

COLLÈGE DE FRANCE Chaire de Physique de la Matière Condensée Antoine Georges Cycle 2016-2017 16 mai 2017

Contrôle des fonctionnalités des oxydes

Hétéro-structures, Impulsions Lumineuses

Cours 4

Les Nickelates RNiO₃ :

- Une transition métal-isolant contrôlable au mécanisme original
- « Ingénierie orbitale »: vers un supraconducteur synthétique ?

COLLÈGE DE FRANCE Chaire de Physique de la Matière Condensée Antoine Georges Cycle 2016-2017 16 mai 2017

Control of Oxide Functionalities

Heterostructures, Light pulses

Lecture 4 Nickelates RNiO₃ : - A controlable metal-insulator transition - « Orbital engineering »: towards a synthetic superconductor ?

Today's seminar – May 16 Andres Santander-Syro CSNSM-Orsay Novel two-dimensional electron systems at the surface of transition-metal oxides

Image: Synchrotron Radiation Center, Madison, Wisconsin

MIT in Nickelates RNiO₃

R.Sherwitzl, PhD thesis, Geneva 2012 Adapted from Catalan, Phase Transitions, (2008)

Early work: Demazeau et al. (Bordeaux, Hagenmuller's group 1971) Lacorre, Torrance et al. 1992 (IBM San Jose & Le Mans)

Acknowledgements:

THEORY:

Alaska Subedi Paris

Oleg Peil Geneva/Paris now in Leoben, Austria

EXPERIMENTS:

Dirk van der Marel, Jean-Marc Triscone

Marta Gibert, Sara Catalano

University of Geneva - DQMP

Orbital polarization in strained LaNiO₃: Structural distortions and correlation effects

Oleg E. Peil,^{1,2,*} Michel Ferrero,² and Antoine Georges^{1,2,3}

PHYSICAL REVIEW B 91, 075128 (2015)

Low-energy description of the metal-insulator transition in the rare-earth nickelates

Alaska Subedi,^{1,2} Oleg E. Peil,^{2,3} and Antoine Georges^{2,3,4}

PHYSICAL REVIEW B 92, 155145 (2015)

Optical spectroscopy and the nature of the insulating state of rare-earth nickelates

J. Ruppen,¹ J. Teyssier,¹ O. E. Peil,^{1,2} S. Catalano,¹ M. Gibert,¹ J. Mravlje,³ J.-M. Triscone,¹ A. Georges,^{1,2,4} and D. van der Marel¹

Impact of antiferromagnetism on the optical properties of rare earth nickelates

J. Ruppen,¹ J. Teyssier,¹ I. Ardizzone,¹ O. E. Peil,^{1,2} S. Catalano, M. Gibert,¹ J.-M. Triscone,¹ A. Georges,^{1,2,3} and D. van der Marel^{1,*} Why are Nickelates interesting ? Why renewal of interest in recent years ?

- Controllability / Tunability !
- Thin films and heterostructures open new avenues for these materials.
- Have been proposed as a way to engineer a synthetic superconductor through control of orbital degeneracy

CONTROL: Traditional and Novel routes

Bandwidth	Pressure Size of rare-earth Distortion Tolerance factor 3d,4d,5d metal	
Crystal field, Orbital degeneracy	Size of rare-earth Distortion Tolerance factor	- Same -
Filling of shell, Electron density Doping	Chemistry	Ionic liquids Gating
	Sr,Ca²+ → La, R ³⁺	
Interaction strength	3d,4d,5d metal	Tunable dielectric gating ? Light ?
Charge-Transfer	Change apical oxygen distance Change ligand: $O \rightarrow S, Se$	Light ?

Controllability by: Strain, Gating, Light... Nickelates have it all !

- Beautiful work by several groups over recent years, e.g:
- Triscone et al. Geneva
- Keimer et al. Stuttgart
- Cavalleri Caviglia et al. Hamburg
- Ahn et al. Yale
- Stemmer et al. Santa Barbara
- Chakhalian et al. Arkansas
- Hwang et al. Stanford
- Bibes, Barthelemy et al. Thales/Palaiseau
- Stephan, Gloter et al. LPS-Orsay
- and several others...

