

Chaire de Physique de la Matière Condensée

# Des oxydes supraconducteurs aux atomes froids - la matière à fortes corrélations guantiques -

**Antoine Georges** 

Cycle 2009-2010 Cours 7 – 16 juin 2010 Cours 7: Transition métal-isolant de Mott (II): le point de vue de la théorie de champ moyen dynamique

### Séminaire:



Andrew J. MILLIS

**Columbia University** 

Illuminating the Strong Correlation Problem:

Optical conductivity of manganites, nickelates and cuprates.

# OUTLINE

- 1. Limitations of Brinkman-Rice
- 2. Introduction to Dynamical Mean-Field Theory
- 3. The effective hybridization function a quantum generalization of the `Weiss field' concept
- 4. Phase diagram: Metal-insulator transition, magnetic phases
- 5. Nature of the metallic phase
- 6. Fragility of the Fermi-liquid state: the quasiparticle coherence scale
- 7. Beyond Fermi liquid: transport, spectroscopies (transfers of spectral weight)
- 8. The Mott critical endpoint

# Qualitative features of Brinkman-Rice theory: (lecture 6)

- Quasiparticle weight vanishes as transition is reached: Z ~ U<sub>c</sub>-U (BC) or Z ~ δ (FC)
- Drude weight ~ Z
- Effective mass m\*/m = 1/Z : quasiparticles become heavy as insulator is reached
- Insulator is incompressible: jump in chemical potential Δµ ~ (U-U<sub>c</sub>)<sup>1/2</sup>
- Local susceptibility diverges at the transition  $\chi_{loc} \sim 1/\mathbb{Z} \rightarrow$  insulator has local moments (In2 entropy)
- Optical gap of insulator and uniform susceptibility not so well-defined in this theory (sometimes identified to  $\Delta\mu$  and  $\chi_{loc}$ , respectively, but see below.

# The simplest self-energy which makes all this possible:

$$\Sigma(\omega) = \Sigma(0) + \omega \left(1 - \frac{1}{Z}\right)$$

1)  $\Sigma(0)$  is in charge of making Luttinger happy by insuring a Large Fermi surface:  $\mu[n] - \Sigma[\omega = 0; n] = \mu_{U=0}[n]$ 

2) All the action is in Z !

no k-dependence→

$$\frac{m^*}{m} = 1 - \frac{\partial \Sigma}{\partial \omega} = \frac{1}{Z}$$

3) This self-energy is both extremely simple and a bit crazy:

- Crazy high-frequency behavior
- Only quasiparticles are described and they have infinitely long lifetime ( $\Sigma$ " = 0)

-Total spectral weight is  $Z \rightarrow$  incoherent part not included -Don't even think of checking Kramers-Kronig...

### Limitations of Brinkman-Rice :

cf. lecture 6 - quite clear from the experimental results on Titanates-

- → Must describe lifetime of quasiparticles
   → transport, optics
- Excited states: beyond quasiparticles (Hubbard satellites)
- Transfers of spectral weight
- Superexchange provides a cutoff to the divergence of effective mass (clear from entropic arguments)

# 2. Introduction to the Dynamical Mean-Field Theory framework

Correlated electrons in large dimensions: W.Metzner & D.Vollhardt, 1989 (then@Aachen) Dynamical Mean-Field Theory: AG & G.Kotliar, 1991 (then@Princeton & Rutgers)

# DMFT:

An ``<u>effective atom</u>'' approach. Replace the full solid by an effective atom hybridized, in a self-consistent manner, to an energy-dependent environment (effective medium)



#### A simple example: the Hubbard model

$$H = -\sum_{\mathbf{RR}'\sigma} t_{\mathbf{RR}'} f_{\mathbf{R}\sigma}^{\dagger} f_{\mathbf{R}'\sigma} + \sum_{\mathbf{R}} H_{\mathsf{atom}}^{\mathbf{R}}$$

Focus on a given lattice site:

Atom can be in 4 possible configurations:  $|0\rangle$ ,  $|\uparrow\rangle$ ,  $|\downarrow\rangle$ ,  $|\uparrow\downarrow\rangle$ 

Describe ``history'' of fluctuations between those configurations



Atom is coupled to the environment by exchange of electrons: the dynamics of these histories is that of an <u>Anderson impurity problem</u> (cf. lectures 1-2)

