

COLLÈGE DE FRANCE Chaire de Physique de la Matière Condensée Antoine Georges Cycle 2016-2017 23 mai 2017

Contrôle des fonctionnalités des oxydes

Hétéro-structures, Impulsions Lumineuses

Cours 5

Introduction aux Ruthénates Sr₂RuO₄: Structure électronique, couplage de Hund et couplage spin-orbite.

COLLÈGE DE FRANCE Chaire de Physique de la Matière Condensée Antoine Georges Cycle 2016-2017 23 mai 2017

Control of Oxide Functionalities

Heterostructures, Light pulses

Lecture 5 Introduction to Ruthenates. Sr₂RuO₄: Electronic structure, Hund's coupling and spin-orbit coupling.

Today's seminar – May 23

Darrell Schlom

Cornell University

Thin-film alchemy: using epitaxial engineering to unleash the hidden properties of oxides

Image: http://www.mse.cornell.edu/research/resgroups/schlom/group.html

The Ruthenates Family: Overview

 $SrRuO_3$, n = ∞

 $Sr_{2}RuO_{4}$, n = 1

Fermi-Liquid metal @ low-T p-wave superconductor $T_c \sim 1.5K$

$$Sr_{3}Ru_{2}O_{7}$$
, n = 2

Strongly enhanced paramagnet Metamagnetic

Itinerant Ferromagnet T_{curie} ~ 160K

Ca₂RuO₄: The (only) Insulator

Nakatsuji et al. PRL 90, 137202 (2003)

Sr₂RuO₄: the `Helium 3/Drosophila' of transition-metal oxides !

- Huge high-quality crystals !
- Has been investigated with basically all techniques in the experimentalist's toolbox
- 4d-row structural analogue of La₂CuO₄
- Review articles:
- A.Mackenzie and Y.Maeno

Rev Mod Phys 75, 657 (2003)

Bergemann, Adv. Phys. 52, 639 (2003)
 [Focus on dHvA quantum oscillations]

Electronic Structure of Sr₂RuO₄

Basic electronic structure : β -sheet (0.9 elect

 $\begin{array}{ll} \beta \text{-sheet} & \alpha \text{-sheet} \\ (0.9 \text{ electrons}) & 0.2 \text{ hole} \sim 1.8 \text{ electrons} \end{array}$

ARPES: Damascelli et al. PRL 2000

 $\mathbf{k}_{\mathbf{v}}$

- 4 electrons in t_{2g} shell
- d_{xy} orbital yields a quasi 2D band $\rightarrow \gamma$ -sheet of FS γ -sheet (xy) 1.3 electrons
- d_{xz} , (resp. d_{yz}) \rightarrow bands with directional hopping along x (resp. y) $\rightarrow \alpha, \beta$ sheets

Sr₂RuO₄ - Low-T normal state: a model Fermi liquid

Mackenzie *et al.* PRL **76**, 3786 Bergemann *et al.* PRL **84**, 2662 Bergemann *et al.* Adv. Phys. **52**, 639

But kinetic energies of all bands comparable

Note: van Hove singularity close to Fermi level for xy-orbital

A PUZZLE :

Why are transition-metal oxides of the 4d series strongly correlated metals, while not being close to a Mott insulating state ?

Sr₂RuO₄ has t_{2g} bandwidth ~ 4eV, and estimated U for t_{2g} shell about 2.5 eV at most. Nevertheless effective mass enhancement (over LDA) of xy-band is ~ 5 (~3 for xz, yz) !!

Outstanding puzzles about this compound...

- A 4d material, bandwidth ~ 3.6 eV Not very large U (< 3eV)
- Yet, strongly correlated : effective mass enhancement (vs. band/LDA value) as large as ~ 5
- Strong orbital dependence: largest m*/m for broader band (xy) !
- T^2 law obeyed only below ~ 30K
- → Low Fermi Liquid energy/temperature scale
- Complex crossover in resistivity, from FL at low-T all the way to `bad metal' (above Mott loffe Regel) at hi-T