NdNiO₃ ← Strain control Scherwitzl et al. PRL 106, 246403 (2012)

Ionic liquid gating control R.Scherwitzl et al. Adv. Mat. 22, 5517 (2010)

Sensitivity to pressure in bulk → Sensitivity to Strain in Thin-films/Heterostructures

e.g. Nickelates:

RAPID COMMUNICATIONS

PHYSICAL REVIEW B

VOLUME 47, NUMBER 18

1 MAY 1993-II

Extraordinary pressure dependence of the metal-to-insulator transition in the charge-transfer compounds NdNiO₃ and PrNiO₃

> P. C. Canfield and J. D. Thompson Los Alamos National Laboratory, Los Alamos, New Mexico 87545

S-W. Cheong and L. W. Rupp AT&T Bell Laboratories, Murray Hill, New Jersey 07974 (Received 4 September 1992)

Canfield et al. PRB 1993

FIG. 2. (a) Temperature-dependent resistivity of $PrNiO_3$ for applied pressures of 1 bar, 5.2 kbar, 9.0 kbar, 10.8 kbar, and 14.1 kbar. Data sets for each pressure are shown alternately as solid lines and crosses. The furthest right data set (crosses) is 1 bar data and the furthest left data set (crosses) is 14.1 kbar data. For each data set the further right curve is the warming data. (Note: for the 14.1 kbar data set there is no hysteresis and therefore no difference between warming and cooling data.) (b) Temperature dependence of the natural log of the resistivity of PrNiO₃ at the same pressures.

Strain-Control by growth on different substrates: RNiO₃

R.Scherwitzl PhD thesis@Geneva

Compressive strain:

- Does not change much resistivity in metallic state (~ 50%)
- Efficiently shifts MIT to lower T, even complete suppression: \rightarrow NNO ~ LAO Tensile strain:
- Increases resist in metallic phae
- Smaller shift of MIT to higher T (except KTO: disorder ?)

R.Scherwitzl PhD thesis@Geneva

Possible applications ?

- Bolometers
- `Piezoelectronic' transistor (PET)
- **Synaptic**' devices (e.g. Ha et al. Phys Rev Applied 2, 064003, 2014)
- Control of MIT by voltage pulses

→Resistive RAMs

Schematic design of a piezoelectric transistor (IBM)

A creative proposal: turning a nickelate into a superconducting cuprate-like material by strain-engineering ?

Modern alchemy...?

Chaloupka and Khaliullin, PRL 2008 Hansmann et al., PRL 2010

Spin

Orbital Order and Possible Superconductivity in LaNiO₃/LaMO₃ Superlattices

Jiří Chaloupka^{1,2} and Giniyat Khaliullin¹

¹Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany ²Institute of Condensed Matter Physics, Masaryk University, Kotlářská 2, 61137 Brno, Czech Republic (Received 3 July 2007; published 10 January 2008)

A hypothetical layered oxide La₂Ni MO_6 where NiO₂ and MO_2 planes alternate along the *c* axis of ABO_3 perovskite lattice is considered theoretically. Here, *M* denotes a trivalent cation Al, Ga,... such that MO_2 planes are insulating and suppress the *c*-axis charge transfer. We predict that correlated e_g electrons in the NiO₂ planes develop a planar $x^2 - y^2$ orbital order driven by the reduced dimensionality and further supported by epitaxial strain from the substrate. Low-energy electronic states can be mapped to a single-band t - t' - J model, suggesting favorable conditions for high- T_c superconductivity.

PRL 103, 016401 (2009) PHYSICAL REVIEW LETTERS

week ending 3 JULY 2009

Turning a Nickelate Fermi Surface into a Cupratelike One through Heterostructuring

P. Hansmann,^{1,2} Xiaoping Yang,¹ A. Toschi,^{1,2} G. Khaliullin,¹ O. K. Andersen,¹ and K. Held² ¹Max-Planck-Institut für Festkörperforschung, Heisenbergstrasse 1, D-70569 Stuttgart, Germany ²Institute for Solid State Physics, Vienna University of Technology, 1040 Vienna, Austria (Received 2 July 2008; published 29 June 2009)

Using the local density approximation and its combination with dynamical mean-field theory, we show that electronic correlations induce a single-sheet, cupratelike Fermi surface for hole-doped 1/1LaNiO₃/LaAlO₃ heterostructures, even though both e_g orbitals contribute to it. The Ni $3d_{3z^2-1}$ orbital plays the role of the axial Cu 4*s*-like orbital in the cuprates. These two results indicate that "orbital engineering" by means of heterostructuring should be possible. As we also find strong antiferromagnetic correlations, the low-energy electronic and spin excitations in nickelate heterostructures resemble those of high-temperature cuprate superconductors.

