Mechanics of Morphogenesis

Lecture 2: Adhesion: from affinity to thermodynamics models

Thomas Lecuit chaire: Dynamiques du vivant

Summary- tissue organisation and plasticity

• Organisation:

- Cells adopt morphologies and configurations that tend to approach minimal surface energy
- Reflects balance between:
 - -hydrostatic/turgor pressure
 - -cortical tension
 - -cell walls/cortex stiffness
 - cell-cell adhesion
- Dynamics:
 - Cell connectedness varies so tissues can be modelled as gaz, viscoelastic fluids or elastic solids.
 - Reflects differences in cell-cell adhesion
 - Cell shape changes and cell movements are driven by active contractile systems in animals and wall remodelling in plants
 - Cell-cell adhesion resists active remodelling and maintains tissue cohesion under stress.

Thomas LECUIT 2017-2018

Mechanics of Cell shape - Geometry & Dynamics

- Cells « morpho-space » is a huge multidimensional space
- Genetic/biochemical space of regulatory interactions is also very large
- ♦ How can we reduce the dimensionality of these spaces?
- ♦ How many parameters for description of and control over cell shape?

Cell shape and Surface Tension

On Growth and Form. chapter V d'Arcy W Thompson, On Growth and Form, 1917

• Thermodynamic description: near equilibrium/quasi-static

> « Justified » by separation of time scales between molecular and cellular processes?

- Minimisation of surface energy E
- Minimisation of surface S
- Surface tension

$$E = \lambda$$
. S

 λ : amount of work done per unit of surface change

Hayashi T & Carthew R, Nature, 431:647 (2004)

• Surface tension $E = \lambda$. S

 λ : amount of work done per unit of surface change

 $\lambda = f$ (Adhesion, Tension)

I. Affinity and Adhesion: a specificity problem

2. Adhesion: a thermodynamic model

3. The molecular framework of adhesion

4. Evolutionary origin of adhesion mechanisms

5. Adhesion as an active mechanism

6. Adhesion and dissipation

- Remarkable process at the cross road of :

Thomas LECUIT 2017-2018

- Evolution:
 - How did multicellular organisms arise? Principles of cell collective behaviours.
- Developmental Biology:
 - How do organisms acquire specific shapes? From aggregates to functional forms.
- Cell Biology:
 - What are the molecular underpinnings of cell-cell interactions and association?

Principles of specific multi-molecular couplings.

- Biophysics:
 - What are the physical basis of cell-cell adhesion?

The forces that hold cells together

Explain: Balance between robust organisation and intrinsic dynamics

• The dynamics of adherent cells

Bertet C., Sulak, L and Lecuit T. Nature 429:667. 2004

Cohen DJ, Gloerich M and Nelson WJ. PNAS. 113:14698. 2016

I. Affinity and Adhesion: a specificity problem

2. Adhesion: a thermodynamic model

- 3. The molecular framework of adhesion
- 4. Evolutionary origin of adhesion mechanisms
- 5. Adhesion as an active mechanism

Regeneration and Cell Aggregation

ON SOME PHENOMENA OF COALESCENCE AND **REGENERATION IN SPONGES¹**

BY

Mechanical dissociation of sponge cells

H. V. WILSON

University of North Carolina Chapel Hill, N. C. October 29, 1907

Spontaneous re-association and formation of new sponges

Does not favour the idea that differentiated cells sort according to origin

THE REGENERATION OF SPONGES (MICROCIONA) FROM DISSOCIATED CELLS

H. V. WILSON AND J. T. PENNEY University of North Carolina

H. W. Wilson

Henry van Wilson 1863-1939

Cell Aggregation: Cell selective binding

STUDIES ON CELL AGGREGATION: DEMONSTRATION OF MATERIALS WITH SELECTIVE CELL-BINDING ACTIVITY*

By A. A. Moscona

DEPARTMENT OF ZOOLOGY, UNIVERSITY OF CHICAGO, AND MARINE BIOLOGICAL LABORATORY, WOODS HOLE, MASSACHUSETTS

Communicated by George W. Beadle, April 2, 1963

Moscona AA. PNAS, 49: 742. 1963

Microciona prolifera

Haliclona oculata

Aron A Moscona in 1972 1921-2009

M cells

M and H cells could be tracked based on natural pigmentation of cells

Thomas LECUIT 2017-2018

Cell Aggregation: Cell selective binding

+M cell-binding activity +Ca2+ @ 5°C t= +24h

M cell-binding activity: prepared from dissociation buffer at 0°C, and centrifugation.

