

•

•

- The NR-HR group shows a phonological deficit on those tasks that require the most fine-grained phonological representations (phoneme deletion, non-word repetition) until grade 3 → family risk for dyslexia may be continuous
- PA is most strongly related to reading accuracy RAN is most strongly related to reading speed
 - PA is the most important predictor in the early phase of learning to read RAN becomes a more prominent predictor for later reading development

Further details: Boets et al., 2010, Brit. J. Dev. Psych. Dandache et al., 2014, Dyslexia KU LEUVEN

General conclusions

- Both in preschool and in grade 1 DR children show a significant deficit in
 - low-level auditory processing
 speech perception
 - speech percepti
 phonology
- This implies that these deficits precede the literacy problem.
- Together with the significant predictive correlations, this may be suggestive of a causal relation between these skills.
- However, so far, we cannot demonstrate a robust directional relation between auditory processing, speech perception and phonology.

KU LEUVEN

KU LEUVEN

Temporal processing deficit theory

Treatment consequences

- Possibilities of early detection of children at risk
- Keep in mind speech perception problems (especially in noisy environments)
- Treatment possibilities are still controversial and not yet evidence based

 e.g. Fast-For-Word program

	Dyslexic readers	Normal readers	Test statistics
	M (SD)	M (SD)	
N	20	20	
Subject characteristics			
Sex (male/female)	7/13	8/12	p = .75
Age (years)	22.1 (3.1)	21.4 (3.0)	p = .51
Non-verbal IQ (WAIS)	108 (10)	106 (10)	p = .59
Defining literacy measures			
Word reading	66.1 (1.9)	99.8 (11.4)	p < .0001
Pseudoword reading	66.0 (1.8)	107.9 (9.8)	p < .0001
Spelling	69.3 (6.5)	105.8 (9.6)	p < .0001
Reading underlying processes			
Phoneme awareness (effect size)	-2.79 (1.25)	0 (1)	p <.0001
Speech perception in noise (SRT in dB)	-8.2 (0.9)	-8.5 (1.1)	p = .30
Orthographic processing (raw score)	28.2 (3.6)	34.5 (2.6)	p <.0001

	Normal Readers Mean FA (sd)	Dyslexic Readers Mean FA (sd)	P-value ANCOVA
Left AF _{FTP}	0.474 (0.017)	0.460 (0.025)	.029*
Left posterior AF	0.455 (0.026)	0.444 (0.027)	.14
_eft IFOF	0.485 (0.027)	0.486 (0.024)	.81
Right AF _{FTP}	0.422 (0.030)	0.426 (0.021)	.68
(AFritte • posterior AF	9	

RESULTS: CORREL (controlled for literacy,	ATIONS with Fi	A dex of DTI-acquisition))
	Phoneme awareness	Speech-in-noise perception	Orthography
Left AF _{FTP}	.31*	.23	05
Left posterior AF _{TP}	.21	.42**	.00
Left IFOF	.04	.18	.39*
No significant correlation in right hemispheric tra	ons acts	AF posterior AF TP	

Structural reading network in at risk pre-readers Participants Last year of kindergarten 45 family-risk for dyslexia pre-readers at least one first-degree relative diagnosed as dyslexic 45 no family risk for dyslexia pre-readers Individual matching Educational environment, i.e. same school! Sex Age Non-verbal IQ (CPM) Educational level of father and mother

	FRD*	FRD ⁻	Test statistics	
PARTICIPANTS	(n = 36)	(n = 35)		
Demographic data				
Gender (boy/girl)	23/13	18/17	Fisher's exact test: p = .3	
SES	5.3 (1.6)	5.6 (1.6)	Fisher's exact test: p = .1	
ADHD	2.5 (2.2)	1.5 (1.5)	Fisher's exact test: p = .4	
Handedness (left/right)	5/30	2/32	Fisher's exact test: p = .4	
Age in months	61.4 (3.1)	61.7 (3.0)	F _(1,27) = 0.14; p = .71	
Non-verbal IQ	109.9 (13.2)	110.4 (10.0)	F _(1,27) = 0.01; p = .83	
Cognitive predictors (compos	site score)			
Phonological Awareness	-0.06 (1.28)	0 (1)	F _(1.27) = 0.20; p = .66	
Rapid Automatized Naming	-0.46 (1.08)	0 (1)	F F _(1,27) = 3.41; p = .09	
Letter Knowledge	-0.51 (1.25)	0 (1)	F _(1.27) = 9.75; p = .02	

Structural reading network in at risk pre-readers

RESULTS: CORRELATIONS with FA

	LEFT		RIGHT			
	AF _{FTP}	Posterior AF _{TP}	IFOF	AF _{FTP}	Posterior AF _{TP}	IFOF
Phonological Awareness	0.30*	0.24 *	0.36**	0.27*	0.19	0.37**
Rapid Automatized Naming	0.13	0.07	0.20	0.16	-0.09	0.31**
Letter Knowledge	0.16	0.15	0.26 *	0.21	0.17	0.26 *

RESULTS: MULTIPLE REGRESSION

• phonological awareness was the only significant predictor of FA - no unique contribution of letter knowledge & rapid automatized naming

KU LEUVEN

- 2.
- their specific cognitive function at that young age
 - correlation with phonological tasks (phonological awareness) partial orthographic tasks (letter knowledge and rapid automatized naming)

DYSCO - Dyslexia research collaboration Parenting and Special Education (Psychology and Educational Sciences) Prof. Pol Ghesquière, PhD (Bart Boets, PhD) Masike Vandermosten, PhD Anneti Veispak, PhD (Meive Van Ingelghern) (Sophie Dandache) Jeremy Law Jolijn Vanderauwera

- Experimental ORL (Department of Neurosciences Faculty of Medicine)
 Prof. Jan Wouters, PhD
 (Hene Podmars, PhD)
 (Eller Vandwalle, PhD)
 Sophie Vancoren
 Astrid De Vos
- Radiology (University Hospital Leuven Faculty of Medicine)
 Prof. Stefan Sunaert, MD, PhD