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PLAN OF THE LECTURES 

 

Lecture 1. Brief summary of superfluidity in ultracold gases.  

                 Some open questions 

 

Lecture 2. A tale of two sounds (first and second sound) 

 

Lecture 3. Spin-orbit (SO) coupled Bose-Einstein condensed gas: 

                 new quantum phases and anisotropic superfluidity 

 

Lecture 4. Superstripes and supercurrents in SO coupled BECs 

 



In  lecture 3 we have discussed some properties of the quantum phases 

predicted by the 1D spin-orbit coupled Bose-Einstein condensates. 

We have shown that spin-orbit coupling  deeply affects the dynamic 

behavior in the plane wave and single minimum phases. 

 

 

 

 

 

 

 

This talk: 

 

- Dynamic instability of  supercurrents in plane wave phase 

Role of Galilean invariance 

 

- Dynamic behavior in  stripe phase  

and effects of supersolidity 

plane wave 

K=0   

stripes  
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Tomoki Ozawa 



In uniform systems Galilean invariance implies that 

critical velocity of a supercurrent state coincides with 

Landau critical velocity  

 Supercurrent and dynamic instability 

Tomoki Ozawa, Lev Pitaevskii and S.S.  

(arXiv: 1305.0645, PRA 2013) 
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An external periodic potential (optical lattice) breaks 

translational and Galilean  invariance giving rise to density 

modulations. 

 

Critical velocity of supercurrent  differs from Landau critical 

velocity. Supercurrent can become dynamically unstable 
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(Fallani et al., 2004) 



Spin-orbit coupled Hamiltonian breaks Galilean  

invariance without breaking translational invariance 

 

 

Critical velocity for supercurrents differs  

from Landau critical velocity! 
(Zhu et al. EPL 2012, Zheng et al. arXiv:1212.6832) 

Furthermore:  supercurrents can exhibit dynamic 

instability even in uniform configurations 



                From equation of continuity                  

 

 

    one identifies q=0 current operator 

 

- Current differs from momentum   

    operator  

    At equilibrium current is zero 

    but average momentum is not zero  

    (in plane wave phase all atoms have 

    momentum          ) 

 

- Momentum operator commutes  with H 

    (translational invariance) 

 

- Current operator does NOT commute  

    (non commutativity caused by spin term  

     in the current, breaking of Galilean invariance) 
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How to construct the super current state 



Average value of the current given by 

To generate the supercurrent state we calculate the stationary 

states of the constrained Hamiltonian 

 

 

We consider plane wave phase  

and minimize energy with the ansatz 

                          New value of  

                          momentum  

depends on velocity 

 

 

fixing  the value of the current                     . 

 

Number of stationary solutions depends on velocity.  

If initially          and v>0, the system will continously evolve into the  

global minimum. If instead v<0 the system continuosly evolves 

into a metastable state, the global minimum being at negative     .  

For large negative velocity the metastable state disappears. 

 

xv vPHH 

NvJ x 

))2/(/1( 2

0

2

101 kkkkv 

xik
e

V

N
1

sin

cos
















1k

01 k

1k



We have calculated the dispersion relation of the elementary 

excitations (Bogoliubov modes) on top of the supercurrent state.  

 

Result for phonon dispersion in the limit  

 

 

 

 

 

 

 

 

 

 

- Phonon velocity fixed by effective mass and shift  

- Value of effective mass  

  depends on velocity 

*/1 m

))2/(/1( 2

0

2

101 kkkkv 

4/)(,4/)(( 2112 
 ggnGggnGGG

v



Dynamic instability emerges when 

effective mass becomes negative 

(red region) . 

 

Similar behavior happens in BECs in 

optical lattices (dynamic instability 

measured in Florence experiments).  

 

In optical lattices negative effective 

mass is caused by band strucure 
(Smerzi et al. 2002) 

 

 

 

 

In spin-orbit gases (plane wave phase) 

negative effective mass is caused by  

double minimum structure 
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In harmonic trap a kick to  

the gas will gives rise to an  

oscillation around the  

minimum (dipole oscillation).  

If the kick is too large (even  

if positive)  the system will  

enter the red region of  

dynamic instability  



Critical value of velocity (and consequently of momentum 

kick) generating dynamic instability depends crucially on 

the value of Raman coupling     . It becomes smaller and 

smaller as     approaches the phase transition to the single 

minimum phase. 

 

In the single minimum phase dynamical instability is 

absent 





Critical velocity for 

dynamic instability 



Recent experiments on dipole oscillation reveal strong 

dependence of collective frequency on spin-orbit coupling  

( Zhang et al. PRL 2012) 

In the region below phase transition  between plane wave 

and k=0 momentum phase, system exhibits instability.  

We argue that noisy signal in this region is due  

to the emergence of dynamic instability  (too large 

momentum kick used to excite center of mass mode) 

Dynamic instability can be also generated by a  

quench of the Raman coupling (exps not yet available) 



Elementary excitations  

and  the stripe phase 



 

Reminder of the stripe phase  

 

Hamiltonian: 

 

 

 

 
 

We make simplifying choice                                 (if                    one                   

can choose an effective magnetic field to compensate the asymmetry effect) 

 

Order parameter:    

 

 

 

Density modulations 
                                                                          

Absence of spin polarization (cfr plane wave phase:                  ) 
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Stripe phase results from 

energetic competition between  

density and  spin dependent  

terms in interaction term 

 

 

 

 

 

 

Stripe phase exists only if         

Energetically favourable for values of the 

Raman coupling smaller than critical value 

(formula holds in small coupling limit                     ) 

For  values            one enters the plane wave phase 
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Stripe phase already realized 

experimentally (but stripes not yet 

observed !)    