Cell Aggregation: Cell selective binding

Cell Aggregation: Properties of Specific Cell-Ligands and Their Role in the Formation of Multicellular Systems

A. A. MOSCONA

Department of Biology, University of Chicago, Chicago, Illinois, 60637, and Woods Hole Marine Biological Laboratory, Woods Hole, Massachusetts

DEVELOPMENTAL BIOLOGY 18, 250-277 (1968)

I. Aggregation of cells and grafting experiments show similar selectivity

2. Aggregation M Factor shows specific activity:

- activity is specifically depleted in « used medium »
- still active on formaldehyde fixed cells (not metabolically inactivated)

3. Aggregation M Factor: insensitive to DNAse, RNAse, Trypsin, collagenase, hyaluronidase etc

sensitive to Pronase (non specific exo/endo peptidase) and a-Amylase (glycosidase)

> Surface Glycoprotein

4. Antiserum against M Factor:

- > inactivates M Factor and induces *Microciona* cell agglutination selectively
- > Antigenic specificity of M-Factor ligand(s) reflects aggregative affinities of cells

Thomas LECUIT 2017-2018

Fig. 1. Sections through 12-hour grafts: (a) Microciona (M) on M; note fusion of graft with host; (b) M on Haliclona (H); note separation of graft from host cells.

Cell Aggregation: Molecular theory of specificity

THE PROBLEM OF SPECIFICITY IN GROWTH AND DEVELOPMENT*

PAUL WEISS YALE JOURNAL OF BIOLOGY AND MEDICINE 1947

- Interpret cellular affinities in terms of molecular structure and organisation
- Specificity: correspondance and mutual fitting between 2 properties Can be resolved in terms of molecular theory

This past discussion leans heavily on current concepts of immunochemistry, particularly those developed by Pauling.²⁴ It may be premature to tie the phenomena with which we have been dealing too closely to the antigen-antibody model. Rather than trying to force all biological specificity into the immunological compartment, we might have to consider the latter as merely a special case of a more universal biological principle, namely, *molecular key-lock configuration as a mechanism of selectivity*, genes, growth, differentiation, drug action, immunity, sensory response, or nervous co-ordination.

Being contact relation-

ships, they can easily be conceived of as products of intermolecular forces, and their specificity as the result of steric conformances, that is, fittingly interlocking configurations of the molecular species to either side of the surface of contact.^{*} These relations will have to be viewed as dynamic rather than static, and as statistical rather than rigidly fixed; that is to say, as the bonds in question are presumably incessantly made and broken, the rate and frequency of these events are as instrumental in determining the degree of specificity attained as are the nature and arrangement of the molecular groups involved.

Cell Aggregation: adhesiveness of cell membranes

SIGNIFICANCE OF THE CELL MEMBRANE IN EMBRYONIC PROCESSES

By JOHANNES HOLTFRETER* Biology Department, University of Rochester, Rochester, N. Y. Annals: New York Academy of Sciences, 709-760. 1948

Based mainly upon observations on amphibian material, the attempt has been made to show that many embryological phenomena may be better understood if we take into consideration the properties and functions of the interfacial membranes which separate the cells from each other and from the external medium. While all cells are furnished with a liv-

FIGURE 20. Aggregation of myelin vesicles in a $10^{-2}M$ solution of CaCl₂.

The direction of cellular migration, and the histotypical groupings and regroupings exhibited by the various types of cells in a developing organism, appear to be controlled by a selective adhesiveness of the cell membrane, which varies with the developmental stage and with the kind of cells involved. Cellular adhesiveness depends both on the chemical constitution of the contacting cell surfaces and on the composition of the immersion fluid. From the observed antagonistic effects of hydrating

> Explicit reference to Paul Weiss molecular theory of specificity

Johannes Holtfreter , *circa* 1950 1901- 1992

With progressive differentiation, there arise cell-specific differences of adhesiveness which are reflected in the display of histotypical patterns of aggregation, disaggregation, migration, and recombination of the various cell strains (Holtfreter, 1939, 1944). It is not known whether these manifestations of a selective adhesiveness result from a molecular lockand-key mechanism of the naked cell surfaces (Weiss, 1941) or from the interference of specific cementing substances, which may either exudate from the contacting cells themselves or be furnished by the external fluid.

