
Core Knowledge and Cognitive Development: 
Natural Number

Elizabeth Spelke
Harvard University

Seminar, “The Child’s Representation of Number”
College de France

April 1, 2008



What makes humans smart?

Technology

Science

Mathematics



Preliminaries
Modern math and science are recent accomplishments

B Pascal G W von Leibniz Galileo

Math and science, broadly construed, are ~2500 years old.

ArchimedesPythagoras Lucretius

Conclusion:  Humans did not evolve any capacity that is 
specifically adapted for these endeavors.



Origins of Knowledge
When we learn and practice science and mathematics, we take 
capacities of the mind and brain that evolved to serve other 
functions, and we harness them for new purposes.  

To discover those systems:
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Core Knowledge

At the foundations of mathematical cognition is a set of cognitive 
systems:

• objects and some mechanical properties & motions
• approximate numbers and some arithmetic relations  
• places and some geometric relations

Each system has distinctive 
signature limits.

Core systems are shared by other 
animals, function throughout human 
development, show little variation 
across cultures, and serve as 
foundations for later-developing 
symbolic abilities.



Beyond core knowledge:  Combinatorial Capacity

Humans build new concepts and systems of knowledge by 
building on different core knowledge systems and combining 
together their outputs.

All animals use general learning 
processes to combine 
representations slowly and 
piecemeal.

Humans use natural language to 
combine core representations 
rapidly and productively.

“Natural number” and “natural geometry” are early-emerging 
products of this uniquely human constructive activity. 



Today:  Natural Number 



Counting and  Natural Number

How many fish?

“one, two, three, four...”

2.5 years:  recite count words

Children start using number words at ~2 years but don’t figure out 
number word meanings or counting until 4-5 years.

(e.g. Wynn, 1990; Condry & Spelke, in press; Carey & 
Sarnecka, 2006; Lipton & Spelke, 2006)



Counting and  Natural Number
Children start using number words at ~2 years but don’t figure out 
number word meanings or counting until 4-5 years.

Give a Number task

“put ONE fish in the pond”

“put TWO fish in the pond”

“two” etc. means a bunch
3 years:  “two” means two
3.5 years:  “three” means three
4 years: each word in count

sequence picks out a 
distinct,     exact number; 
counting serves     to determine 
that number.

5 years:  knowledge of number is 
productive and extends beyond 
known count list.(e.g. Wynn, 1990; Condry & Spelke, in press; Carey & 

Sarnecka, 2006; Lipton & Spelke, 2006)

2.5 years:  recite count words
“one” means  one



No evidence for natural number in non-human animals

chimpanzees: the case of Ai (Matsuzawa, 1985, 1998)

parrots:  the case of Alex (Pepperberg, 1987)

(Ai: 20 years of training, 1-9) (Alex: 28 years of training, 1-6)



Questions

1. Why is counting hard for children to learn? 

2. What lets children master this system, when animals 
don’t?

Two core systems
objects (1-3)
sets (approx cardinal values)



System 1:  Small numbers of objects

Set size limit: up to 3

Domain limit:
solid objects

*piles of sand
*towers of 

blocks

No explicit 
representation of 
cardinal value.

(Wynn, 1992; Huntley-
Fenner &Carey, 2005; 

Chiang & Wynn, 2002)



Converging evidence
Reaching in a box (12 & 14 m.)

Set size limit: 3-4
Domain limit: 

cookies
*globs of applesauce
*piles of cheerios

Objects, not “two”Crawling to a box (10 & 12 m.)

(Feigenson & Carey, 2003; Feigenson, Carey & Hauser, 2002; VanMarle, 2005)



Object representations in monkeys

Like infants, monkeys represent small 
numbers of objects

Monkeys’ representations show the same 
signature limits as infants:

Cohesive objects
Set size limit (4)
No spontaneous abstraction of exact   

cardinal values

A common system of representation 
over primate evolution.

(Hauser et al., 1996; Hauser & Carey, 2002)



Object representations in chicks

Like infants and monkeys, newly 
hatched chicks represent objects 
in accord with spatio-temporal 
constraints on motion.

Their object representations show 
deep similarities to those of 
primates.

...and emerge independently of 
visual experience.

Aspects of this system of 
representation have a long 
evolutionary history....