``Orbital engineering" in oxides

Figure 5 | **Heterostructure of metallic LaNiO**₃ with partially occupied Ni e_g orbitals (LNO, blue) and insulating LaAlO₃ (LAO, white)⁴⁶. The orbital polarization at the interface $(x^2-y^2$ shown in green and $3z^2-r^2$ shown in dark blue) is exaggerated for clarity. Figure reproduced from ref. 46, © 2011 NPG.

LaNiO₃

Naïve ionic counting: Ni³⁺ \rightarrow d⁷ Low-spin configuration: 6 electrons in filled t_{2g} 1 electron in e_g doublet (1/4-filled band)

Can we split apart the d_{x2-y2} and the d_{3z2-r2} orbitals by tensile strain (contracting c-axis) or heterostructuring ? Analogy with the electronic structure of cuprate hi-Tc superconductors

- La₂CuO₄: Cu²⁺ d⁹ shell
- t_{2g} filled (6 electrons)
- Large Jahn-Teller deformation of octahedra with c>a: 3z²-r² is favored, fully split and hence filled by 2 electrons
- Remaining: 1 electron in x²-y² band (1/2-filled)
- Nickelates: By splitting e_g shell: empty $3z^2-r^2$ and $\frac{1}{2}$ -filled x^2-y^2 ?

Band-structure of LaNiO₃ in idealized tetragonal structure

Г

e_g eigenstates of the cubic system:

Overlap Integrals (Slater & Koster)

$$t^{x} = t_{0} \begin{pmatrix} \frac{3}{4} & -\frac{\sqrt{3}}{4} \\ -\frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix} \quad t^{y} = t_{0} \begin{pmatrix} \frac{3}{4} & \frac{\sqrt{3}}{4} \\ \frac{\sqrt{3}}{4} & \frac{1}{4} \end{pmatrix} \quad t^{z} = t_{0} \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}$$

FIG. 1 (color online). The 1/1 LaNiO₃/LaAlO₃ heterostructure (left) and its LDA (*NMTO*) band structures without (center) and with (right) strain. The Bloch vector is along the lines $\Gamma(0, 0, 0) - Z(0, 0, \frac{\pi}{c}) - R(0, \frac{\pi}{a}, \frac{\pi}{c}) - A(\frac{\pi}{a}, \frac{\pi}{a}, \frac{\pi}{c}) - Z(0, 0, \frac{\pi}{c})$. The shading gives the $x^2 - y^2$ vs $3z^2 - 1e_g$ Wannier-function character.

1/1 LaNiO₃/LaAlO₃ Heterostructure
Band-structure (LDA):
Stabilisation of the x²-y² orbital under tensile strain
Destabilisation of the 3z²-r² orbital
From Hansmann et al. PRL (2009)

Electronic correlations <u>enhance</u> orbital polarization in a d¹ 2-orbital shell

- Atomic limit: Full polarization as soon as crystal-field splitting $\Delta_c > 0$
- $\frac{1}{4}$ -filled Mott insulator: $\Delta_c > c t^2/U$
- Non-interacting limit: Full polarization for Δ_c >D, ½-bandwidth
- Correlated metal: Effective bandwidth reduced by correlations (Brinkman-Rice): $\Delta_c > Z.D$

Orbital polarization in a ¹/₄-filled 2-orbital Hubbard model: DMFT, from Poteryaev et al. PRB 78, 045115 (2008)

Hansmann et al. (PRL 2009, PRB 2010) performed DMFT calculations using a 2-orbital Hubbard-Kanamori model and predict a large orbital polarization due to the physics described in previous slide

→ You will know by the end of the lecture...