Phase transition observed at  

the predicted value of Raman 

coupling     . In Rb coupling 

constants are very close each 

other and phase transition to plane 

wave occurs at small values of    . 

 

Fringes  contrast          and fringes 

separation           are too small to 

be observed in situ. 

 

Effects of stripes more easily 

revealed in  excitation spectrum 
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Stripe phase 

Lin et al.,  
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Rb parameters 

in Spielman exp 

Optimized choice 

with larger 

In Rb        is small. To increase the effects of the contrast 

(fixed b       ) choose larger values of 

(different atomic species, different trapping conditions)     
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Sizable density modulations at    2
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Spectrum of elementary excitations  

in the stripe phase 



Despite of spinor nature of the gas the 

occurrence of Raman coupling gives 

rise to a single gapless branch 

 

Occupation of sp state with finite 

momentum yields rotonic structure. 

 

Evidence for anisotropy + parity 

breaking in excitation spectrum 

 

When Raman coupling approaches the 

transition to the stripe phase roton 

minimum becomes lower and lower 

(onset of crystallization) 

Raman coupling close to  

transition to stripe phase 

Excitation spectrum in the plane wave phase  

Giovanni Martone, Yun li, Lev Pitaevskii and S.S.. PRA 2012 



Stripe phase exhibits spontaneous  breaking of both 

gauge (BEC) and continous translational symmetries  

Spontaneous breaking of continuous translational  

 symmetry is expected to give rise to  second gapless 

(Goldstone) mode, characterized by band structure.  

Typical behavior of supersolids. 

Excitation spectrum in the stripe phase  

Yun Li, Giovanni Martone, Lev Pitaevskii and S.S.  

arXiv: 1303.6903, PRL 2013 



We solve the linearized Gross-Pitaevskii equations 

in stripe phase using Bloch formalism   
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Inclusion of many bands in the ground state and in the 

Bogoliubov amplitudes is crucial to ensure correct gapless 

(phononic) behavior at small q and good convergency 



Nature of  two  

gapless branches: 

 

Upper branch is  density 

wave. At small q exhausts 

static structure factor        

  

 

Lower branch is  spin wave 

at small q.  Responsible for 

divergent behavior of S(q) at 

the Brillouin vector 

Density structure factor 

Spin structure factor 

 ),()(  qSdqS

Dynamic structure factor 

measurable with 2-photon 

Bragg spectroscopy 

S(q) diverges !! 



Static structure factor 
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Static response function 
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Divergent behavior 

caused by new low 

frequency branch 



Proof of divergent behavior of static structure factor   

and static response function       near Brillouin vector  

Proof is based on rigorous inequalities of statistical 

mechanics (     are moments of dynamic structure factor 

relative to F and G) 

 

 

 

Inequalities hold for any choice of the operators F and G. 

 

Useful choice (             ) 

 

 

 

 

Inequalities provide rigorous  

bounds to         and   
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Near the Brillouin point static structure factor and static 

response exhibit divergent behavior 

 

 

 

 

 

 

 

 

Divergent behavior requires: 

 -  existence of crystalline order parameter 

 

 -  translational invariance  

    of  the Hamiltonian  

 

Need for spontaneous breaking of translational symmetry !  
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Divergent behavior of static structure factor belongs to a general 

class of infrared divergencies exhibited by systems with 

spontaneous breaking of continuous symmetries  

 

Other examples:  

 

- momentum disribution in the presence of Bose-Einstein  

    condensation:                     (Gavoret-Nozieres)  

 

 

- Spin structure factor in FFLO configurations of 

    spin polarized Fermi superfluids  
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Smoking gun for superstripes (and supersolidity ?) 

 

- Double gapless band structure  

- Divergent behavior of S(q)  at the Brillouin point 



Conclusions 

- Supercurrent in plane wave phase (uniform density)  

    can exhibit  dynamic instability as a consequence of 

    breaking of Galiean invariance. Critical value of velocity 

    differs from Landau criterion    

 

- Stripe phase exhibits typical features of supersolidity  

    (simultaneous spontaneous breaking of two continous 

    symmetries) characterized by (smoking gun): 

 

      - two gapless bands,  

      - divergent behavior of S(q) at the Brillouin border 

 

Collective oscillations and Bragg scattering 

experiments can probe the new superfluid features 



 Open issues (emerging from lectures 1 to 4)      

related to superfluidity in ultracold atomic gases 

- Are the effects of quantum fluctuations on the structure of the core of 

dark solitons  in the unitary Fermi gas crucial to explain  major 

discrepancies between Mit exp and BdG predictions? 

 

- Need for many body calculations of the superfluid density in 3D unitary 

gas (first data now available from measurement of second sound)  

 

- Need for theory and exps  on second sound and superfluid density in 

2D BKT Bose gases  

 

- How to realize a superleak  with cold atomic gases ?  

    (control superfluid flow, cfr recent thermoelectric effect exps at ETH) 

 

- Exp evidence for rotons in spin orbit coupled Bose gases still missing 

(Bragg spectroscopy) 

 

- Exp evidence for superstripes in spin orbit coupled Bose gases 

(double gapless band structure) 



  The Trento BEC team 

http://bec.science.unitn.it/ 