(Regolin & Vallortigara, 1995; Lea, Slater & Ryan, 1996; Vallortigara, 2006)



MOT in adults shows all the 
signatures of infants’ object 
perception:

Object representation in adults:  
The multiple object tracking task

A common system of 
representation over human 
ontogeny.

Set size limit (3-4)

Cohesive objects
*sandpiles, *object parts

Scholl, Wynn, Mitroff, VanMarle and others (2000s)



The Pirahã

The Pirahã are (controversially) asserted 
to be cognitively and linguistically very 
different from all other known peoples.

But:  their language distinguishes 
cohesive objects from non-cohesive 
substances (example:  “many foreigners” 
vs. “much manioc meal”).

And, they show the set size signature (3)
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Object Representations:  Summary

Human infants (including newborns), non-
human animals, and human adults in 
diverse cultures represent small numbers of 
objects.

Their representations show common 
signatures and therefore evidently 
depend on a shared mechanism.

A possible building block for 
complex cognitive skills.



System 2:  Sets and their approximate  
cardinal values 

(…)                 (…)

sequences of actions
sequences of sounds

looking time
head-turning
EEG

(Lipton & Spelke, 2003; Wood & 
Spelke, 2005; Izard & Dehaene, in 
press)

(6-month-old infants)

(Xu & Spelke, 2000; many others)



Signatures of infants’ performance

1. Ratio dependence:
6 months: 1:2 (8 vs. 16, 16 vs. 32)
9 months: 2:3 (8 vs. 12, 16 vs. 24)

2. Modality- and format invariance:  Same limits with dot arrays, 
visual action sequences, sound sequences.

3.   Comparison, addition, subtraction

4.   No tracking of individual elements.
vs.

5.  Spontaneous linkage of number to space.

(e.g., Brannon, 2001; Xu, 2002; Lipton & Spelke, 2003; Wood & Spelke, 
2005; McCrink & Wynn, 2005; deHevia & Spelke, in prep.)



Linking number and length (1)
familiarization

vs.

Novelty preference test
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(8-month-old infants)

Familiarization to increasing/decreasing number generalizes to 
increasing/decreasing length.

(deHevia & Spelke, ICIS 2008 and in prep.)



Linking number and length (2)
familiarization preference test

vs.

(a)

or

(b)
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Infants learn and prefer 
congruent pairings of 
number and length.

(deHevia & Spelke, ICIS 2008, in prep.)



Large number representations in monkeys

Methods:  similar to studies with 
infants.

Signatures:  
ratio limit (2:3)    
format invariance
comparison, addition &

subtraction
no tracking of individuals
number-space linkage

A common system of representation over primate evolution.

(Hauser, Tsao, Garcia & Spelke, 2003; Flombaum & Hauser, 
2005; Nieder & Miller, 2003; Tudusciuc & Nieder, 2007)



Large number representations in other animals

This system of representation is widespread with deep 
phylogenetic roots.

(e.g. Dehaene, 1997; Rugani et al., 2006; Wood, in prep.)



Human adults show these signatures too

(Fast presentation, no counting)

Signatures:
ratio dependence (7:8)
format invariance
addition = comparison
(subtraction < comparison)
number without tracking 

of individuals
number-space interactions

vs.

vs.

+ vs.

A common system over human development.
(Barth, LaMont, Lipton & Spelke, 2005; Intriligator & Cavanagh, 

2002; Dehaene and others, many studies)



Number representations across cultures:  The Mundurukú

The same signatures appear in a remote Amazonian 
group:  evidence for universality across humans.

(Pica, Izard, Lemer & Dehaene, 2004)



Nonsymbolic addition in preschool children

"Look, here come
some blue dots!"

"Now they're being
covered up!"

"And here come
some red dots!"

"Are there more blue
dots, or more red dots?"

"Here come some
more blue dots.

(Barth, et al., 2005, 2006)



Preschool comparison task: more blue dots or more red dots?

Preschool addition task: more blue dots or more red dots?

"Look, here come
some blue dots!"

"Now they're being
covered up!"

"And here come
some red dots!"

"Are there more blue
dots, or more red dots?"

"Look, here come
some blue dots!"

"Now they're being
covered up!"

"And here come
some red dots!"

"Are there more blue
dots, or more red dots?"

"Here come some
more blue dots.

visual 
comparison

Nonsymbolic addition in preschool children

..
.