Effective masses

TABLE II. Summary of quasiparticle parameters of $\mathrm{Sr_2RuO_4.}$						
Fermi-surface sheet	α	β	γ			
Character	Holelike	Electronlike	Electronlike			
$k_F (Å^{-1})^a$	0.304	0.622	0.753			
$m^* (m_c)^b$	3.3	7.0	16.0			
m^*/m_{band}^{c}	3.0	3.5	5.5			
$\nu_F (\text{ms}^{-1})^d$	1.0×10^{5}	1.0×10^{5}	5.5×10^{4}			
$\langle v_{\perp}^2 \rangle \ (m^2 s^{-2})^e$	7.4×10^{5}	3.1×10^{6}	1.0×10^{5}			
$t_{\perp} (\mathbf{K})^{\mathbf{f}}$	7.3	15.0	2.7			

-Rather large !

- Strongly orbital dependent.

- The widest band has the largest eff. mass enhancement !

Mass renormalisation from ARPES

Ingle et al. PRB 72, 205114 (2005)

F.Baumberger et al. From 2012 seminar @College de France See website

Crossovers as a function of temperature (or energy-scale):

- At low T<T_{FL} ~ 25K, Sr₂RuO₄ is a Fermi-liquid: quasiparticles with m*/m ~ 3-5, T² resistivity, <u>FL optical</u> scattering rate, etc...
- As T is increased, quasiparticles 'undress' BUT SURVIVE until the loffe-Regel-Mott criterion is reached (above 600 K) → `resilient quasiparticles'
- In this regime, fluctuating spin degrees of freedom, but orbital degrees don't
- Above T_{MIR}: incoherent bad metal.

Theoretical studies of crossovers from FL to bad metals, see: Deng et al. PRL 110, 086401 (2013); Xu et al PRL 111, 036401 (2013)

The three regimes of transport:

Crossovers are crucial in strongly correlated materials !

Hierarchy of energy scales and coupling constants

 Fundamental question and program: High energy: atomic multiplets of a t_{2g} shell with d⁴ configuration
 → Fluctuating spin and orbital degrees of freedom
 Low energy: Formation of quasiparticles, Fermi Liquid How does this process occur as we flow down in energy scale ? → DMFT

Take-Home Message - 1

- Treat first largest energy scales: U,J,t
- Because U (<,~W) not so large, Hund's coupling is playing a key role
- Ruthenates can be characterized as `Hund's metals': they are strongly correlated metals mostly because of the action of J
- Note: the van-Hove singularity also plays an important role for the xy-orbital

PRL 106, 096401 (2011)

PHYSICAL REVIEW LETTERS

week ending 4 MARCH 2011

Coherence-Incoherence Crossover and the Mass-Renormalization Puzzles in Sr₂RuO₄

Jernej Mravlje,^{1,2} Markus Aichhorn,^{3,1} Takashi Miyake,^{4,5} Kristjan Haule,⁶ Gabriel Kotliar,⁶ and Antoine Georges^{1,7,5}

General Relevance

A large class of materials including: transition-metal oxides of the 4d series (this talk) and also iron pnictides/chalcogenides \rightarrow cf. Rutgers group (Kotliar, Haule et al) + R.Valenti's talk here \rightarrow are best characterized as `Hund's metals' They are not close to a Mott transition but still display strong correlations because of the Hund's rule coupling

Some articles of the `Hund's metals' saga...

- Haule and Kotliar New J. Phys. 11, 025021 (2009) [Fe-superconductors]
- Werner, Gull Troyer and Millis, PRL 101, 166405 (2008)
- Mravlje et al. PRL 106, 096401 (2011) [Sr2RuO4]
- Mravlje et al. PRL 108, 197202 (2012) [SrTcO3]
- de'Medici et al. PRL 107, 256401 (2011)
- ... And many more

AG, de'Medici and Mravlje Annual Reviews Cond. Mat. Phys Vol 4 (2013) arXiv:1207.3033

Two key players & collaborators:

Luca de' Medici (ESPCI-LPEM)

Jernej Mravlje Joszef Stefan Institute Ljubljana, Slovenia Formerly at Collège de France, & École Polytechnique

→ Review article (Annual Reviews, Vol.4, 2013) arXiv:1207.3033

The Hund's coupling is the suspect ! (together with van-Hove physics for xy-band) Effective masses enhancements from DMFT:

$J [{\rm eV}]$	$m_{xy}^*/m_{ m LDA}$	$m_{xz}^*/m_{ m LDA}$	$T_{xy}^*[\mathbf{K}]$	$T^*_{xz}[\mathbf{K}]$	$T_>[K]$
0.0, 0.1	1.7	1.7	> 1000	> 1000	> 1000
0.2	2.3	2.0	300	800	> 1000
0.3	3.2	2.4	100	300	500
0.4	4.5	3.3	60	150	350

Table I. Mass enhancement of the xy and xz orbitals, as a function of Hund's coupling, for U = 2.3 eV. Other columns: coherence temperatures as defined in the text.

U=2.3 eV

- Increase of effective mass as J is increased
- Orbital differentiation: xy heavier (due to van Hove singularity)

- Comparable mass enhancement would require U=5eV at J=0 !

Interactions: Kanamori hamiltonian: [J.Kanamori, Prog. Theor. Phys. 30 (1963) 275]

$$H_{\mathrm{K}} = U \sum_{m} \hat{n}_{m\uparrow} \hat{n}_{m\downarrow} + U' \sum_{m \neq m'} \hat{n}_{m\uparrow} \hat{n}_{m'\downarrow} + (U' - J) \sum_{m < m', \sigma} \hat{n}_{m\sigma} \hat{n}_{m'\sigma} + J \sum_{m \neq m'} d_{m\uparrow} d_{m\downarrow} d_{m\downarrow} d_{m'\downarrow} d_{m'\uparrow} + J \sum_{m \neq m'} d_{m\uparrow} d_{m\downarrow} d_{m\downarrow} d_{m'\downarrow} d_{m'\uparrow}$$

EXACT for a t_{2g} shell

Useful reference: Sugano, Tanabe & Kamimura, *Multiplets of transition-metal ions in crystals* Academic Press, 1970

Assuming furthermore ~ spherical symmetry of the screened interaction V_c , one can show that: U' = U-2J

In this case, the hamiltonian can be written:

$$H_{t_{2g}} = (U - 3J) \frac{\hat{N}(\hat{N} - 1)}{2} - 2J \vec{S}^2 - \frac{J}{2}\vec{L}^2 + \frac{5}{2}J\hat{N}$$

$$\hat{N} = \sum_{m\sigma} \hat{n}_{m\sigma} \ , \ \vec{S} = \frac{1}{2} \sum_{m} \sum_{\sigma\sigma'} d^{\dagger}_{m\sigma} \vec{\tau}_{\sigma\sigma'} d_{m\sigma'} \ , \ L_m = i \sum_{m'm''} \sum_{\sigma} \epsilon_{mm'm''} d^{\dagger}_{m'\sigma} d_{m''\sigma},$$

Total charge, spin and orbital iso-spin operators $U(1)_c \otimes SU(2)_s \otimes SO(3)_o$ symmetry

Spectrum of atomic t_{2q} hamiltonian with U'=U-2J

Ν	\mathbf{S}	\mathbf{L}	Degeneracy = (2S+1)(2L+1)	Energy		
0,[6]	0	0	1	0		
1,[5]	1/2	1	6	-5J/2, [10 U - 5J/2]		
2,[4]	1	1	9	$\mathcal{U}-5J,\![6\mathcal{U}-5J]$		
2,[4]	0	2	5	$\mathcal{U}-3J,\![6\mathcal{U}-3J]$		
2,[4]	0	0	1	$\mathcal{U}, [6\mathcal{U}]$		
3	3/2	0	4	$3\mathcal{U}-15J/2$		
3	1/2	2	10	$3\mathcal{U}-9J/2$		
3	1/2	1	6	$3\mathcal{U}-5J/2$		

Table 1: Eigenstates and eigenvalues of the t_{2g} Hamiltonian $\mathcal{U}\hat{N}(\hat{N}-1)/2 - 2J\vec{S}^2 - J\vec{T}^2/2$ in the atomic limit ($\mathcal{U} \equiv U - 3J$). The boxed numbers identifies the ground-state multiplet and its degeneracy, for J > 0.