As we have seen in lectures 1-2, an AIM is entirely specified by: 1) The position of the atomic level  $\varepsilon_d$ 2) The hybridization function  $\Delta(\omega)$ 

$$S_{\text{eff}} = \int_{0}^{\beta} d\tau \int_{0}^{\beta} d\tau' d_{\sigma}^{\dagger}(\tau) [(-\partial_{\tau} - \varepsilon_{d})\delta(\tau - \tau') - \Delta(\tau - \tau')] d_{\sigma}(\tau') + U \int_{0}^{\beta} d\tau n_{\uparrow} n_{\downarrow}$$

At this stage, we have not yet specified how to choose  $\varepsilon_d$  and  $\Delta$ 

#### Focus on <u>energy-dependent</u> local observable :

$$G_{RR}(\omega) \equiv G_{\rm loc}$$

On-site Green's function (or spectral function) of the `solid'

Use atom-in-a-bath as <u>a reference system</u> to represent this observable:

→ IMPOSE that  $\varepsilon_d$  and  $\Delta$  should be chosen such that:

$$G_{\rm imp}[\omega;\varepsilon_d,\Delta(\omega)] = G_{\rm loc}(\omega)$$

At this point, given  $G_{loc}$  of the lattice Hubbard model, we have just introduced an exact local representation of it

G<sub>RR</sub> is related to the exact self-energy of the lattice (solid) by:

$$G_{\rm RR}(\omega) = \sum_{\rm k} \frac{1}{\omega + \mu - \varepsilon_{\rm k} - \Sigma({\rm k}, \omega)} = G_{\sf loc}(\omega)$$

In which  $\mathcal{E}_{k}$  is the tight-binding band (FT of the hopping  $t_{RR'}$ ) High-frequency  $\rightarrow \varepsilon_{d} = -\mu + \sum_{k} \varepsilon_{k} (= -\mu)$ 

Let us now make the **APPROXIMATION** that the lattice self-energy is **k-independent** and coincides with that of the effective atom (impurity problem):

$$\Sigma({
m k},\omega)\simeq \Sigma_{
m imp}(\omega)$$

This leads to the following self-consistency condition:

$$G_{\rm imp}[i\omega;\Delta] = \sum_{\mathbf{k}} \frac{1}{G_{\rm imp}[i\omega;\Delta]^{-1} + \Delta(i\omega) - \varepsilon_{\mathbf{k}}}$$

# DMFT equations: embedded atom + self-consistency $\rightarrow$ fully determines both the local G and $\Delta$ :



Weiss mean-field theory Density-functional theory Dynamical mean-field theory

# rely on similar conceptual basis

| TABLE 2. Comparison of theories based on functionals of a local observable |
|----------------------------------------------------------------------------|
|----------------------------------------------------------------------------|

| Theory      | MFT                       | DFT                              | DMFT                      |
|-------------|---------------------------|----------------------------------|---------------------------|
| Quantity    | Local magnetization $m_i$ | Local density $n(x)$             | Local GF $G_{ii}(\omega)$ |
| Equivalent  | Spin in                   | Electrons in effective potential | Quantum                   |
| system      | effective field           |                                  | impurity model            |
| Generalised | Effective                 | Kohn-Sham                        | Effective                 |
| Weiss field | local field               | potential                        | hybridisation             |

- Exact energy functional of local observable
- Exact representation of local observable:
- Generalized ``Weiss field''
- Self-consistency condition, later approximated

see e.g: A.G arXiv cond-mat 0403123

### Check two simple limits ...

- Non-interacting case:  $\Sigma = 0$ 

-"Atomic" limit (t=0):

$$G_{loc}^{U=0} = \mathcal{G}_0 = \sum_{\mathbf{k}} \frac{1}{i\omega_n + \mu - \epsilon_{\mathbf{k}}}$$

4 states on each site:  $|0\rangle, |\uparrow\rangle, |\downarrow\rangle, |\uparrow\downarrow\rangle$ 

Obviously, in this limit:  $\Sigma_{ij}^{at} = \Sigma^{at}(i\omega_n) \,\delta_{ij}$ 

(Exact) atomic Green's function:

$$G_{at} = \frac{1 - n/2}{i\omega_n + \mu} + \frac{n/2}{i\omega_n + \mu - U}$$

$$\Delta(i\omega_n) = 0 \quad \mathcal{G}_0^{-1} = \frac{1}{i\omega_n + \mu}$$

# The limit of large lattice connectivity

(Metzner&Vollhardt, 1989)

-The DMFT scheme becomes EXACT in the limit of large lattice connectivity (large number of spatial dimensions).