MIT of Nickelates: Puzzles

- <u>Naive</u> valence counting (ionic picture):
- Ni³⁺ \rightarrow 3d⁷ = t_{2g}⁶ e_g¹
- Orbital degeneracy (1 electron in e_g doublet) should lead to strong Jahn-Teller distortion → NOT observed !
- Indeed, Ni³⁺ rarely stabilized, Ni²⁺ (d⁸) common (as in NiO)
- MIT comes with structural bond-disproportionation
- 1st order MIT
- MIT as Mott transition of ¼-filled e_g band NOT a tenable picture (fine-tuning required, structural transition and evolution over the RE series not accounted for, etc... more below)

Bond Disproportionation

LuNiO₃, $P2_1/n$, low-T

INSULATOR: monoclinic

Long-bond (LB) Short-bond (SB) NiO₆ octahedron Low-T phase: two types of Ni-sites

Let us look at the DFT bandstructure of the low-T (monoclinic) phase:

* Peierls-like mechanism induces a modulation of on-site energies: LB sites are lower by $\Delta/2$, SB sites higher by $\Delta/2$ $\Delta \sim 0.25 \text{ eV}$

Within LDA, the phase is metallic (Peierls gap opens at nominal <u>½-filling</u> position
 → Correlation effects are crucial to account for insulating nature

Long-bond/Short-bond character

FIG. 3. (Color online) The bare (GGA) band structure of the monoclinic phase of SmNiO₃. The color represents the site character of the states: LB (red) and SB (blue). Note the Peierls splitting at an energy +0.5–0.7 eV. The position of the Fermi level is $\varepsilon = 0$.

Strong O-Ni covalency e_g Wannier functions have strongly mixed Ni-O character

Subedi et al. PRB (2015). See also recent work by J.Varignon et al. arXiv:1603.05480

Some key insights...

Insight 1: Strong covalency of Ni-O bond → Formation of "Ligand holes"

Additional Oxygen Ordering in "La₂NiO_{4.25}" (La₈Ni₄O₁₇).

II. Structural Features

J. Sol. State Chem. 106, 330 (1993) Thanks to: J-M Tarascon

A. DEMOURGUES, F. WEILL, B. DARRIET, A. WATTIAUX, J. C. GRENIER, P. GRAVEREAU, AND M. POUCHARD

Laboratoire de Chimie du Solide du CNRS, Université de Bordeaux 1, 351, Cours de la Libération, 33405 Talence Cedex, France

Received January 11, 1993; in revised form March 25, 1993; accepted March 29, 1993

On the basis of data obtained from the refinement of neutron diffraction experiments, the structural features of La₈Ni₄O₁₇ ("LaNiO_{4.25}") are discussed. It is shown that the additional oxygen atoms in the La₂O₂ layers form (O_3^{5-}) polyoxides including one delocalized hole. In the NiO₂ planes, a periodic modulation of the equatorial Ni-O distances characterizes various electronic configurations of the nickel cations and a 2D charge density wave occurs, which is more pronounced at low temperature than at room temperature. A strong coupling between the (O_3^{5-}) polyoxides and the NiO₂ planes results from charge transfer mechanisms, which also account for the stabilization of monovalent nickel (Ni⁺) in this compound. The formation of $-Ni^+ - (O_3^{5-}) - Ni^+ - (O_3^{5-}) -$ chains along given $(111)_T$ directions is correlated to the interstitial oxygen ordering previously evidenced. Φ 1993 Academic Press, Inc.

Extreme picture: d⁸L (= e_g²) rather than d⁷ "Negative charge-transfer insulator" (Mizokawa, Sawatzky et al.)

VOLUME 67, NUMBER 12

PHYSICAL REVIEW LETTERS

16 SEPTEMBER 1991

Origin of the Band Gap in the Negative Charge-Transfer-Energy Compound NaCuO₂

T. Mizokawa, H. Namatame, and A. Fujimori Department of Physics, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

K. Akeyama, H. Kondoh,^(a) and H. Kuroda Department of Chemistry, University of Tokyo, Bunkyo-ku, Tokyo 113, Japan

N. Kosugi

Division of Molecular Engineering, Kyoto University, Yoshida, Kyoto 606, Japan (Received 19 April 1991)

See also: PRB 49, 7193 (1994) mentioning Nickelates

PHYSICAL REVIEW B

VOLUME 61, NUMBER 17

1 MAY 2000-I

Spin and charge ordering in self-doped Mott insulators

T. Mizokawa, D. I. Khomskii, and G. A. Sawatzky

Solid State Physics Laboratory, Materials Science Centre, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands (Received 20 January 2000)

LB/SB site disproportionation is an alternative route to JT in order to lift orbital degeneracy and is promoted by Hund's coupling (Mazin et al.)

