Reading in the brain

3. Symbol grounding:
 How the acquisition of symbols affects
 numerical cognition

Stanislas Dehaene

Collège de France, and INSERM-CEA Cognitive Neuroimaging Unit NeuroSpin Center, Saclay, France www.unicog.org

Summary of the two previous talks

- Reading acquisition leads to the specialization of a left ventral occipito-temporal region for letter strings (Visual word form area)
- 2. The VWFA provides a **quick non-conscious access** to left temporal language areas.

Today: How is cognition affected by symbol acquisition?

- Literacy improves **phonological awareness** and memory for meaningless **linguistic** material (Morais et al.)
- Are non-verbal **semantic** representations also altered as they become attached to a symbol? **The case of numbers**

Two mathematicians

Srinivasa Ramanujan (1887-1920)

 $\frac{1}{\pi} = \frac{2\sqrt{2}}{9801} \sum_{k=0}^{\infty} \frac{(4k)!(1103 + 26390k)}{(k!)^{4}396^{4k}}$

1 - A2 (2)2+ A3 (4)3- & c & n= 1) And = m { n A, And + chill Ar And + An-s+arc] the last time being 12 And on the As according as nis odd on ese A = n A = n Multiply the power and the each to Multiply the power and the each to Multiply the power and the second A = 2n⁵ + n⁴ A = 15n⁷ + 18n⁶ + 2n⁵ Coefft of the preceding to where A = 16n⁹ + 105n⁴ + 10n⁶ A = 16n⁹ + 105n⁴ + 10n⁴ A = 16n⁹ + 105n⁴ + 100⁴ A = 16n⁹ + 105n⁴ A = 16n⁴ + 105n⁴ A6 = 945 x" + 1260 x + 700 x + 196 x + 24 x7 Ay= 10395 n13 + 17325 n12 + 12600 n1 + 5068 n + 1148 n + 1202 N. B. For a take (2+1) times the coeff to; ; for log & take a times the coeff to and generally for (2) take (2-me) times the coeff to. Ex. 1. Shew that the sume of the coeff is of An= (a-1) sol. Put for a. Then x = et. Lit $x = \frac{1}{2}$, then $y = e^{-h}$ is $\frac{h}{2} = x = 1 + h - \frac{1}{2} x^{2} + \frac{2^{2}}{13} x^{3} + \frac{3}{2} x^{4} + \frac{2^{2}}{13} x^{4}$ i The sum of the coeff! of An = (2-1) 2-1 2. To expand & in ascending powers of h when Vx = et Ch. sol. Let x= 4. then y'= et (a) ta,

Otto Köhler's parrott (ca. 1955)

A cognitive neuroscience perspective on mathematics

- During its evolution, our primate brain has been endowed with elementary representations that are adequate to certain aspects of the external world.
- These internalized representations of time, space, and number, shared with many animal species, provide the foundations of mathematics.
- Unique to humans, however, is the capacity to achieve integration of those internal senses
- The cultural construction of mathematics can be seen as a search for coherence amongst internal representations
 – which is reproduced at a faster pace during education
- What role does the acquisition of symbols play in this internal synthesis process? How does exposure to a system of Arabic numerals and number words change the organization of the number sense?

Plan of the talk

• Neural coding of numerosity

- A quantity code is present in the intraparietal area of human adults and babies
- Optimal decision mechanisms based on this code can explain human psychophysics

• Understanding of number symbols

- Symbols are mapped onto numerosities
- However, the numerosity code may be changed by learning symbols
- Linear mapping of number onto space
- Brain mechanisms of number-space mappings

Previous studies of number sense and the horizontal segment of the intraparietal sulcus (HIPS)

• All numerical tasks activate this region (e.g. addition, subtraction, comparison, approximation, digit detection...)

This region fulfils two criteria for a semantic-level representation:
It responds to number in various formats (Arabic digits, written or spoken words), more than to other categories of objects (e.g. letters, colors, animals...)
Its activation varies according to a semantic metric (numerical distance, number size)

Pinel, P., Dehaene, S., Riviere, D., & LeBihan, D. (2001). *Neuroimage, 14*(5), 1013-1026.

QUANTITY REPETITION PRIMING: A MARKER OF UNCONSCIOUS SEMANTIC PROCESSING?