- Requires scaling of hopping amplitude



- Proof: e.g. ``cavity construction'' or perturbative inspection of Baym-Kadanoff functional.

# Phases with long-range order

e.g self-consistency condition in commensurate  $Q=(\pi,...,\pi)$  antiferromagnetic phase

A- and B- sublattice, symmetry:  $G_{A\sigma}(i\omega_n) = G_{B,-\sigma}(i\omega_n)$ 

Green's function matrix:

$$\begin{pmatrix} \zeta_{A\sigma} & -\boldsymbol{\epsilon}_{\mathbf{k}} \\ -\boldsymbol{\epsilon}_{\mathbf{k}} & \zeta_{B\sigma} \end{pmatrix}$$

$$\zeta_{A\sigma} = i\omega_n + \mu - \sigma h_s - \Sigma_{A\sigma}$$

Self-consistency:

$$G_{\alpha\sigma} = \zeta_{\bar{\alpha}\sigma} \int_{-\infty}^{\infty} d\epsilon \frac{D(\epsilon)}{\zeta_{A\sigma}\zeta_{B\sigma} - \epsilon^2}$$

# Solving the effective quantum impurity problem: computational techniques

Several numerical algorithms, or semi-analytical approximation schemes have been developed over the years to this aim, starting in the early days of the Kondo effect (Anderson impurity model) [e.g: Hirsch-Fye auxiliary field QMC, Resummed perturbation theories, Numerical Renormalisation Group] **Recent key advance:** continuous time QMC  $\rightarrow$  cf seminar 1 by O.Parcollet (A.Rubtsov et al.: pert. series in U, *P.Werner et al: pert. series around atomic limit)* 

# $\Delta(\omega)$ : generalizing the Weiss field to the quantum world



Pierre Weiss 1865-1940 *« Théorie du Champ Moléculaire »* (1907)

Einstein, Paul Ehrenfest, Paul Langevin, Heike Kammerlingh-Onnes, and Pierre Weiss at Ehrenfest's home, Leyden, the Netherlands. From Einstein, His Life and Times, by Philipp Frank (New York: A.A. Knopf, 1947). Photo courtesy AIP Emilio Segrè Visual Archives. Low-frequency behavior of  $\Delta(\omega)$  determines nature of the phase

- Δ(ω→0) finite → local moment is screened. `Self-consistent' Kondo effect.
   Gapless metallic state.
- Δ(ω) gapped → no Kondo effect, degenerate ground-state, insulator with local moments

# A- Phase diagram

Will focus in the following (for lack of time) on:
-1/2 -filled Hubbard model
- mostly paramagnetic solutions

# Generic phase diagram (Hubbard at <sup>1</sup>/<sub>2</sub>-filling, schematic)



# Unfrustrated <sup>1</sup>/<sub>2</sub>-filled model: phases with long-range order and crossovers, d=3 cubic lattice



Critical boundary calculated for a 3D cubic lattice using: -Quantum Monte Carlo (Staudt et al. Eur. Phys. J. B17 (2000) 411) - Dynamical Mean-Field Theory approximation

#### Phase diagram : zoom on paramagnetic solutions

Hubbard model, Bethe lattice, homog. phase, n = 1, e.g., DMFT(QMC)



- coexistence region  $[U_{c1}; U_{c2}]$ , first-order transition
- crossover above critical region

#### Blümer et al. Units here are 4D=2\*bandwidth

# **B-Nature of the metallic phase**

• At (possibly very) low T,ω: a Fermi liquid

$$\operatorname{Re}\Sigma(\omega+i0^{+}) = U/2 + (1-1/Z)\omega + O(\omega^{3}),$$
$$\operatorname{Im}\Sigma(\omega+i0^{+}) = -B\omega^{2} + O(\omega^{4}).$$

- At  $U_{c2}$  transition:  $Z \rightarrow 0$  (~ Brinkman-Rice)
- Heavy quasiparticles: m\*/m=1/Z (divergence reflects large entropy of insulator, see below)



#### Approach to the Mott state in titanates



Increase of effective mass

Tokura et al. PRL, 1993



FIG. 2. The filling (x) dependence of the inverse of Hall coefficient  $(R_H^{-1})$  in  $Sr_{1-x}La_xTiO_3$ . Open and closed circles represent the values measured at 80 K and 173 K, respectively. A solid line indicates the calculated one based on the assumption that each substitution of a  $Sr^{2+}$  site with  $La^{3+}$  supplies the compound with one electron-type carrier per Ti site.