PRL 98, 176406 (2007)

PHYSICAL REVIEW LETTERS

week ending 27 APRIL 2007

Charge Ordering as Alternative to Jahn-Teller Distortion

I. I. Mazin,^{1,2} D. I. Khomskii,^{2,*} R. Lengsdorf,² J. A. Alonso,³ W. G. Marshall,⁴ R. M. Ibberson,⁴ A. Podlesnyak,⁵ M. J. Martínez-Lope,³ and M. M. Abd-Elmeguid²

Insight 3 - Millis et al.
Insulating nature of the disproportionated phase involves:
Mott mechanism on LB sites (leaving a large magnetic moment)
Screening of moment on SB sites by ligand holes on neighbouring oxygens

PRL 109, 156402 (2012)

PHYSICAL REVIEW LETTERS

week ending 12 OCTOBER 2012

Site-Selective Mott Transition in Rare-Earth-Element Nickelates

Hyowon Park,^{1,2} Andrew J. Millis,¹ and Chris A. Marianetti²

¹Department of Physics, Columbia University, New York, New York 10027, USA ²Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, USA (Received 13 June 2012; published 9 October 2012)

Based on DMFT calculation involving all Ni and O states

(Too) Extreme, but simple, picture:

$d^7 + d^7 \rightarrow d^8 (LB) + d^8 \underline{L}^2 (SB)$

S=1 localized moment →Mott insulator

S=1 moment screened by two ligand holes shared by 6 oxygens cf. `Kondo insulator'

Park, Millis and Marianetti PRL 109, 156402 (2012) Johnston et al. PRL 112, 106404 (2014)

Direct experimental evidence for Ligand Holes: XAS - RIXS

Bisogni et al. Nature Comm. 7.13017

Relevance of ligand holes to cathode materials for batteries

CHEMISTRY OF MATERIALS

Article

pubs.acs.org/cm

ACS Publications

© 2013 American Chemical Society

1121

dx.doi.org/10.1021/cm400193m1 Chem. Mater. 2013, 25, 1121-1131

High Performance $Li_2Ru_{1-y}Mn_yO_3$ (0.2 $\leq y \leq$ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding

M. Sathiya,^{†,‡} K. Ramesha,^{*,§} G. Rousse,^{\parallel} D. Foix,^{\perp} D. Gonbeau,^{\perp} A. S. Prakash,[§] M. L. Doublet,[#] K. Hemalatha,[§] and J.-M. Tarascon^{*,†,‡}

subsequent discharge. One then believes that the missing reversible process accounting for 0.6 electrons is most likely nested in the reversible oxidation of O^{2-} to O^{-} which necessitates the creation of a hole on oxygen. Such a process does not come as a total surprise as it was proposed by our group back in 1999 to explain the full deinsertion of Li⁺ into LiCoO₂.⁵² Moreover, physicists are frequently dealing with this redox aspect by talking about holes on oxygen, and the most

How can one build a simple picture taking this physics into account and involving only the `low-energy' e_g states ?

PHYSICAL REVIEW B 91, 075128 (2015)

Low-energy description of the metal-insulator transition in the rare-earth nickelates

Alaska Subedi,^{1,2} Oleg E. Peil,^{2,3} and Antoine Georges^{2,3,4}

Simple energetics

Compare two (extreme) configurations: $e_g^1(LB) + e_g^1(SB)$ *vs.* $e_g^2(LB) + e_g^0(SB)$ corresponding to $d^7 + d^7 \rightarrow d^8(LB) + d^8 L^2(SB)!$

-> Consider the (unusual) regime $U - 3J < \Delta \leq 0$!

In which the disproportionated configuration is favorable

Simplest Model Simplify to 2 atoms (LB,SB) per unit cell, 2 orbitals per site

$$\begin{split} H &= -t \sum_{m=1}^{2} \sum_{\sigma=\uparrow,\downarrow} \sum_{\langle ij \rangle} (d^{\dagger}_{m\sigma i} d_{m\sigma j} + h.c.) + H_{\text{int}} & \text{hopping} \\ &- \frac{\Delta}{2} \sum_{m\sigma,i\in A} d^{\dagger}_{m\sigma i} d_{m\sigma i} + \frac{\Delta}{2} \sum_{m\sigma,j\in B} d^{\dagger}_{m\sigma j} d_{m\sigma j}, & \text{Peierls} \\ & \text{nodulation} \\ H_{\text{int}} &= U \sum_{m} \hat{n}_{m\uparrow} \hat{n}_{m\downarrow} + (U - 2J) \sum_{m\neq m'} \hat{n}_{m\uparrow} \hat{n}_{m'\downarrow} + \\ &+ (U - 3J) \sum_{m < m',\sigma} \hat{n}_{m\sigma} \hat{n}_{m'\sigma} + \\ &+ (U - 3J) \sum_{m < m',\sigma} \hat{n}_{m\sigma} \hat{n}_{m'\sigma} + \\ & \text{(+ possibly spin-flip, pair-hopping)} \end{split}$$