Lionel Naccache

Behavioral Quantity Priming irrespective of number notation

Lionel Naccache

UNCONSCIOUS PARIETAL PROCESSING OF QUANTITY

The intraparietal quantity system shows a notation-independent repetition effect

Different Quantity

Plan of the talk

• Neural coding of numerosity

- A quantity code is present in the intraparietal area of human adults and babies
- Optimal decision mechanisms based on this code can explain human psychophysics

• Understanding of number symbols

- Symbols are mapped onto numerosities
- However, the numerosity code may be changed by learning symbols
- Linear mapping of number onto space
- Brain mechanisms of number-space mappings

Number neurons in the monkey

(Nieder, Freedman & Miller, 2002; Nieder & Miller, 2003, 2004, 2005)

Nieder, A., Freedman, D. J., & Miller, E. K. (2002). Representation of the quantity of visual items in the primate prefrontal cortex. *Science*, 297(5587), 1708-1711. Nieder, A., & Miller, E. K. (2003). Coding of cognitive magnitude. Compressed scaling of numerical information in the primate prefrontal cortex. *Neuron*, 37(1), 149-157.

From numerosity detectors to numerical decisions: Elements of a mathematical theory

(S. Dehaene, Attention & Performance chapter, 2007)

Stimulus of numerosity *n*

Response in simple arithmetic tasks: -Larger or smaller than x? -Equal to x? **1.** Coding by Log-Gaussian numerosity detectors

Internal logarithmic scale : log(n)

2. Application of a criterion and formation of two pools of units

3. Computation of log-likelihood ratio by differencing

4. Accumulation of LLR, forming a random-walk process

Example: Which of two numerosities is the larger?

Data from Cantlon & Brannon (2006)

Example: Which of two numerosities is the larger?

Cantlon, J. F., & Brannon, E. M. (2006). Shared system for ordering small and large numbers in monkeys and humans. *Psychol Sci, 17*(5), 401-406.

• Humans and monkeys have very similar competence for numerosity decision (though humans are slighly slower and more precise)

- RTs and errors have exactly the shape predicted by the theory
- Performance depends on numerosity ratio (or equivalently, difference of logarithms)

A basic dorsal-ventral organization for shape vs number

Initial study: effect of number change

Number change in intraparietal cortex

Improved design by Cantlon, Brannon et al. (PLOS, 2006):

Number change > Shape change in bilateral intraparietal sulci

Shape change > Number change in left inferior temporal cortex

Do infants show numerosity adaptation and recovery? An ERP experiment

2 x 2 design : numerosity and/or object change

3 pairs of numerosities: 4 vs 8 ; 4 vs 12 ; 2 vs 3

Twelve 3-4 month-old infants in each group

Véronique Izard Ghislaine Dehaene-Lambertz

Number Change

Object Change

Véronique Izard Ghislaine Dehaene-Lambertz A basic dorsal / ventral organization in 3-4 month old infants:

Right parietal response to number, left temporal response to objects

Plan of the talk

• Neural coding of numerosity

- A quantity code is present in the intraparietal area of human adults and babies
- Optimal decision mechanisms based on this code can explain human psychophysics

• Understanding of number symbols

- Symbols are mapped onto numerosities
- However, the numerosity code may be changed by learning symbols
- Linear mapping of number onto space
- Brain mechanisms of number-space mappings

Changes in activation with age during mental arithmetic

Rivera, S. M., Reiss, A. L., Eckert, M. A., & Menon, V. (2005). Developmental Changes in Mental Arithmetic: Evidence for Increased Functional Specialization in the Left Inferior Parietal Cortex. *Cereb Cortex, 15*(11), 1779-1790.

For a related result (increase in left parietal distance effect from 10 years-old to adults), see: Ansari, D., & Dhital, B. (2006). Age-related changes in the activation of the intraparietal sulcus during nonsymbolic magnitude processing: an event-related functional magnetic resonance imaging study. *J Cogn Neurosci, 18*(11), 1820-1828.

An fMRI study of cross-notation adaptation

Piazza, Pinel and Dehaene, Neuron 2007

• Do the same neurons code for the symbol 20 and for twenty dots?

How is the numerosity representation changed by learning symbols?