- Hund's rule ground-state in each particle-number sector
- Symmetry broken by J from SU(6) to U(1)c×SU(2)s×SO(3)o
- \rightarrow Degeneracies lifted by J

In Lecture 3, we have seen one face of the Hund's coupling:

- Drives materials with a <u>1/2 filled (sub)shell</u> closer to the Mott insulating state
- Drives <u>all other cases</u> further away from the Mott insulating state

But this is NOT the whole story ...

L. de' Medici PRB 83 (2011) 205112 So, what is U_{eff} ? N electrons in M orbitals (0≤N≤2M)

cf. van der Marel&Sawatzky PRB 37 (1988) 10674 ;

1) If M<N (or M>N) non half-filled shell: only the interaction between parallel spins matters U'-J=U-3J

$$U_{\text{eff}} = (U' - J) \left[\frac{(N+1)N}{2} + \frac{(N-1)(N-2)}{2} - 2\frac{N(N-1)}{2} \right] = U - 3J$$

$$\boxed{U_{\text{eff}} = U' = U - 3J} \quad \text{The Hund's coupling reduces } U_{\text{eff}}$$
2) If N=M (half-filled shell)
$$\left| \uparrow \downarrow, \uparrow, \uparrow \right\rangle \quad E_0(N+1) = (U' - J)\frac{N(N-1)}{2} + U + U'(N-1)$$

$$U_{\text{eff}} = (U' - J) \left[\frac{N(N-1)}{2} + \frac{(N-1)(N-2)}{2} - 2\frac{N(N-1)}{2} \right] + U + U'(N-1)$$

$$= U + (N-1)J$$

 $U_{eff} = U + (N-1)J$ The Hund's coupling increases U_{eff} \rightarrow Half-filled (sub)shells are usually robust Mott insulators

Condition for Mott state: key difference between 1/2-filled (sub)shell and other cases 3-orbitals with 1/2-bandwidth D - DMFT

Cf. L. de' Medici, PRB 83, 205112 (2011)

cf. early work on V_5S_8 Fujimori et al. PRB (1991) For all filling except $\frac{1}{2}$ -filling and a single electron and hole: Hund's coupling suppresses coherence scale \rightarrow Reduces quasiparticle coherence scale, smaller Z, larger m*/m

Explanation requires Kondo-logy: see Adv. Cont. Mat Phys review

But also increases $U_c \rightarrow$ Enhances range of metallic state

For 'generic' filling (i.e. not ½ filled and not just a single electron or hole) ...

... J is « Janus-faced » : it has two ANTAGONISTIC effects

Janus is the latin god of beginnings/ transitions. He is often associated with doors and entrances and has two faces. First promoted to being a physicist by P.G. de Gennes

PRL 107, 256401 (2011)

PHYSICAL REVIEW LETTERS

week ending 16 DECEMBER 2011

Janus-Faced Influence of Hund's Rule Coupling in Strongly Correlated Materials

Luca de' Medici,¹ Jernej Mravlje,^{2,3,4} and Antoine Georges^{2,4,5,6}

Putting together the two effects, the Hund's coupling:

 Drives the system

 Drives the system
 <u>away from the Mott state</u>
 But at the same time <u>lowers the</u> <u>quasiparticle coherence scale</u>

 (below which the local atomic multiplet is quenched)
 i.e makes the metal <u>more correlated</u>

This applies to all cases, except occupancies N=1,2M-1,M

Drawing a map of early transition-metal oxides (both 3d and 4d) with Hund's rule coupling as guidance

Correlation effects in 4d oxides due to J, not to Mott physics (except when strong splitting between orbitals)

3d oxides: U/D ~ 4 4d oxides: U/D ~ 2

Thermopower and Entropy: Lessons from Sr₂RuO₄

Jernej Mravlje¹ and Antoine Georges^{2,3,4}

Nature of intermediate-T regime: experimental evidence

- Curie-Weiss susceptibility (not Pauli)
- Seebeck coefficient
- → entropy of fluctuating degrees of freedom.

