

- " Motivation
- ["] Empirical analysis of the role of free allocations in the EU-ETS 2013-2018
- Another implementation issue: OBA in a multisector setting
- " Concluding comments

" Motivation

- " Empirical analysis of the role of free allocations in the EU-ETS 2013-2018
- Another implementation issue: OBA in a multisector setting
- " Concluding comments

Motivation

- Unilateral ETS → risk of (sectoral) leakage for EITE→Options to limit
 leakage → free allocations
- A well studied topic in the literature
 - BTA > OBA > pure grandfathering or auction
 Sterner and Höglund-Isaksson (2006), Quirion (2009); Fisher and Fox (2007, 2012); Monjon and Quirion (2011), Böhringer et al (2012), Burtraw et al. (2015)...
- ["] In practice
 - . EU-ETS 2008-2012 selected grandfathering
 - . CA-ETS 2012-2020 selected OBA (ex-post adustment of free allocations)
 - . EU-ETS 2013-2020 selected an hybrid scheme (grandfathering with partial expost adjustments)
- The design issue is again on the table for the next EU-ETS 2020-2030

Motivation: OBA 101

Profit

 $\pi(q, u) = P q - c(u) q - \sigma u q + \sigma u^{\circ} q$

in which σuq is the cost of carbon when producing q with an emission rate at u and a CO2 price at σ and $u^{\circ}q$ the output based allocations with benchmark u°

The optimal abatment is u^* such that

 $c'(u^*)=\sigma$

The competitive market equilibrium increases to

$$P = c(u^*) + \sigma u^* - \sigma u^\circ$$

→ If $u^\circ = 0$ the pass through rate is 100%: the market price increases by the same amount as the cost increase due to the CO2 price

 \rightarrow If $u^{\circ} = u^{*}$ the pass through rate is 0%: the market price is not affected

24/11/2015

Global energy market: the energy channel effect

- ["] Carbon prices in ETS
- " Demand for fossil fuels in ETS decreases
- "World price for fossil fuels decreases
- Consumption of fossil fuels in non ETS increases
- ⁷⁷ CO2 emissions in non ETS increase...

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

Definition of leakage indicators

Kuik, O. J., 2001. "The effect of trade liberalization on carbon leakage under the Kyoto protocol: Experiments with GTAP-E". In 4th annual conference on global economic analysis. West Lafayette: Purdue University.

Change in	Annex 1	Non-
emissions	Countries	Annex 1
		Countries
Competitiveness	-74.2	+31.5
effect		
Energy effect 1	-3303.6	+361.0
(energy		
intensity)		
Energy effect 2	-466.2	+43.5
(household		
revenue)		
Total effect	-3844.0	+436.0

NB The global leakage rate is 11.3% (=436/3844). The competitiveness effect induces a leakage rate of 42.5% (=31.5/74.5).

- " Motivation
- ["] Empirical analysis of the role of free allocations in the EU-ETS 2013-2018
- Another implementation issue: OBA in a multisector setting
- " Concluding comments

Previous literature on hybrid schemes

- Reserve for new entrants may generate over-investment
 - . relative to auctionning for electricity: Neuhoff et al. (2006), Ellerman (2008), Pahle et al. (2011), Golombek et al. (2011)
 - . Relative to OBA: Meunier et al. (2014)
- Grandfathering (with updating and closure rule) achieve more in dynamic than in static settings
 - . Fowlie et al. (2012)
- Our study is an *ex-post* study
 - . Cement sector
 - . A context of significant decline in demand
 - . An outgrowth of the CS cement report

Agenda detailed

- ["] Rationale for gaming
- Structural characteristics of the cement industry
- " Methodology
- " Results

Cement Industry

- Cement markets are regional and possibly subject to leakage
- Demand is variable and cyclical (mainly dependent on the construction sector)
- ⁷⁷ Producing cement is carbon intensive
- ["] Three limited ways to reduce cement carbon intensity
 - . Change the fuel mix
 - . Increase energy efficiency in kiln
 - . Reduce clinker-to cement ratio
- ["] Climate Strategies report limited evidence that CO2 price influenced the pace of improvement in carbon intensity

The EU cement market

- We separate countries in low demand (LD) and moderate demand (MD):
- ["] LD if consumption 2012-2011 < 70% consumption 2007
- Approximately 50% of EU consumption in 2007
- ["] 246 plants of which 117 in LD
- ["] A downfall of 22% (6%) in cement consumption in LD (MD) from 2011 to 2012

Methodology for the counterfactual

- A counterfactual for 2012 is constructed at the country and plant levels
 - . Counterfactual clinker production and net exports at the country level are inferred from country consumption
 - . The clinker production at plant level is inferred from plant emissions adjusted for the country demand change and two correction factors (coastal and low activity plants)

