional consequences of this learning 

Learnt „explaining away“: 

Observed contour changes  

to „straight“ after 3s: 
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Open problems regarding learning of probability 

distributions, and probabilistic inference 

 

• How can the learning be sped-up?   

 

• How can transfer of information from previously learnt distributions be 

implemented? 

 

• Which other approaches for neural implementations of probabilistic 

inference are amenable to learning from examples? 

      (see work of Sophie Deneve et al). 
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Addressing a 3rd gap in our understanding: 

How are functionally relevant random variables 

represented by neurons? 

 

Most neural sampling models let relevant RVs be encoded by single 

neurons. This is problematic for several reasons, e.g. 

  

• lack of robustness against disfunction of single neurons 

• a single neuron cannot cause other neurons to fire with high probability  

 

In addition, a number of experimental data suggest that behaviourally 

relevant random variables are encoded by assemblies of neurons: 
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Data from premotor cortex in monkey suggest that  

many neurons together encode a RV,  

each voting for a different value of it 
(Cisek, Kalaska, Neuron 2005) 

Experimental setup: Two subsequent cues provide information which 

saccade goal gets rewarded: 

 

 

 

 

 

 

Recorded neural activity in 

premotor cortex  

(neurons ordered according  

to preferred saccade goal): 
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These data suggest that neural circuits encode a RV 

through spatial coding, like a particle filter 

(Bayesian filter)  

It was recently shown that networks of stochastically spiking neurons can 

in fact approximate basically any particle filter. In particular, the data of 

(Cisek and Kalaska, 2005) can be reproduced in such model: 

General functional advantages of this approach: 

--more stable and fast representation of estimates 

--applicable to time-varying probabilities. 

 
(Legenstein, Maass, PLOS Comp. Biol. 2014),  

(Savin, Deneve, NIPS 2014) 
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In this neural code also confidence of estimates of 

probabilities can be expressed 

This issue was raised yesterday in the talk of Florent Meyniel (and in his 

paper in PLOS Comp. Biology). 

 

If each neuron votes for a particular value of a RV, the variance of votes 

encodes the confidence of the estimate. 
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Assemblies of  neurons  in rodent area A1 (awake); (Harris et al., 2008): 

 

 

 

 

 

Similar firing patterns emerge spontaneously and stimulus-induced ([Luczak, Bartho, Harris, Neuron 2009]. 

 

Another hint from experimental data: Multi-unit 

recording show stereotypical firing patterns of many 

neurons, both spontaneously and stimulus-evoked 

 

Data from Ca-imaging in rodent area V1  (Miller, Ayzenshtat, Carillo-Reid, Yuste, PNAS 2014):  
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These data suggest a different role of  

WTA-like circuit motifs in building neural representations  

Roughly:  Interacting ensembles of excitatory and inhibitory neurons 

behave more like adaptive k-WTA circuits, rather than WTA circuits.  

 

 

 

 

 

Instead of a mixture model as generative model (as suggested by WTA-

circuits) STDP fits in these more realisitc models a product distribution 

(Noisy OR)  to input spike streams:  

 

 

 

 

                                                   

                                                (Zonke, Legenstein, Maass, in preparation) 
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Resulting new coding properties that emerge under  

STDP: 

Neural codes emerge for pattern components 

 If high-D spike inputs contain repeatedly occurring components, each 

component gets represented by an assemblies of neurons in the EI motif: 



21 

Open problems regarding  

neural representations of salient RVs for 

probabilistic inference 

• How can these emergent loose assembly codes be used for 

probabilistic inference through neural sampling? 

 

• Can such soft WTA-circuits serve as elementary modules for larger 

networks that learn complex Bayesian networks (distributions) from 

examples ? 
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Summary 

I have addressed three gaps in models for probabilistic inference through 

neural sampling: 

• Which algorithms for probabilistic inference could be implemented in neural 

systems, given their strong variability? 

 

• How can neural system learn to create internal models for salient 

probability distributions? 

--Forthcoming paper (Pecevski, Maass, 2015) provides a first model based on 

STDP in simple WTA-motifs. 

--Further work is needed to close the gap to more detailed models for neural 

circuits.. 

 

• How are functionally relevant random variables represented by neurons? 

--Biological data show that loose assemblies (rather than single neurons) 

emerge as tokens of stochastic network dynamics. 

--We need to understand whether and how they could support neural 

sampling. 

--Such loose assemblies emerge through STDP in ensembles of pyramidal 

cells with data-based lateral inhibition. 

 