FIG. 1. (a) Top view (left panel) and side view (right panel) of the local geometry of the RuO₂ plane (Ru 4*d* and O 2*p* π orbitals). (b) ¹⁷O NMR shift ¹⁷*K*(1,2) at the planar O(1) and apical O(2) sites. ¹⁷*K*(1)_c [\blacktriangle], ¹⁷*K*(1)_{||} [\blacksquare], ¹⁷*K*(1)_⊥ [\bigcirc], ¹⁷*K*(2)_c [\triangle], and ¹⁷*K*(2)_{ab} [\diamond]. (c) The uniform spin susceptibility χ_{xy} of 4*d*_{xy} orbital [\bigcirc] and $\chi_{yz,zx}$ of 4*d*_{yz,zx} orbital [\square], deduced from ¹⁷*K*(1) based on Eqs. (1a)–(1c) with $C = D = 34 \text{ kOe}/\mu_B$. Also plotted are the average $\chi_{av} \equiv (\chi_{xy} + 2\chi_{yz,zx})/3$ [solid line], and ¹⁰¹Ru Knight shift ¹⁰¹*K*_c [\times]. Notice that we invert the scale of ¹⁰¹*K*_c to account for the negative hyperfine coupling, and offset the origin by 1.08% [9] to account for ¹⁰¹*K*_{orb}.

Imai et al PRL 81 3006 (1998)

Ruthenates: Seebeck

Yoshino et al. JPSJ 1996, Fu et al. PRL 2008, Keawprak Mat Trans 2008, Klein et al. PRB 2006; Present graph from Klein PhD thesis, Caen, 2006

	R	u ³⁺	Ru ⁴⁺	Ru ⁵⁺		
Configuration électronique	_♠↓♠	↓ .	.▲↓ .▲			
Dégénérescence de spin ($\Gamma^{\sigma}=2S+1$) SF	PIN -	2	3	4		
Dégénérescence orbitalaire (Γ) ORB	ITAL	3	3	1		
Dégénérescence totale $(\beta = \Gamma . \Gamma^{\sigma})$	TAL	6	9	4		

Spin and Orbital degeneracies for Ru t2g shell (Klein, PhD) Spin + orbital leads to, for a Ru⁴⁺ shell $\alpha_H = \frac{k_B}{2e} \ln \frac{4}{6} \simeq -17.66 \,\mu V/K < 0!$ SPIN-ONLY (as suggested by Klein, Hebert Maignan et al) leads to, according to this revisited Heikes analysis: $\alpha_H = \frac{k_B}{2e} \ln \frac{4}{2} \simeq 30 \,\mu V/K$ For an atomic shell with INTEGER occupancy N (such as Ru⁴⁺ with N= 4electrons in Ru-3d shell)

$$N = \langle n \rangle = \frac{d_{N-1}(N-1)e^{-\beta(E_{N-1}-\mu(N-1))} + d_N N e^{-\beta(E_N-\mu N)} + (N+1)d_{N+1}e^{-\beta(E_{N+1}-\mu(N+1))}}{d_{N-1}e^{-\beta(E_{N-1}-\mu(N-1))} + d_N e^{-\beta(E_N-\mu N)} + d_{N+1}e^{-\beta(E_{N+1}-\mu(N+1))}}$$

The configurational entropy term is then ABSENT and one simply gets (note also factor of 1/2 in front):

$$\alpha_H = \frac{k_B}{2e} \log \frac{d_{N-1}}{d_{N+1}}.$$

Can this expression explain the ~ universal value observed in ruthenates ?

But what about spin-orbit coupling ?

- Experimental evidence that SO coupling is important for Fermiology: several papers. e.g. Veenstra et al. PRL 112, 127002 (2014) spinresolved ARPES
- Theoretical studies e.g. Zhang et al. PRL 116, 106402 (2016)
- Paper in preparation: Kim, Mravlje and AG

SO hamiltonian for a t_{2g} shell

Angular momentum in cubic harmonic basis set:

Orbital matrices (l=1**)** { $|z\rangle, |y\rangle$ }

$$L_x^p = \begin{pmatrix} 0 & 0 & i \\ 0 & 0 & 0 \\ -i & 0 & 0 \end{pmatrix} \qquad \qquad L_y^p = \begin{pmatrix} 0 & -i & 0 \\ i & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \qquad \qquad L_z^p = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -i \\ 0 & i & 0 \end{pmatrix}$$