The Concept of Tissue Affinity

Johannes Holtfreter , *circa* 1950 1901- 1992

J. Holtfreter. Gewebeaffinität, ein Mittel der embryonalen Fortbildung Arch. Exp. Zellforschung., 23: 169-209. 1939

The Concept of Tissue Affinity

A STUDY OF THE MECHANICS OF GASTRULATION

PART II

JOHANNES HOLTFRETER Department of Zoology, McGill University, Montreal

J. Exp. Zool. 1943

The shape of the cells in an aggregate is largely a function of their relative position, and of tissue affinity. In a homologous combination, invading endoderm or mesoderm cells stretch perpendicular to the surface and interlock with those of the substratum. In heterologous combinations, an aggregate of like cells tends to keep together and to establish a smooth surface in contact with unlike cells.

• Grafting experiments:

Homologous combination endoderm/endoderm

Heterologous combination ectoderm/endoderm

COLLÈGE

DE FRANCE

Fig. 17 An aggregate of uncoated endoderm is incorporated into an endodermal substratum but forms no groove.

Fig. 21 An endodermal graft covered by ectoderm invaginates into endoderm; the ectoderm spreads at first, then becomes isolated.

Thomas LECUIT 2017-2018

The Concept of Cell Affinity

DIRECTED MOVEMENTS AND SELECTIVE ADHE-SION OF EMBRYONIC AMPHIBIAN CELLS ¹

Fig. 10 A piece of the medullary plate and a piece of prospective epidermis are excised and disaggregated by means of alkali. The free cells are intermingled (epidermal cells indicated in black). Under re-adjusted conditions the cells reaggregate and subsequently segregate so that the surface of the explant becomes entirely epidermal.

Ambystoma punctatum

Rana pipiens

Evaluate the contribution of: - cell motility - cell-cell adhesiveness

Townes P. and Holtfreter J. J. Exp. Zool. 53-120. 1955

The Concept of Cell Affinity

Observations:

- Rapid cell aggregation
- Elongation of prospective neural cells
- Centripetal migration of prospective neural cells
- Centrifugal migration of epidermal cells
- Sorting of distinct cell populations according to identity
- Clear separation between two tissues

Interpretation:

- Cell-type specific movement
- 2 forms of cell adhesion:
 - not specific at early stages
 - specific at late stages, following prolonged contact

Townes P. and Holtfreter J. J. Exp. Zool. 53-120. 1955

The Concept of Cell Affinity

Tissue movement and Cell sorting

- Cells tend to sort out and re-organise in configurations that ressemble the normal embryonic development
- 2. Tissue movement of 2 kinds:
 - Spreading
 - Invagination

Townes P. and Holtfreter J. J. Exp. Zool. 53-120. 1955

Argues against role of:

- Cell division and growth
- Tension of outer layer (cortex)
 - viscous gel layer characterised by WH. Lewis (42): plasmagel

The relation of the viscosity changes of protoplasm to ameboid locomotion and cell division. In: *A Symposium on the Structure of Protoplasm*, ed. by W. Seifritz, pp. 163-197. 1942

Mechanics of invagination. Anat. Rec., 97: 139-156. 1947

- <u>elastic coat</u> characterised by J. Holtfreter (43)

Properties and functions of the surface coat in Amphibian embryos *J. Exp. Zool.*, *93:251-323*.

- May coordinate, but not cause/direct invagination/epiboly.

Conclusions: -Invagination is driven by some sort of cell locomotion

as proposed earlier, J. Holtfreter. A study of the mechanics of gastrulation. J. Exp. Zool. 1943

Fig. 24 Diagram illustrating the mechanics of invagination.

that epiboly or the formation of such deep cavities as the archenteron could result from curlings due to the contraction of any kind of surface structure. At any rate, single cells, or uncoated cell masses, move into the depth just as well as does a layer of coated cells.

