### A rational sense of confidence during probabilistic inference in the human brain

Florent Meyniel CEA Paris – France Dehaene lab



- Humans and other animals learn in stochasticity world [Rescorla Wagner 1972, Dayan & Dolan Neuron 2013; Hyman 1953, Bornstein & Daw Plos Comp Biol 2013]
- Humans (at least) not only learn: they also have 'feelings of knowing', or confidence, about what they have learned
- Confidence has a clear definition and role in probabilistic inference

### Bayesian probabilistic inference: principled account of learning and confidence about what has been learned



Characteristic of the ideal (Bayesian) observer model:

- performs Bayesian inference (it is optimal)

- infers the transition probabilities that generate the observed outcomes

- assumes that transition probabilities can change over time
- returns a posterior distribution of values
- Optimal Bayesian inference provides estimates of probabilities and a principled account of **confidence as the posterior precision** of the estimated distribution.
- Changes in probability induce fluctuations of precision, hence, of confidence in what has been learned

# A computational role for confidence during learning: adjusting the weight of momentary evidence vs. prior knowledge

Delta rule (constant weighting)

The **update** is proportional to the deviation from prediction (**prediction error**)

 $\theta_{t+1} = \theta_t + \alpha (y_{t+1} - \theta_t)$ 

Optimal Bayesian learning (confidence weighting)

The **update** is determined by the unlikelihood of the observed event given what has been learned (**surprise**), the precision of the learned distribution (**confidence**) and the frequency of changes (**volatility**).

$$p(\boldsymbol{\theta}_{t+1}|y_{1:t+1}) \propto p(y_{t+1}|\boldsymbol{\theta}_{t+1}, y_t) \cdot (\boldsymbol{p}(\boldsymbol{\theta}_{t+1}, \boldsymbol{\theta}_t) \boldsymbol{p}(\boldsymbol{\theta}_t|y_{1:t}))$$



Volatility and confidence should not be conflated.

Previous studies mimicking unstable worlds: Behrens et al Nat Neuro 2007; Nassar & Gold J Neuro 2010; O'Reilly et al PNAS 2013, Gallistel et al 2014 Psych Rev, ...

### Topics addressed in this talk

In a stochastic and changing world (probabilistic learning task):

- Does the subjective confidence about what has been learned reflect the Bayesian notion of confidence?
- Do subjective estimates and confidence in those estimates, reveal properties expected from the (optimal) probabilistic inference?
- What are the functional correlates of confidence and learning in the brain?
- Do these correlates show evidence of a confidence-weighting of the momentary evidence as normatively prescribed?

First behavioral part: Meyniel, Schlunneger & Dehaene, Plos Computational Biology 2015 Second fMRI part: work in progress

### Task: estimation and confidence in a probabilistic learning task



## Result #1: Accurate subjective prediction & confidence independent from the sensory modality



## Results #2: Links between estimation of probability and confidence



#### Accuracies in each estimate should be correlated across subjects

NB: the accuracy is characterized with respect to the optimum (correlation with the Ideal Observer)



#### Accuracies in each estimate should be correlated across trials

- Weak correlation (r=0.11 ± 0.04) but consistent across subject (p<0.002)
- Control analysis: the correlation survives when any systematic mapping between probability estimates and confidence level is explained away.

## Results #2: Links between estimation of probability and confidence



Dissociable components of subjective confidence:

 $\rightarrow$  the uncertainty arising from the unpredictability of the environment (inescapable, normative property of probabilistic inference)

 $\rightarrow$  the uncertainty about knowing this unpredictability

 $\rightarrow$  the uncertainty about knowing this unpredictability

## Result #3: Subjective confidence is impacted by several factors, similarly to the optimal inference

Normative Property #1 When outcomes are more difficult to predict (low predictability) confidence should be lower.



Normative Property #2 When more data support the inference, confidence should be higher.



Normative Property #3 When the current estimates need to be profoundly revised, confidence should be low.



(from the Ideal Observer)

#### Intermediate summary

- Subjects are not only able to infer accurately probabilities, they are also able to estimate confidence levels in their inferences, in tight parallel with the optimal Bayesian inference.
- Their reports conform to several properties of a probabilistic inference.
- Additional results can be found in the publication, e.g.
  - subjects accurately detect changes in the generative probabilities
  - Several heuristics for confidence (non-probabilistic strategies) were ruled out

Meyniel, Schlunneger & Dehaene (2015) *Plos Computational Biology* "The sense of confidence during probabilistic learning: a normative account"

Part 2: Does confidence-weighting contribute to balance prior knowledge and current evidence in the brain?

### Dissecting confidence-weighting in Bayesian inference: update, confidence, surprise, predictability

The Ideal Observer estimates are sorted into bins to illustrate the **expected patterns** for confidence, surprise and update.



→ A theory-driven approach to look for functional correlates of confidence-weighting

### Specific computational signatures of confidence in the brain

Main effect of confidence P<sub>voxel</sub><0.001 P<sub>cluster</sub><0.05

#### Expected (p>0.5) Unexpected (p<0.5)

Ideal Observer



Confidence is distinct from predictability and surprise







The neural data predict inter-subject variability





Parametric relation to optimal confidence

5 6

4

-0.4

-0.6

|p<10<sup>-6</sup>

2 3

Modality independent

### Specific computational signatures of surprise in the brain

Main effect of un/expected P<sub>voxel</sub><0.001 P<sub>cluster</sub><0.05









Expected (p>0.5) Unexpected (p<0.5) Ideal Observer

Subject



predictability, not confidence

Modality independent

### A combination of surprise and confidence signals: Specific computational signatures of confidence weighting

Physio-physiological Interaction between rIPS and rPM FWEP<sub>voxel</sub><0.001 P<sub>cluster</sub><0.05









### **Graphical summary**



### Summary of the main findings

- Humans can accurately learn probabilities and assign rational confidence levels to their estimates, independent from a specific sensory modality.
- The properties of these estimates and confidence levels suggest that they both derive from the same probabilistic inference.
- Fluctuations of subjective and ideal confidence are driven by:
- A first-level environmental uncertainty (predicting a stimulus given its probability of occurrence)
- A second-level environmental uncertainty (changes in the probability of occurrence). Note that this second-level uncertainty may itself change (changes in the volatility).
- The confidence about what has been learned is tracked continuously in the brain.
- Confidence serves to weight the incoming evidence (surprising outcome) and update the internal knowledge. This process seems to rely on a fronto-parietal network.

### Thanks

Funding: The Human Brain Project Institution: CEA Collaborators: Stanislas Dehaene Daniel Schlunegger