... ..

visual 
addition

"Look, here come
some blue dots!"

"Now they're being
covered up!"

"And here come
some red dots!"

"Are there more blue
dots, or more red dots?"

"Here come some
more blue dots.

cross-modal
addition

(Barth, et al., 2005, 2006)



Nonsymbolic addition in preschool children
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(subtraction < comparison)

These abilities emerge before children learn symbolic arithmetic

(Barth, et al., 2005, 2006)



Large, approximate number representations:  
Summary

Human infants, preschool children with no 
training in symbolic arithmetic, non-human 
animals, and human adults in diverse 
cultures represent large numerosities.

A second possible building block for 
complex cognitive skills.

Their representations show 
common signatures and therefore 
evidently depend on a common 
mechanism.



Two kinds of numerical abilities in infants

1.  Tracking small exact numbers of individuals

set size limit:
1 vs. 2 and 2 vs. 3 but not 2 vs. 4 or 4 vs. 8

2.  Discriminating sets by their approximate cardinal values

ratio limit:
4 vs. 8 but not 4 vs. 6 or 2 vs. 3



These systems have dissociable properties

2 vs. 3 4 vs. 8

Tracking individuals √ --
over occlusion

Discriminating cardinality -- √
of sets
(6-month infants)

Two distinct systems capturing numerical information:
Individuals vs. sets.

They also may be spatially & temporally dissociable in studies 
of adults using functional brain imaging.

(Ansari et al., 2006; Libertus et al., 2007; Hyde & Spelke, in review)



From Core Systems to Counting

Counting and natural number concepts:
• one system, not two
• no set size limit
• no ratio limit
• no upper bound

The demands of constructing one 
number system from two distinct 
sources may explain children’s 
step by step learning of counting.  



Why is step 1 easy and step 2 hard?             
“1-2-3-4-5-...”“one”

Object 
representations:

an object

Number
representations:

a bunch of objects

Learning “two” requires that children combine together information 
from different cognitive systems.

“two”

Object
representations:

obj. + obj.

Number
representations:

the smallest set>1

(Condry & Spelke, 2007)



How do children figure the system out?             

“two”

Object
representations:

obj. + obj.

Number
representations:

the smallest set>1

“three”

Object
representations:

obj. + obj. + obj.

Number
representations:

the smallest set>2



How do children figure the system out?             

(a) An insight about the progression from “two” to “three”
“two” --> “three”

Object
representations:

adding one object

Number
representations:

increasing cardinal value

(b) Generalization to the other words in the count list.



From core knowledge to natural number
one about ten

Object
representations

Number
representations

seven

Object
representations

Number
representations

Language may provide a medium for combining elementary number 
representations flexibly and productively.



What happens to the core systems after natural 
number concepts are constructed?  

Two possibilities:

1. Core systems are scaffolding.  Once the natural number 
system is constructed, it has a life of its own.

2. Core systems are foundations.  Throughout life, 
representing and reasoning about natural number depend 
on them.

Evidence from children and adults....



Recall:  Nonsymbolic arithmetic without instruction

"Look, here come
some blue dots!"

"Now they're being
covered up!"

"And here come
some red dots!"

"Are there more blue
dots, or more red dots?"

"Here come some
more blue dots.
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5-year-old children:



Approximate Symbolic Arithmetic Without 
Instruction

21 21 30+ 21 30 34+

“Sarah has 21 
candies”

“She gets 30 
more”

“John has 34 
candies.”

Who has more candies?”

(Gilmore, McCarthy & Spelke, 2007)



Approximate Symbolic Arithmetic Without 
Instruction

For symbolic addition, 
overall 73.3%,correct.
t(19) = 6.40, p < .001. 
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symbolic
addition
nonsymbolic
addition

Same signatures:
Ratio limit
addition = comparison
subtraction<comparison

Children who have learned to count can harness their nonsymbolic
number system to solve problems in symbolic arithmetic. 

(Gilmore, McCarthy & Spelke, 2007)



Core number representations and math learning by 
elementary school children

"Look, here come
some blue dots!"

"Now they're being
covered up!"

"And here come
some red dots!"

"Are there more blue
dots, or more red dots?"