Crbital matrices (*l***=2)** $\{|xy\rangle, |yz\rangle, |zx\rangle, |3z^2 - r^2\rangle, |x^2 - y^2\rangle\}$

$$L_{x}^{d} = \begin{pmatrix} 0 & 0 & -i & 0 & 0 \\ 0 & 0 & 0 & -\sqrt{3}i & -i \\ i & 0 & 0 & 0 & 0 \\ 0 & \sqrt{3}i & 0 & 0 & 0 \\ 0 & i & 0 & 0 & 0 \end{pmatrix} \qquad L_{y}^{d} = \begin{pmatrix} 0 & i & 0 & 0 & 0 \\ -i & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & \sqrt{3}i & -i \\ 0 & 0 & -\sqrt{3}i & 0 & 0 \\ 0 & 0 & i & 0 & 0 \end{pmatrix} \qquad L_{z}^{d} = \begin{pmatrix} 0 & 0 & 0 & 0 & 2i \\ 0 & 0 & i & 0 & 0 \\ 0 & -i & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 \\ -2i & 0 & 0 & 0 & 0 \end{pmatrix}$$

When restricted to t_{2a} , acts like MINUS the L=1 generators of SO(3)

$\langle \vec{\ell}_d \cdot \vec{s} ightarrow - \lambda \vec{\ell}_p \cdot \vec{s}$								
$\rightarrow \sum_{mm'\sigma\sigma'} d^{\dagger}_{m\sigma} \frac{1}{2} \vec{\sigma}_{\sigma\sigma'} \cdot \vec{L}^{p}_{mm'} d_{m'\sigma'}$								
$[xy\uparrow,yz\uparrow,xz\uparrow;xy\downarrow,yz\downarrow,xz\downarrow]$								
		$\left(\epsilon_{xy} \right)$	0	0	0	$\frac{\lambda_{xy}}{2}$	$\frac{i\lambda_{xy}}{2}$	
		0	ε_{yz}	$-\frac{i\lambda_z}{2}$	$-\frac{\lambda_{xy}}{2}$	0	0	
	ê —	0	$\frac{i\lambda_z}{2}$	ε_{xz}	$-\frac{i\lambda_{xy}}{2}$	0	0	
	<i>c</i> –	0	$-\frac{\lambda_{xy}}{2}$	$\frac{i\lambda_{xy}}{2}$	ε_{xy}	0	0	
		$\frac{\lambda_{xy}}{2}$	0	0	0	ε_{yz}	$\frac{i\lambda_z}{2}$	
		$-\frac{i\lambda_{xy}}{2}$	0	0	0	$-\frac{i\lambda_z}{2}$	ϵ_{xz} /	

What I have NOT talked about

- Thin-film and Heterostructures of Ruthenates
- → Darrell Schlom's seminar
- Ex: Ferromagnetism of SrRuO₃

PRL 103, 057201 (2009)PHYSICAL REVIEW LETTERS

week ending 31 JULY 2009

Fundamental Thickness Limit of Itinerant Ferromagnetic SrRuO₃ Thin Films

Young Jun Chang,¹ Choong H. Kim,² S.-H. Phark,¹ Y.S. Kim,¹ J. Yu,² and T.W. Noh^{1,*} ¹ReCOE & FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea ²CSCMR & FPRD, Department of Physics and Astronomy, Seoul National University, Seoul 151-747, Korea (Received 21 February 2009; published 30 July 2009)

We report on a fundamental thickness limit of the itinerant ferromagnetic oxide $SrRuO_3$ that might arise from the orbital-selective quantum confinement effects. Experimentally, $SrRuO_3$ films remain metallic even for a thickness of 2 unit cells (uc), but the Curie temperature T_C starts to decrease at 4 uc and becomes zero at 2 uc. Using the Stoner model, we attributed the T_C decrease to a decrease in the density of states (N_o). Namely, in the thin film geometry, the hybridized Ru $d_{yz,zx}$ orbitals are terminated by top and bottom interfaces, resulting in quantum confinement and reduction of N_o .