It is inconceivable

Townes P. and Holtfreter J. J. Exp. Zool. 53-120. 1955

Forces driving Cell Sorting

I. Active, directed cellular motility:

- Cell-type specific tendency to migrate outward or inward
- Cells respond uniquely to an inside-outside gradient
- Interpreted as akin to a gradient of interfacial tension

They suggested that if the blastocoel, or the interior of a cell aggregate in general, contains surface tension-lowering substances, invagination may be due to a kind of cytotactic reaction of the proximal cell surfaces to a gradient of interfacial tension between inside and outside of the embryo. The cells or cell masses would move toward the surface tension-lowering gradient comparable to the engulfing of certain kinds of oil drops by a sea urchin egg.

> see L. Rhumbler 1927 MJ. Kopac & R. Chambers 1937 J. Holtfreter 1943

Requires labile, unspecific intercellular adhesive bonds and mobile molecules

the forces controlling directed movements must overcome those of cell adhesion. It becomes evident once more that the molecular bonds involved in these early, temporary and indiscriminate cell adhesions are extremely labile and as such not comparable to the bonds involved in antigen-antibody reactions.

COLLÈGE DE FRANCE Thomas LECUIT 2017-2018

Townes P. and Holtfreter J. J. Exp. Zool. 53-120. 1955

In morphogenesis,

2. Passive, cellular adhesiveness:

21. Early adhesion:

COLLÈGE

DE FRANCE

Cell motility resisted by indiscriminate, weak adhesive bonds

22. Late, tissue-specific cell-cell adhesion:

- can vary in degree/strength

It is the fact that adhesiveness between different tissues may vary in *degree*. Dissection of a fresh neurula shows for instance that the prechordal mesoderm is much less firmly attached to the medullary plate than is the notochordal tissue.

Thomas LECUIT 2017-2018

- Molecular interpretation:

> Key-lock mechanism

based on Pauling's theory that strength of chemical bonds proportional to complementariness of molecules (P.Weiss, 47)

> Labile bonds and molecular mobility

Fig. 27 Schematic representation of changes in intercellular bonds and migration tendency leading to segregation of medullary and epidermal cells (or tissues).

- I. Central role of cell-specific directed motility
- 2. Gradient of chemokine
- 3. Suggests possible role of surface tension at <u>cellular level</u>
- 4. Cell-specific adhesion stabilises final configuration

5. In consequence of directed movements, the different cell types in a composite aggregate are sorted out into distinct homogeneous layers, the stratification of which corresponds to the normal germ layer arrangement. The tissue segregation becomes complete because of the emergence of a selectivity of cell adhesion

- Uncouples motility and adhesion
- Uncouples adhesion and surface tension

I. Affinity and Adhesion: a specificity problem

2. Adhesion: a thermodynamic model

3. The molecular framework of adhesion

4. Evolutionary origin of adhesion mechanisms

5. Adhesion as an active mechanism

6. Adhesion and dissipation

The Differential Adhesion Hypothesis

Reconstruction of Tissues by Dissociated Cells

Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation.

2 August 1963, Volume 141, Number 3579 Malcolm S. Steinberg SCIENCE

Malcolm Steinberg 1930-2012

DIRECTED MIGRATION DIFFERENTIAL ADHESIVENESS

Holtfreter:

- directed motility

Steinberg:

- random motility and selective stabilisation by adhesion
- based on quantitative differences in adhesion
- unrestricted by qualitative specificity
- cells in tissue are like molecules in a fluid

Interfacial Energy or Surface Tension

Interfacial Energy: J/m²

- maximisation of intermolecular forces minimises the free energy
- anisotropic forces at interface associated with increased interfacial energy compared to bulk
- Free energy minimisation causes surface minimisation
- It is the amount of reversible work to change the surface dE = k. dS

Surface tension: N/m

- derives from free energy difference between interface and bulk
- consequence of net inward intermolecular force at interface

A thermodynamic view of Adhesion

I. Cells in a tissue are akin to molecules in a fluid (though recognises that cell movement is active: « active fluid »)

2. Free Energy minimisation of liquid drop/cell aggregate predicts its organisation at thermodynamic equilibrium

3. Tissue interfacial free energies arises from cellular adhesive interactions

4. Work of adhesion: work done in the realisation of adhesion over unit area (between 2 phases) Work of cohesion: (within single phase)