Major assumptions: the allocation scheme has no influence

- . on cement consumption
- . On EU market shares

- Companies have « gamed » the rules to increase the windfall profits generated by the hybrid scheme
 - . Production shifting among plants
 - . Increase clinker production
 - " exports of clinker and cement outside the EU
 - " Increase the clinker to cement ratio

Windfall profits have somewhat declined but at the expense of the credibility of EU ETS

24/11/2015

Evidence of production shifting among plants of the same company

Country-Company	Installation	E/HEL 2011	E/HEL 2012
Greece-W	1	34%	49%
Greece-W	2	77%	66%
Greece-W	3	11%	0%
Spain-X	1	42%	50%
Spain-X	2	57%	46%
Spain-X	3	68%	56%
Hungary-Y	1	41%	46%
Hungary-Y	2	68%	50%
Portugal-Z	1	34%	64%
Portugal-Z	2	55%	51%
Portugal-Z	3	71%	60%

Greece	Spain	All	MD	LD	Millions of € relative to OB <u>A</u>
46	109	365	68	297	EX
14	47	228	57	172	EXALTNG
23	67	272	64	208	EXALTG
14 23 es	47 67 nd countr	228 272 n low dema	57 64 declined in	172 208 somewhat o	EXALTNG EXALTG ndfall profits have s % instead of 42%)

- " Motivation
- " Empirical analysis of the role of free allocations in the EU-ETS 2013-2018
- Another implementation issue: OBA in a multisector setting
- " Concluding comments

<section-header><list-item><list-item><list-item><list-item><list-item><list-item><list-item><list-item>

The « in » option exacerbates the volatility of the carbon price

["] Illustration

- . Assume demand uncertainty and no leakage
- . Suppose the regulator may select a combination of auction and OBA
- . Key result: the higher the uncertainty the higher the OBA rate

Numerical illustration

- . two (equal size) sectors
- . Sector 1 no uncertainty \rightarrow no OBA
- . Sector 2 uncertainty \rightarrow OBA

- " Motivation
- " Empirical analysis of the role of free allocations in the EU-ETS 2013-2018
- Another implementation issue: OBA in a multisector setting
- " Concluding comments

Discussion for the EU ETS

- ["] ETS policy 2013-2020 appears as a bounded rationality decision to balance two conflicting goals
 - . maintaining a global cap (interpreted as undifferentiated sector gaps)
 - . the limitations of windfall profit
- At the cost of perverse incentives (even with a low CO2 price)
- Similar perverse incentives with reserve for new entrants in case of high demand?
- ⁷ A number of proposals have been made promoting OBA
 - " Ecofys feasibility study (2014)
 - " CEPS (2014, 2015)
 - ["] Climate Strategies (2014) OBA with inclusion of consumption in ETS for energy intensive products
- → This study delivers an empirical analysis that supports these proposals + flexible cap

Discussion

What about COP 21

The global cement market

- . Cement « most used man-made material of the world » with limited substitutes
- . Accounts for 5% of world's anthropic emissions
- . China has the Lion's share of production (57%) followed by India (7%) and EU 27 (5%)
- . In the EU, emissions are covered by the EU ETS
- Abatement in carbon intensity in cement is 1% per year while market growth is 2,5% ...
- ⁷ Kyoto CO2 versus Montreal protocol CFC
 - . Cooperation between governments and industry on a long term road map
 - . By-pass the antagonism between antitrust and climate policies
 - . Lafarge-Holcim deal: a missed opportunity

References

- Branger, F., Ponssard, J.-P., Sartor, O. and Sato, M. "<u>EU ETS, Free Allocations, and Activity Level Thresholds: The Devil Lies in the Details</u>". *Journal of The Association of Environmental and Resource Economists*, volume 2, number 3. 2015. Pages 401-437
- Meunier, G. and Ponssard, J.-P. "<u>A Sectoral Approach Balancing Global Efficiency</u> <u>and Equity</u>". *Environmental and Resource Economics*, vol.53, Issue 4, 533-552, 2012.
- Arjaliès, D. L., Goubet, C., and Ponssard J.-P. "<u>Approches stratégiques des émissions</u> <u>CO2 : Les cas de l'industrie cimentière et de l'industrie chimique</u>", *Revue Française de Gestion.* 2011/6 N° 215, p. 123-146.
- ["] Meunier, G., Montero, J.-P. and and Ponssard, J.-P. "<u>Output-based allocations in</u> <u>pollution markets under uncertainty and self selection</u>". Working paper. Ecole Polytechnique.