"Here come some
more blue dots.
Now they're ALL

 back there!"
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r = .587, p<.001
(with literacy score controlled,

r = .530, p=.001)

+math & literacy achievement test scores
McCarthy, Gilmore & Spelke (in prep.)



The large, approximate system supports 
approximate numerical reasoning by adults

Activation of areas involved in 
nonsymbolic large-number 
processing during symbolic 
arithmetic.

Impairments to symbolic 
arithmetic processing after 
damage to these areas by brain 
injury or TMS.

Intra-parietal sulcus

(e.g., Dehaene et al.,1999; Lemer et al., 2004; Cappelletti et al., 2007) 



Performance of exact arithmetic also depends, in part, 
on language

Learning of exact (but not approximate) arithmetic facts by bilinguals is 
language-specific.

Children who speak different languages learn arithmetic at different rates. 

Performance of exact (but not approximate) arithmetic activates secondary 
language areas of the brain.

Neurological patients with language impairments show impaired 
exact (but not approximate) arithmetic calculations.

NB:  Not all aspects of arithmetic depend on language:  syntax and 
approximation do not.

(Tsivkin & Spelke, 2001; Gathercole & Baddeley, 1990; 
Lemer et al., 2004; Dehaene et al., 1999)



“Natural” Number?
Contrary to intuition, natural number may be a construction founded on 

two systems of core knowledge, joined by natural language.  

It is natural in one sense (not explicitly taught, learned almost 
universally by young children) but not in another.  



Is number the only domain where uniquely human 
cognitive achievements depend on core knowledge and 

natural language combination?

Three other possible examples:

communication and cultural learning

tool use

“natural geometry”



Communication & cultural learning

2 year old children are predisposed to learn 
from other people and view them as goal-
directed agents with perceptions, emotions, 
beliefs and desires.

Infants represent faces and goal-directed 
actions but not propositional attitudes; 
monkeys have homologous abilities.  

Some evidence links human “mind-reading” 
to natural language.
Uniquely human capacities for communicating with and learning 
from others may build on core systems for representing people and 
their actions, combined by language.

(e.g. Farroni, et al., 2005; Woodward, 1998; Sugita, 2007; Rizzolatti, 
2005; Pyers, 2004; de Villiers, 2007).



Tool use

4 year old children view artifact objects as 
structured in the service of goal-directed 
action.  This knowledge is productive.

Infants represent objects and goal-directed 
actions but not tools; monkeys have 
homologous systems of object and action 
representation.  

Some evidence links artifact concepts to 
language.

Uniquely human tool use capacities may build on core systems for
representing objects and actions, linked through the acquisition of 
nouns and verbs. (e.g.Kelemen, 1999; Woodward, 1998; Rizzolatti, 2005 & many 

others; Wood et al., 2007; Xu & Carey, 1996; Xu, 2002).



Navigating by maps
From 2-3 years of age, children can use 
visual symbols to guide their navigation:  
geometric maps.

(e.g. Cheng & Newcombe, 2005;, Sovrano & Vallortigara, 2006; Hermer & Spelke 1996; 
Shusterman, Lee & Spelke, in press; Winkler-Rhoades, Carey & Spelke, in prep. )

Infants are sensitive to the geometry of 2D 
forms and of the 3D layout but don’t 
combine them to read maps.  Rats, chicks 
and fish show similar abilities & limits.

Some evidence links children’s map 
understanding to verbal labeling of maps.

Uniquely human understanding of symbolic maps builds on 
core geometric capacities.  Maps may gain their symbolic 
function from language.



An exciting possibility....

Knowledge of geometry may be our premiere, abstract cognitive 
ability, but it depends in part on a system that is widely shared by 
other animals.

This system develops in fish and chicks with no experience of 
a geometrically structured surface layout.

Ancient hypotheses concerning the nature and origins of abstract
concepts may now be amenable to study.

(Plato, The Meno; Brown et al., 2007; Chiandetti & Vallortigara, in press)



Three ingredients to knowledge of natural number

Two systems of core knowledge

The productive combinatorial capacity of natural language.

The core systems are doing most of the work.



Questions

How does each core system develop?

How does each system work?  What does it compute, and how?

How do the systems get linked together, and what are the 
computational properties of the system that links them (natural 
language?)

How do all of these systems contribute to children’s learning, and 
adults’ performance, of symbolic mathematics?



All these questions can now be addressed
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