Fig. 2. Types of phase distribution, at equilibrium, in coherent populations consisting of mobile units of two kinds. The work of cohesion W_b . The work of cohesion of the arbitrarily assigned a value of 1, is given by the line W_b . The work of cohesion of the more strongly cohesive *a* units is denoted by W_a . The diagram is used as follows. For any set of adhesive relationships, that vertical line is drawn which passes through the calculated value of W_a/W_b as read on the abscissa. The work of adhesion of *a* units to *b* units (W_{ab}), as read on the ordinate, is then entered upon this line. The background shading at this point indicates the distribution of the *a* and *b* phases for this system at thermodynamic equilibrium. Example: If $W_a = 3$, with W_b defined as 1, then $W_{ab} = 2.1$ would yield intermixing; $W_{ab} = 1.5$ would yield complete coverage of *a* by *b* (see 24). The intersection of the vertical line with the dotted line (W_a)^{1/2} (W_b)^{1/2} marks the value of W_{ab} which would be generated in the model system devoid of adhesive specificity, as described in the text. [Modified from Steinberg (30]]

Wa, b or ab

a: strongly cohesive unit b: weakly cohesive unit

> COLLÈGE DE FRANCE Thomas LECUIT 2017-2018

Assumptions: - Unique molecular species involved in adhesion - Different average densities in cells a and b

If the frequency of adhesive sites per unit area on the surfaces of cells *a* and *b* is designated f_a and f_b , respectively, the probability of apposition of sites in the cell pairs *a-a*, *b-b*, and *a-b* is given by $(f_a)^2$, $(f_b)^2$, and $(f_a)(f_b)$ for the respective cases. Introducing the proportionality constant *k*, we may write the equations

 $W_{ab} = \sqrt{W_a} \cdot \sqrt{W_b}$

$$W_a = k (f_a)^2$$
 (7)
 $W_b = k (f_b)^2$ (8)
 $W_{ab} = k (f_a) (f_b)$ (9)

Following the convention that
$$W_a \ge W_b$$
, we obtain

$$f_a \ge f_b \qquad (10)$$

$$\downarrow$$

$$(f_a)^2 + (f_b)^2 \ge (f_a)(f_b) \ge (f_b)^2 \qquad (13)$$

thus,
$$\frac{W_a + W_b}{2} \ge W_{ab} \ge W_b$$

>>Accurately predicts envelopment behaviour

Thomas LECUIT 2017-2018

Model without adhesive specificity

Complexity: biological heterogeneity/specificity Simplicity: physical quantitative parameter

While the *adaptedness* brought about through evolution appears complex, the adaptiveness which makes evolution possible is born of simplicity. The entire genetic code (and more) is expressible with an alphabet containing only four elements. It would appear that a not inconsiderable amount of the "information" required to produce, through morphogenetic movement, the anatomy of a body part may be expressed in a code whose sole element is quantity: more versus less. There is, I think, reason to expect that as more realms of biological specificity yield to analysis, their most impressive feature may be the simplicity of the terms in which specificity-information, if you will—can be expressed (34).

Holfreter & Steinberg

Fig. 2. Hans Holtfreter pronouncing his disagreement with the experimental evidence of Mal Steinberg (shown here laughing) for the thermodynamic model of cell sorting. This photograph was taken at the embryology course at the Marine Biology Laboratory at Woods Hole, 1971.

from Steinberg & Gilbert J. Exp. Zool. 2004, about Townes & Holtfreter J. Exp. Zool. 1955

I. Cell sorting follows a transitive hierarchy:

> Follows a quantitative cell parameter

If A sorts out internal to B, and B sorts out internal to C then A sorts out internal to C

Steinberg MS. J. Exp. Zool. 173:395-434. 1970

2. Final configuration is independent of initial conditions

Explants engulfment and sorting of dissociated cells converge on same outcome. Steinberg MS. J. Exp. Zool. 173:395-434. 1970

- **3. Resistance to compression (cohesion) scales with sorting behaviour** If Cell aggregate A resists more to centrifugation (i.e. that is more cohesive) than B, then A sorts internal to B. Phillips & Steinberg *P.N.A.S. 64:121.* 1969
 - But does not prove that surface-tension like property is cell-cell adhesion