R<sub>H</sub> reported as ~ T-independent and consistent w/ large Fermi surface

#### But... there is (plenty of) life beyond the Fermi-liquid regime



CTQMC+Analytical continuation (Pade), courtesy M.Ferrero, compares perfectly to NRG  $B\omega^2$  applies only below coherence scale B-coefficient is enhanced ~  $1/Z^2$ 



These 2 peaks will coalesce into a pole at  $\omega$ =0 as insulator is reached

### k-integrated spectral function (total d.o.s) :



Value of A( $\omega$ =0) is pinned at U=0 value due to Luttinger theorem

→ Low-energy quasiparticles and incoherent Hubbard bands Coexist in one-particle spectrum of correlated metal



#### **Quasiparticle excitations**

#### Wave-like

#### Momentum (k-) space

Atomic-like excitations (Hubbard satellites)

Particle-like (adding/removing charges locally)

Real (R-) space

Spectral weight transfers

Are treated on equal footing within DMFT

#### Evolution of the Spectral Function in Mott-Hubbard Systems with d<sup>1</sup> Configuration

#### A.Fujimori et al.

#### Low-energy quasiparticles

#### and

#### high-energy Hubbard bands coexist

- in a strongly-correlated metal:
- early evidence from photoemission (1992). Independent theoretical
- evidence from DMFT (1991)

Tremendous experimental progress over the last ~ 12 years !



FIG. 2. Photoemission spectra (diamond symbols) of YTiO<sub>3</sub> (hv=21.2 eV), LaTiO<sub>3</sub> (hv=48 eV), and SrVO<sub>3</sub> (hv=55 eV) in the *d*-band region. The spectra of VO<sub>2</sub> in the metallic phase (hv=60 eV) and ReO<sub>3</sub> (hv=40.8 eV) are taken from Refs. [9] and [14], respectively. They are compared with the DOS given by band-structure calculations [13,15] (solid curves). The instrumental resolution is ~0.5 eV for VO<sub>2</sub> and ~0.2-0.3 eV otherwise.



 $\rho_{\exp t}(\omega)$  of Ca<sub>1-x</sub>Sr<sub>x</sub>VO<sub>3</sub> taken with  $h\nu = 50$  eV. A spectrum of Au is also shown as a reference to  $E_F$  and the instrumental resolution.

FIG. 4: Comparison of the calculated, parameter-free LDA+DMFT(QMC) spectra of SrVO<sub>3</sub> (solid line) and CaVO<sub>3</sub> (dashed line) with bulk-sensitive high-resolution PES (SrVO<sub>3</sub>: circles; CaVO<sub>3</sub>: rectangles) [4]. Horizontal line: experimental subtraction of the background intensity.

# Quasiparticle peak revaled in recent high-energy photoemission experiments !

VOLUME 90, NUMBER 18

PHYSICAL REVIEW LETTERS

9 MAY 2003

#### Prominent Quasiparticle Peak in the Photoemission Spectrum of the Metallic Phase of V2O3

S.-K. Mo,<sup>1</sup> J. D. Denlinger,<sup>2</sup> H.-D. Kim,<sup>3</sup> J.-H. Park,<sup>4</sup> J.W. Allen,<sup>1</sup> A. Sekiyama,<sup>5</sup> A. Yamasaki,<sup>5</sup> K. Kadono,<sup>5</sup> S. Suga,<sup>5</sup> Y. Saitoh,<sup>6</sup> T. Muro,<sup>7</sup> P. Metcalf,<sup>8</sup> G. Keller,<sup>9</sup> K. Held,<sup>10</sup> V. Eyert,<sup>11</sup> V. I. Anisimov,<sup>12</sup> and D. Vollhardt<sup>9</sup>



Genuine Electronic States Insensitive to the Distortion in Perovskite Vanadium Oxides Revealed by High-Energy Photoemission