Two types of calculations

- Realistic electronic structure of each phase using LDA+DMFT (Dynamical Mean-Field Theory) based on e_g Wannier functions + many-body interactions (U,J)
- Calculations with simple model above (also solved with DMFT)
- Complementary (model+material-realistic) approaches help understanding

LDA+DMFT (eg states only), low-T structure LuNiO₃ Investigation of phases as a function of U,J

Note: Location of BDI phase boundary is extremely sensitive to value of Δ <u>while 1/4 filled Mott is NOT</u> (hence would require fine-tuning to account for ortho metallic vs. mono insulating) Mott+Peierls bond disproportionate insulator (Selective Mott on LB sites)

What are the implications for Orbital Polarisability ?

- Obviously a d⁸ (e_g²) Ni²⁺ configuration is not very favorable...
- Two orbitals split by Δ_c :

S=1 (HS) configuration: energy U-3J

S=0 (LS) configuration: energy U- Δ_c

-> Orbital polarisation requires $\Delta_c > 3J$! (atomic limit estimate)

And indeed, experiments reveal some orbital polarization under tensile strain... but a rather modest one.

PHYSICAL REVIEW B 88, 125124 (2013)

Ś

Strain and composition dependence of orbital polarization in nickel oxide superlattices

M. Wu,¹ E. Benckiser,^{1,*} M. W. Haverkort,^{1,2} A. Frano,^{1,3} Y. Lu,¹ U. Nwankwo,¹ S. Brück,^{4,5} P. Audehm,⁴ E. Goering,⁴ S. Macke,² V. Hinkov,² P. Wochner,⁴ G. Christiani,¹ S. Heinze,¹ G. Logvenov,¹ H.-U. Habermeier,¹ and B. Keimer^{1,†}

A combined analysis of x-ray absorption and resonant reflectivity data was used to obtain the orbital polarization profiles of superlattices composed of four-unit-cell-thick layers of metallic LaNiO₃ and layers of insulating RXO_3 (R = La, Gd, Dy and X = Al, Ga, Sc), grown on substrates that impose either compressive or tensile strain. This superlattice geometry allowed us to partly separate the influence of epitaxial strain from interfacial effects controlled by the chemical composition of the insulating blocking layers. Our quantitative analysis reveals orbital polarizations up to 25%. We further show that strain is the most effective control parameter, whereas the influence of the chemical composition of the blocking layers is comparatively small.

X-ray Absorption Spectroscopy (XAS)

Send an X-photon Kick an electron from a core state into the available (empty) valence states close to Fermi level. Using polarized X-rays, orbital-resolved information can be obtained

(In Wu et al, experiments: Ni-L edges)

XAS edges: By Atenderholt at English Wikipedia, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=38941860

Energy

In order to quantitatively analyze the observed dichroism, we applied the sum rule for linear dichroism,^{9,21} which relates the ratio of holes in the Ni e_g orbitals to the energy-integrated XAS intensities across the Ni L edge $I_{x,z} = \int_{L_{3,2}} I_{x,z}(E) dE$ for in-plane (x) and out-of-plane (z) polarization, respectively:

$$X = \frac{h_{3z^2 - r^2}}{h_{x^2 - y^2}} = \frac{3I_z}{4I_x - I_z}.$$
 (1)

Here, $h_{x^2-y^2}$ and $h_{3z^2-r^2}$ are the hole occupation numbers of orbitals with $x^2 - y^2$ and $3z^2 - r^2$ symmetries.

(LDA+) DMFT calculations yield good agreement with experiments, provided:

- Either calculation is done by including all Ni-3d and O-2p states, with fairly standard values of U,J
- Or, alternatively, above low-energy 2orbital e_g description is used, BUT with values of U-3J small or negative (that was the problem with previous predictions of large orbital polarization, quoted above)

LDA+DMFT calculations including all Ni and O states are in good quantitative agreement with this finding Peil, Ferrero &AG PRB 90, 045128 (2014) Han, Wang, Marianetti, Millis. 107, 206804 (2011) Park, Millis and Marianetti PRB 93, 235109 (2016)

FIG. 12. (Color online) The ratio of the hole occupancies, X, as a function of strain (for experimental points the value for the inner layers, X_A , is used).