Measurement of tissue surface tension

VOLUME 72, NUMBER 14

PHYSICAL REVIEW LETTERS

4 APRIL 1994

Liquid Properties of Embryonic Tissues: Measurement of Interfacial Tensions

Ramsey A. Foty,¹ Gabor Forgacs,² Cathie M. Pfleger,¹ and Malcolm S. Steinberg^{1,*}

215-94 2) 21 47P

Foty RA. et al, and Steinberg MS. PRL. 72:2298. 1994

Measurement of tissue surface tension

VOLUME 72, NUMBER 14

PHYSICAL REVIEW LETTERS

4 APRIL 1994

Liquid Properties of Embryonic Tissues: Measurement of Interfacial Tensions

Ramsey A. Foty,¹ Gabor Forgacs,² Cathie M. Pfleger,¹ and Malcolm S. Steinberg^{1,*}

Measurement of surface tension from F and geometry (R_1 , R_2 , R_3) of explant at equilibrium

Surface tension predicts sorting behaviour

Is cell sorting caused by differences in the work of adhesion?

• Differences between cell aggregates and liquids:

- I. Cells are « active particles ». Aggregates are thermodynamically open systems, The final configuration need not reflect minimisation of adhesive free energy.
- 2. Adhesion is much more than « close range attraction ». The forces that attract cells are not necessarily the same as those that hold cells together.

Adhesion does not simply arise from H-bonds, van der Waals forces, electrostatic interactions etc.

3. The work of adhesion need not be the same as the work of de-adhesion.

If there is a *maturation* of adhesion *after* cells are brought into contact (*i.e.* due to cells being active systems) the breakage of adhesive bonds is not the simple reverse of their formation. (see Townes and Holtfreter 1955)

4. Adhesion molecules are not distributed uniformly and are mobile units.

Surface and adhesion are not linearly scaling with one another.

I. Affinity and Adhesion: a specificity problem

2. Adhesion: a thermodynamic model

3. The molecular framework of adhesion

4. Evolutionary origin of adhesion mechanisms

5. Adhesion as an active mechanism

Mechanisms of adhesion among cells from neural tissues of the chick embryo

(cell-cell binding/brain and retinal cells/cell surface proteins/proteolytic activation)

URS RUTISHAUSER, JEAN-PAUL THIERY, ROBERT BRACKENBURY, BEN-AMI SELA, AND GERALD M. EDELMAN

Proc. Nat. Acad. Sci. USA Vol. 73, No. 2, pp. 577-581, February 1976 Cell Biology

Hypothesised Cell Adhesion Molecule (CAM) CAM-CAM interaction mediates adhesion Proteolytic cleavages of CAM and Antibody against F2 blocks cell adhesion

Gerald Edelman in 1972 1929-2014

Thomas LECUIT 2017-2018

Adhesion among Neural Cells of the Chick Embryo

I. AN IMMUNOLOGICAL ASSAY FOR MOLECULES INVOLVED IN CELL-CELL BINDING*

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 252, No. 19, Issue of October 10, pp. 6835–6840, 1977 Printed in U.S.A.

ROBERT BRACKENBURY,[‡] JEAN-PAUL THIERY,[§] URS RUTISHAUSER, AND GERALD M. EDELMAN From The Rockefeller University, New York, New York 10021

Trypsinised cells re-aggregate Fab (antigen binding) fragment against these cells prevents re-aggregation

Cells release proteins that block Fab fragment activity

FIG. 2. Aggregation of retinal cells from 10-day-old chick embryos detected as the rate of decrease in total particle number. $\bigcirc \bigcirc \bigcirc$, in the presence of 1 mg of Fab' from unimmunized rabbits; $\bigcirc \frown \bigcirc$, $\blacktriangle \frown \frown \bigtriangleup$, and $\bigtriangleup \frown \frown \bigtriangleup$, in the presence of 1 mg of Fab' from three different rabbits immunized with retinal cells from 10-day-old chick embryos. The *arrow* indicates the time at which the rate of aggregation was routinely measured in assays.

