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Probabilistic inference to extract the
characteristics of our stochastic environments

Example: Will your colleague be late this morning?
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Observation history

« Humans and other animals learn in stochasticity world
[Rescorla Wagner 1972, Dayan & Dolan Neuron 2013; Hyman 1953, Bornstein & Daw Plos
Comp Biol 2013]

« Humans (at least) not only learn: they also have 'feelings of
knowing', or confidence, about what they have learned

« Confidence has a clear definition and role in probabilistic
Inference



Bayesian probabilistic inference: principled account
of learning and confidence about what has been learned
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Characteristic of the ideal (Bayesian) observer model:

- performs Bayesian inference (it is optimal)

- infers the transition probabilities that generate the observed outcomes
- assumes that transition probabilities can change over time

- returns a posterior distribution of values

« Optimal Bayesian inference provides estimates of probabilities and a principled
account of confidence as the posterior precision of the estimated distribution.

* Changes in probability induce fluctuations of precision, hence, of confidence in
what has been learned



A computational role for confidence during learning: adjusting
the weight of momentary evidence vs. prior knowledge

Delta rule Optimal Bayesian learning
(confidence weighting)

(constant weighting)

The update is proportional to the deviation from The update is determined by the unlikelihood of the observed

prediction (prediction error)

event given what has been learned (surprise), the precision of

the learned distribution (confidence) and the frequency of

changes (volatility).

Volatility

(overall stability of
the world, hence, of
knowledge)

0

Prior knowledge

likelihood

0 likelihood

O =0+ (y”l_ Gt) p (6t+1|y1:t+1)ocp(yt+1|6t+1’ yt)'(p (et+1 ’et) p (etlylzt))
Updated knowledge = Momentary
- evidence
0
N 'y o_likelihood likelihood
I a (Yt+1 o et)
b Low
Vi1~ 0, confidence
1 X .
o likelihood oJikelihood
High
confidence

Volatility and confidence should not be conflated.

Previous studies mimicking unstable worlds: Behrens et al Nat Neuro 2007; Nassar & Gold J Neuro 2010; O'Reilly et al PNAS 2013,

Gallistel et al 2014 Psych Rey, ...



Topics addressed In this talk

In a stochastic and changing world (probabillistic learning task):
* Does the subjective confidence about what has been learned reflect
the Bayesian notion of confidence?

Do subjective estimates and confidence in those estimates, reveal
properties expected from the (optimal) probabilistic inference?

 What are the functional correlates of confidence and learning in the
brain?

Do these correlates show evidence of a confidence-weighting of the
momentary evidence as normatively prescribed?

First behavioral part: Meyniel, Schlunneger & Dehaene, Plos Computational Biology 2015
Second fMRI part: work in progress



Task: estimation and confidence in a probabillistic learning task
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Result #1: Accurate subjective prediction & confidence
Independent from the sensory modality
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Results #2: Links between
estimation of probability and confidence

The hypothesis

Accuracies in each estimate should

be correlated across subjects
NB: the accuracy is characterized with respect to
the optimum (correlation with the Ideal Observer)

B Between-subject

correlation
1.p=0.67, p=0.002

o
N
T

o
Mo
T

Confidence accuracy
@
o
Q

0 1 1
-0.2 0.2 0.6 1
Estimation accuracy

Core
Inference

/

Readout of mean
(point estimate of probability)

Readout of precision
(subjective confidence)

Accuracies in each estimate should

be correlated across trials

« Weak correlation (r=0.11 = 0.04) but

consistent across subject (p<0.002)

« Control analysis: the correlation

survives when any systematic mapping
between probability estimates and
confidence level is explained away.



Results #2: Links between
estimation of probability and confidence

A: Distinct notions of uncertainty B: Experimental data

Trials sorted by high vs.
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Dissociable components of subjective confidence:

— the uncertainty arising from the unpredictability of the environment
(inescapable, normative property of probabilistic inference)

— the uncertainty about knowing this unpredictability



Result #3: Subjective confidence Is impacted by several
factors, similarly to the optimal inference

Subjective Confidence
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Intermediate summary

Subjects are not only able to infer accurately probabilities, they are also able to
estimate confidence levels in their inferences, in tight parallel with the optimal
Bayesian inference.

Their reports conform to several properties of a probabilistic inference.
Additional results can be found in the publication, e.g.

- subjects accurately detect changes in the generative probabilities
- Several heuristics for confidence (non-probabilistic strategies) were ruled out

Meyniel, Schlunneger & Dehaene (2015) Plos Computational Biology
“The sense of confidence during probabilistic learning: a normative account”

Part 2: Does confidence-weighting contribute to balance prior
knowledge and current evidence in the brain?



Dissecting confidence-weighting in Bayesian inference:
update, confidence, surprise, predictability

The Ideal Observer estimates are sorted into bins to illustrate the
expected patterns for confidence, surprise and update.

Expected (p>0.5) Low predictability
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Expected uncertainty about
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Surprise at observing the
actual outcome (= incoming
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Confidence about the
inferred estimate (= about
prior knowledge).

Update of the prior
knowledge based on the
incoming evidence.

— A theory-driven approach to look for functional correlates of confidence-weighting



Specific computational signatures of confidence in the brain
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Specific computational signatures of surprise in the brain
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A combination of surprise and confidence signals:
Specific computational signatures of confidence weighting

Physio-physiological
Interaction between
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Graphical summary
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Summary of the main findings

« Humans can accurately learn probabilities and assign rational confidence levels to their
estimates, independent from a specific sensory modality.

» The properties of these estimates and confidence levels suggest that they both derive from
the same probabilistic inference.

» Fluctuations of subjective and ideal confidence are driven by:

- Afirst-level environmental uncertainty (predicting a stimulus given its probability of occurrence)

- A second-level environmental uncertainty (changes in the probability of occurrence). Note that this
second-level uncertainty may itself change (changes in the volatility).

« The confidence about what has been learned is tracked continuously in the brain.

» Confidence serves to weight the incoming evidence (surprising outcome) and update the
internal knowledge. This process seems to rely on a fronto-parietal network.

Thanks

Funding: The Human Brain Project Collaborators: Stanislas Dehaene
Institution: CEA Daniel Schlunegger
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