In order to quantitatively analyze the observed dichroism, we applied the sum rule for linear dichroism,^{9,21} which relates the ratio of holes in the Ni e_g orbitals to the energy-integrated XAS intensities across the Ni *L* edge $I_{x,z} = \int_{L_{3,2}} I_{x,z}(E) dE$ for in-plane (*x*) and out-of-plane (*z*) polarization, respectively:

$$X = \frac{h_{3z^2 - r^2}}{h_{x^2 - y^2}} = \frac{3I_z}{4I_x - I_z}.$$
 (1)

Here, $h_{x^2-y^2}$ and $h_{3z^2-r^2}$ are the hole occupation numbers of orbitals with $x^2 - y^2$ and $3z^2 - r^2$ symmetries.

Distortions and c-axis changes induced by strain (cf. lecture 2) - Theory (DFT-GGA) -

FIG. 1. (Color online) Top: Bond-length ratio, l_c/l_a , for the distorted (solid green) and tetragonal (solid blue) structures under strain. The broken line displays the c/a ratio for the distorted structure (for the tetragonal structure it is identical to the bond-length ratio). In both cases, the strain is defined with respect to $a_{p,eq}$ of bulk LNO; the shift of the zero-strain point in the tetragonal case reflects thus the difference in the lattice constants of the two types of structures. Bottom: Dependence of the octahedral in-plane rotations (γ) and out-of-plane tilts ($\alpha = \beta$) on strain for the fully relaxed distorted structure. Also, structural refinement data from Ref. [46] are shown with diamonds for $\alpha = \beta$ and with circles for γ . Inset: Inclination angle ϕ_m of the pseudocubic axis c_p with respect to the *ab* plane.

O.Peil, M.Ferrero & A.G. PRB 2014 cf. also May et al PRB 2010 Large crystalfields are needed

- Distortions increase orbital polarisation

Peil et al. PRB 2014

How to reach larger orbital polarisations ?

- Concepts for materials design by the Yale group (C.Ahn, S.Ismail-Beigi et al.)
- Brief review: APL Materials 3, 062303 (2015)
- Chen et al. PRL 110, 186402 (2013)
- Disa et al. PRL 114, 026801 (2015)
- Seminar by Charles Ahn @ CdF, 2016

FIG. 1. 3*d* ionic configuration and structure of (a) bulk *R*NiO₃, (b) proposed orbitally polarized two-component nickelate heterostructures, and (c) high-temperature superconducting cuprates (and three-component nickelate heterostructures).

Disa et al., APL Materials 2015

FIG. 2. Schematic structures of nickelate systems discussed in this review, including a depiction of in-plane and out-of-plane hopping amplitudes and an illustration of electron transfer and polar fields in three-component heterostructures.

Disa et al., APL Materials 2015

FIG. 3. (a) Schematic of XLD/orbital reflectometry measurement geometry and (b) orbitals probed by incident x-ray polarization. XAS spectra for each polarization may be obtained in fluorescence yield (FY) or total electron yield (TEY) modes. (c) TEY spectra and normalized linear dichroism ($I_{Exy} - I_{Ez}$) for a two-component (LaNiO₃/LaAlO₃) superlattice and (d) three-component (LaTiO₃/LaNiO₃/LaAlO₃) superlattice, showing large difference in effect on e_g orbitals (from Ref. 30 with permission).

Disa et al., APL Materials 2015

Trends over the RE series

As size of RE decreases (distortion increases):

- The two manifolds of Peierls-split bands split more and more
- Bandwidth of each manifold decreases
- Susceptibility to electronic disproportionation increases and couples to breathing mode.

Take-home and Perspectives

- Consistent picture of insulating phase has now emerged
- Quantitative DMFT calculations and simple model, key parameters identified
- Role of breathing phonon to be taken into account explicitly and trends over the RE series to be understood better: in progress
- Orbital polarization: tricolor heterostructures (cf. Ahn et al.) or other materials (early TMOs t_{2g}'s) with less hybridization to ligands avoiding `negative charge transfer/ligand holes'