FIG. 1. Aggregation of retinal cells from 10-day-old chick embryos. a, cells prior to aggregation; b, aggregates produced after incubation for 30 min at 37°; c, aggregation for 30 min at 37° in the presence of anti-R10 Fab'.

t=0

t=30 min

t=30 min + anti-R10 Fab fragment

THE JOURNAL OF BIOLOGICAL CHEMISTRY Vol. 252, No. 19, Issue of October 10, pp. 6841-6845, 1977 Printed in U.S.A.

Adhesion among Neural Cells of the Chick Embryo

II. PURIFICATION AND CHARACTERIZATION OF A CELL ADHESION MOLECULE FROM NEURAL RETINA*

(Received for publication, April 19, 1977)

JEAN-PAUL THIERY,[‡] ROBERT BRACKENBURY,[§] URS RUTISHAUSER, AND GERALD M. EDELMAN From The Rockefeller University, New York, New York 10021

FUNCTIONAL CORRELATION BETWEEN CELL ADHESIVE PROPERTIES AND SOME CELL SURFACE PROTEINS

MASATOSHI TAKEICHI The Journal of Cell Biology · Volume 75, 1977 · pages 464-474

Adhesion is calcium dependent Calcium protects against trypsinisation

FIGURE 1 Aggregation of cells dissociated with 1 mM EDTA (a), 0.01% trypsin + 0.01 mM Ca²⁺ (b), and 0.01% trypsin + 1 mM EDTA (c). Medium for aggregation contains 1 mM Ca²⁺ ($\bullet - \bullet$), or no divalent cation ($\bigcirc - \bigcirc$).

Cells dissociated with EDTA and re-aggregated in different conditions

FIGURE 4 Photomicrographs of cell aggregates. E-cells in 1 mM $Ca^{2+}(a)$, in no divalent cations (b), and in 1 mM $Mg^{2+}(d)$; TC-cells in 1 mM $Ca^{2+}(c)$. Cells were incubated for 60 min at 37°C. × 360.

Surface antigen in early differentiation

(preimplantation embryo/mouse/embryonic development/teratocarcinoma)

R. KEMLER, C. BABINET, H. EISEN, AND F. JACOB

Proc. Natl. Acad. Sci. USA Vol. 74, No. 10, pp. 4449–4452, October 1977 Cell Biology

François Jacob 1920-2013

Discovery of Fab fragment against F9 EC line that blocks compaction.

Rolf Kemler

FIG. 1. Two-cell embryos with (C and D) and without (A and B) zona pellucida were grown in Whitten's medium (A and C) and Whitten's medium with rabbit anti-F9 Fab, 1/20 (B and D). $(\times 400.)$

Cell, Vol. 21, 927-934, October 1980, Copyright © 1980 by MIT

A Cell Surface Glycoprotein Involved in the Compaction of Embryonal Carcinoma Cells and Cleavage Stage Embryos

François Hyafil, Dominique Morello, Charles Babinet and François Jacob

Identification of gp84, a surface glycoprotein that antagonizes the decompaction effect of a Fab fragment of anti-EC lgG.

Figure 4. Compaction of Preimplantation Embryos in the Presence of Fab and gp84 8-cell precompaction embryos (72 hr post-human chorionic gonadotrophin (HCG)] were cultured in Whitten's medium containing (A) no addition; (B) F9 tumor-derived Fab target inhibitory material (gp84) dialyzed against Whitten's medium; (C) rabbit anti-F9 Fab; (D and E) both anti-F9 Fab and gp84. Pictures were taken 96 hr (A, B, C, D) or 111 hr (E) post-HCG; at 111 hr post-HCG the following structures were formed: (A) 19 blastocysts (17 of which expanded as in E), 1 degenerated blastocyst; (B) 24 blastocysts (21 expanded), 1 degenerated; (C) 20 grape-like structures with at least 40 cells per embryo; (D) 21 blastocysts (19 expanded), 1 degenerated.

Cell, Vol. 26, 447-454, November 1981 (Part 1), Copyright © 1981 by MIT

Cell-Cell Interactions in Early Embryogenesis: A Molecular Approach to the Role of Calcium

François Hyafil, Charles Babinet and François Jacob

1981: Naming of Uvomorulin (UM).

Purification of anti-UM antibody.