Verguts, T., & Fias, W. (2004). Representation of number in animals and humans: a neural model. *J Cogn Neurosci, 16*(9), 1493-1504.

mean RTs (Arabic, 65) error rate (Arabic, 65) 800 0.14 Subjects = humans 0.12 750 Stimuli = Arabic numerals 0.1 700 0.08 650 99 0.06 600 31 0.04 550 0.02 84 500 £ 52 -20 Ο 20 -20 Ο 20 linear difference between the two numbers Amount of information RT-error relation (Arabic, 65) 800 0.15

Which of two Arabic numerals is the larger?

Non-symbolic and symbolic comparison within the same subjects

10 human adults compared sets of dots or Arabic numerals to a fixed reference, either 25 or 55

Symbolic comparison

Development of the linear understanding of number

(Siegler & Opfer, 2003; Siegler & Booth, 2004)

Number-Space mapping task:

« Please point to where number x should fall »

Figure 2. Progression from logarithmic pattern of median estimates among kindergartners (left panel) to linear pattern of estimates among second graders (right panel) in Experiment.

Numerical cognition without words in the Munduruku

Pica, Lemer, Izard, & Dehaene, Science, 2004

A reduced lexicon of number words

Munduruku number words refer to approximate numerosity

Munduruku adults and children can do approximate arithmetic with non-verbal numerosities (e.g. 40+30 is larger than 50) but not exact arithmetic (e.g. 7-6=1)

Success in approximate addition and comparison

Failure in exact subtraction of small quantities

A trace of approximate number sense in Munduruku sculpture?

In this Munduruku necklace, two miniature hands (out of 35) only have three fingers!

Number-Space mapping in the Munduruku

Munduruku children and adults were asked to point to the location corresponding to a certain number. Would they show a compressive mapping even in adults? And for numbers as small as 1-10?

Dehaene, Izard, Spelke and Pica, in preparation

Logarithmic Number-Space mapping in the Munduruku

Munduruku children and adults show a compressive mapping

- For dot patterns or series of 1-10 tones
- For Munduruku words and even for Portuguese numerals

Dehaene, Izard, Spelke and Pica, in preparation

Effect of education on log versus linear responding in Portuguese, but not in Munduruku

Munduruku participants only

Very little education

A logarithmic representation of number words remains dormant in educated adults

- For very large numbers: what's in the middle of « one thousand » and « one billion »?
- For smaller numbers : bias in judgement of random sequences (Banks & Coleman, 1981):
 - We asked subjects to listen to random sequences of number words and rate whether each sequence comprised « more small numbers » or « more large numbers »
 - In fact, sequences were generated by a power law whose exponent varied according to a staircase procedure
 - The indifference point does not correspond to a linear sequence, but to a compressed sequence with (objectively) more small numbers, as if sampling uniformly from a compressed scale.
 - This result is very robust and resists number-space training or exposure to linear sequences

Plan of the talk

• Neural coding of numerosity

- A quantity code is present in the intraparietal area of human adults and babies
- Optimal decision mechanisms based on this code can explain human psychophysics

• Understanding of number symbols

- Symbols are mapped onto numerosities
- However, the numerosity code may be changed by learning symbols
- Linear mapping of number onto space

 Brain mechanisms of number-space mappings

Behavioral evidence for interactions between Number and Space

Spatial-Numerical Association of Response Codes

= SNARC effect

(Dehaene et al., 1993)

RT(right key) minus RT(left key)

Calculation only

Brain mechanisms of Spatial-Numerical Assocation (SNARC): an fMRI experiment

Hubbard, Pinel & Dehaene, submitted

Do numbers elicit automatic shifts of spatial attention? An ERP study

- The EDAN waveform indexes a lateralized orientation of spatial attention (~300 ms after a cue)
- Would an EDAN be elicited by irrelevant numbers?
- Task: detect a small dot (left or right of fixation) preceded by a noninformative arrow or number

Conclusions: from animal number sense to human arithmetic

- All humans start in life with an elementary number sense based upon populations of number neurons in the intraparietal sulcus.
- Number symbols probably acquire their meaning by linking neural populations coding symbol shapes to those coding for nonsymbolic numerical quantities (a physical solution to the « grounding problem »)
- The acquisition of number symbols profoundly transforms the number system
- We develop an exact representation of large numbers
- We move from a logarithmic to a linear representation of numbers
- These two changes may happen in left parietal cortex
- Cross-talk with posterior parietal cortex may explain our intuition that numbers map onto space, a metaphor that plays an essential in higher mathematics.