A. Sekiyama,<sup>1,\*</sup> H. Fujiwara,<sup>1</sup> S. Imada,<sup>1</sup> H. Eisaki,<sup>2,†</sup> S. I. Uchida,<sup>2</sup> K. Takegahara,<sup>3</sup> H. Harima,<sup>4</sup> Y. Saitoh,<sup>5</sup> and S. Suga<sup>1</sup>

#### Realistic DMFT Calculation of spectrum for an oxide: SrVO3

SrVO<sub>3</sub>

VOLUME 92, NUMBER 17



#### Mott Transition and Suppression of Orbital Fluctuations in Orthorhombic $3d^1$ Perovskites

E. Pavarini,<sup>1</sup> S. Biermann,<sup>2</sup> A. Poteryaev,<sup>3</sup> A. I. Lichtenstein,<sup>3</sup> A. Georges,<sup>2</sup> and O. K. Andersen<sup>4</sup>

The strongly correlated metal at lowenergy: ``single-parameter scaling'' (if only ω ~ ZD is considered → can be extended to a 2-parameter scaling up to scale ~ Z<sup>1/2</sup> D)

$$\mathrm{Im}\Sigma(\omega) = \mathrm{c}\,\mathrm{D}\phi\left(\frac{\omega}{\mathrm{ZD}}\right) \sim \mathrm{c}\frac{\omega^2}{\mathrm{Z}^2\mathrm{D}} + \cdots$$

#### Consequences:

-Kadowaki-Woods ratio for resistivity vs. specific heat -Behnia-Jaccard-Flouquet ratio for Seebeck vs. sp. heat



The Behnia-Jaccard-Flouquet ratio: S/Tγ

INSTITUTE OF PHYSICS PUBLISHING

JOURNAL OF PHYSICS: CONDENSED MATTER

J. Phys.: Condens. Matter 16 (2004) 5187-5198

PII: S0953-8984(04)80129-2





**Titanates/transport:** 

$$\rho_{dc} = AT^2 + \cdots$$
 $A/\gamma^2 \sim \text{const.}$ 

Fermi liquid behavior observed Below ~ 100K @ 5% doping

#### Kadowaki-Woods ratio



C- The paramagnetic Mott insulator DMFT viewpoint (i.e realistic for T not too low, weak magnetic correlations)

- Local moments
- Ln2 entropy per site
- Diverging local susceptibility
- Magnetic correlations show up in 2-particle quantities, not 1-particle (limitation of DMFT)
- Finite uniform q=0 susceptibility ~ 1/J
- Pole in  $\Sigma(\omega)$  related to gap

• Insulating solution :  $\Delta(0) = 0$  : gapped bath  $\Rightarrow$  no Kondo effect



Spectral function (U/D=4)

# **D-**Thermodynamics :

S



#### Pomeranchuk effect In metal !



2.00

1.60

D/D

U/D

3.00

T/D

4.00

5.00

E- Fragile quasiparticles: materials with small quasiparticle coherence scale (e.g close to Mott transition):
Large spectral weight transfers upon changing temperature
Unconventional transport

#### QP coherence scale ~ width of quasiparticle band

$$\varepsilon_F^* \sim ZD$$

 $\rightarrow$  Because DMFT describes BOTH low-energy quasiparticles and incoherent Hubbard bands, these issues can be addressed and computed



Fermi-liquid regime T ≪ ε<sup>\*</sup><sub>F</sub>. Coherent quasiparticles. QP peak in the spectral function. Resistivity:

$$\rho = \rho_M \left(\frac{T}{\epsilon_F^*}\right)^2 \tag{1}$$

Note: prefactor enhanced by correlations.  $\rho_M \propto ha/e^2$  Mott value.

- Incoherent ("bad") metal T ~ ε<sub>F</sub><sup>\*</sup>. QP peak quickly suppressed upon increasing T above ε<sub>F</sub><sup>\*</sup>. Resistivity is quasi-linear, and greater than Mott limit.
- Insulating-like ε<sup>\*</sup><sub>F</sub> ≪ T ≪ Δ<sub>g</sub>. QP peak is gone. (Pseudo-) gap in local d.o.s. Transport is insulating-like (Mott gap).



# Mott transition and transport crossovers in the organic compound $\kappa$ -(BEDT-TTF)<sub>2</sub>Cu[N(CN)<sub>2</sub>]Cl



P. Limelette et al., PRL 91 (2003) 016401

DMFT/NRG calculations of resistivity (S.Florens.T.Costi.A.G)



FIG. 6: Temperature-dependence of the resistivity at different pressures. The data (circles) are compared to a DMFT-NRG calculation (diamonds), with a pressure dependence of the bandwidth as indicated. The measured residual resistivity  $\rho_0$  has been added to the theoretical curves.