Effect of Ca2+ on compaction interpreted as change in Uvomorulin conformation.

+CaCl2

+no calcium

Decompaction induced by anti-EC lgG that recognises a specific cell surface glyvoprotein called uvomorulin. Ca2+ induces conformational change of Uvomorulin.

>Evidence: Ca2+ protects effect of trypsinization on Uvomorulin

The EMBO Journal vol.4 no.13A pp.3393-3398, 1985

Identification of a putative cell adhesion domain of uvomorulin Dietmar Vestweber and Rolf Kemler

Effect of blocking antibody on cell organisation Localisation of CAM at cell contacts

Fig. 3. Indirect immunofluorescence tests with DECMA-1

Fig. 1. Effect of monoclonal antibody DECMA-1 on cell-cell interaction.

The Role of the Cell Adhesion Molecule Uvomorulin in the Formation and Maintenance of the Epithelial Junctional Complex

Barry Gumbiner, Bruce Stevenson,* and Ann Grimaldi

Department of Pharmacology and Cell Biology Program, University of California, San Francisco, California 94143; and *Department of Biology, Yale University, New Haven, Connecticut

The Journal of Cell Biology, Volume 107, October 1988 1575-1587

Barry Gumbiner

Transformation of cell adhesion properties by exogenously introduced E-cadherin cDNA

Akira Nagafuchi, Yasuaki Shirayoshi, Kenji Okazaki, Kunio Yasuda & Masatoshi Takeichi*

Department of Biophysics, Faculty of Science, Kyoto University, Kitashirakawa, Sakyo-ku, Kyoto 606, Japan

NATURE VOL. 329 24 SEPTEMBER 1987

Selective aggregation and sorting by different Cadherins

Cell, Vol. 54, 993-1001, September 23, 1988

E-cadherin cells + P-cadherin cells

Akinao Nose, Akira Nagafuchi, and Masatoshi Takeichi Department of Biophysics Faculty of Science Kyoto University All cells

E-cadherin cells + E-cadherin cells

E-cadherin cells + P-cadherin cells

Thomas LECUIT 2017-2018

Differential expression of cadherins in different tissues

The determinants of specificity in Cadherins

Akinao Nose, Katsumi Tsuji, and Masatoshi Takeichi

Cell, Vol. 61, 147-155, April 6, 1990, 1

Cell sorting mediated by *quantitative* differences in expression of cadherin

Malcolm S. Steinberg* \dagger and Masatoshi Takeichi \ddagger

Proc. Natl. Acad. Sci. USA Vol. 91, pp. 206–209, January 1994 Developmental Biology

Thomas LECUIT 2017-2018

Quantitative and Qualitative determinants of cell sorting

Duke Duguay,^a Ramsey A. Foty,^{a,b} and Malcolm S. Steinberg^{a,*} Developmental Biology 253 (2003) 309–323

- I. Little selective adhesion
- 2. Quantitative differences seem sufficient for sorting

3. BUT:

No direct measurement of bond strength and adhesion strength

Assumes that [CAM] correlates with adhesion strength

Surface tension: from tissue to cell shape

Surface mechanics mediate pattern formation in the developing retina

Takashi Hayashi^{1,2} & Richard W. Carthew

¹Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208, USA ²Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo 113-0033, Japan

Surface tension: from tissue to cell shape

Differential Cadherin expression small cell aggregates: Geometry of contacts

Surface tension: from tissue to cell shape

N-cadherin expression dictates cell configurations

Relative N-cadherin expression dictates cell patterns

wild-type cells N-cadherin mutant cells

N-cadherin over expressing cells

Conclusions

- Adhesion captures the notion of selective/specific aggregation
- Cell sorting phenomena and tissue envelopment behaviours initially interpreted from standpoint of selective migration (Holtfreter)
- The « differential adhesion hypothesis » (DAH) proposes a purely quantitative description and prediction of cell/tissue behaviours based on surface tension of tissues modelled as fluids approaching thermodynamic equilibrium.
- The discovery of cell adhesion molecules offers an apparent validation of the DAH.
- Discussion of DAH by A. Harris: link between cell surface property dependent on CAMs and reversible work of adhesion?

Conclusions

Prochain cours: 7 Novembre 2017