### Large transfers of spectral weight seen in all spectroscopies, e.g optics:



### **Optical conductivity**

#### Drude weight ~ doping

FIG. 108.  $N_D$  to  $N_{D0}$  as a function of  $\delta$  (Katsufuji, Okimoto, and Tokura, 1995) for La<sub>1-x</sub>Sr<sub>x</sub>TiO<sub>3</sub>.





#### Large transfers of spectral weight

FIG. 107. Optical conductivity spectra in  $R_{1-x}Sr_xTiO_{3+y}$  or  $R_{1-x}Ca_xTiO_{3+y}$  (R=La, Nd, Sm, and Y). From Katsufuji, Okimoto, and Tokura, 1995.

# Optics and transfers of spectral weight from DMFT calculations...



#### **T-dependence**

e.g. Rozenberg et al., 1995 Jarrell et al., 1995 (curves above)



#### Doping-dependence

Old results →For much more recent work, see seminar by AJ Millis

# Critical behaviour at the Mott critical endpoint

A liquid-gas transition ?

 Insulator:

 low-density of doubly occupied sites

 Metal:

 High-density

 LIQUID

+ cf. early ideas of Castellani et al.

+ Recent DMFT/Landau theory approach: **scalar** order parameter





#### **Critical behaviour near Tc,Uc**



FIG. 1. Double occupation  $\langle d \rangle$  as a function of U for dif temperatures. The thin lines denote IPT results for  $T_1$ 0.0469, 0.05, 0.052, 0.056 (top to bottom). The thick line a fit to the IPT data using the LG theory. The circles are data obtained at  $T_{\rm QMC} = 1/40, 1/35, 1/32, 1/25$  [8]. Th results where shifted by a constant -0.07 along the U axi by -0.003 along the  $\langle d \rangle$  axis. The curves for the three temperatures are above  $T_c$  and the lowest temperature ones branches) are just below. The inset shows the scaling or reduced temperatures  $[T - T_c]_{\rm QMC}$  versus  $[T - T_c]_{\rm IPT}$ .

Kotliar et al. PRL 84 5180 (2000)





FIG. 2. Density of doubly occupied sites vs temperature at half filling for various values of U (square DOS). Very similar results are obtained for the Gaussian DOS. Inset: Temperature at which  $\langle D \rangle$  is minimum vs U.

#### Georges and Krauth PRL 69 1240 (1992)



FIG. 2. The density of states at the Fermi energy  $\rho(0) = A_0$  as a function of temperature in the critical region ( $U = 2.463 \, 16 \approx U_c$ ). The singular behavior of the slope at  $T_c \approx 0.046 \, 897$ can be clearly appreciated. The inset shows the variation of the spectral function for  $U \simeq U_c$  in the vicinity of  $T_c$ : dashed line for  $T - T_c/T_c = -0.000 \, 25$ , solid line for  $T - T_c/T_c = 0.000 \, 06$ , and dotted line for  $T - T_c/T_c = 0.000 \, 49 \, [11]$ .



Scaling: Universal form of the `equation of state"

$$\sigma_{met}(P,T) - \sigma_c = (\delta h)^{1/\delta} f_{\pm} \left( \frac{\delta h}{|r|^{\gamma \delta/(\delta-1)}} \right)$$

Cf also: Kagawa et al. (Kanoda's group) on the BEDT organics



# Beyond DMFT...

 Spatial correlations, when sizeable, influence quasiparticle properties
 (e.g. cuts-off divergence of effective mass)

Some materials, especially hi-Tc cuprates at low doping levels, are strongly non-Brinkman Rice and follow a quite peculiar route to the Mott transition with strong momentum-space differentiation



# **NORMAL state:**

- ``Nodal'' regions display reasonably coherent quasiparticles
- In contrast, excitations in the ``antinodal'' regions e.g. (0,π) are much more incoherent
   AND they are (pseudo-) gapped below T\*





#### ARPES sees « Fermi arcs »



Ca<sub>2-x</sub>Na<sub>x</sub>CuO<sub>2</sub>Cl<sub>2</sub>

K.Shen et al. Science 2007



# →Next year's lectures ! (Fall 2010)