School of Earth and Environment

Seismic constraints on Earth's small-scale structure Sebastian Rost

School of Earth and Environment Institute of Geophysics and Tectonics

Hannah Bentham (Leeds), Daniel Frost (Leeds), Paul S. Earle (USGS), Peter Shearer (UCSD), Michael Thorne (Utah), Neil Selby (AWE Blacknest)

- Introduction
- Global Upper and Mid-mantle scattering
- PKP and structure in the LLSVP
- P'•P' probing from crust to core

Current Geophysical Cartoons

- Strong 3D heterogeneities on many scales
- Evidence for chemical heterogeneities
- Different behaviour of slabs and plumes in different areas
- Very small scale structure

Chemical Heterogeneities

Temp

Basalt tracer

Pb isotope ratio

- Subduction major source for chemical heterogeneity
- Sedimentation of crustal material depends on density difference at the CMB
- Less entrainment for $\Delta\rho$ about 3%

[Christensen and Hofmann, 1994]

- Subduction major source of chemical heterogeneity
- Mechanical mixing necessary to reintroduce heterogeneity into the mantle
- Density difference essential for dynamics of heterogeneities

ANNUAL REVIEWS

Geophysics of Chemical Heterogeneity in the Mantle

Lars Stixrude and Carolina Lithgow-Bertelloni

Department of Earth Sciences, University College London, WC1E 6BT London, United Kingdom; email: l.stixrude@ucl.ac.uk, c.lithgow-bertelloni@ucl.ac.uk

Stixrude and Lithgow-Bertelloni, 2012

Details?

Seismic Scattering

0

Point Scatterer

Background Velocity: 8.0 km/s Scatterer Velocity: 6.0 km/s Scatterer Radius: 2.67 km Source frequency: 3.0 Hz

michael.thorne@utah.edu

Short-period seismic wavefield

UNIVERSITY OF LEEDS

- Stack of ~1200 array (YKA) recorded events
- Color = Slowness (vertical incidence angle)

Rost, Thorne, Garnero [SRL, 2005]

Deep Earth Scattering Probes

- 1. P coda
- 2. P_{diff} coda
- 3. Asymmetric PP precursors
- 4. PK•KP (precursors)
- 5. PKP precursors
- 6. PKKP precursors
- 7. P'P' precursors
- 8. PKiKP coda
- 9. Symmetric PP precursors

Deep Earth Scattering Probes

UNIVERSITY OF LEEDS

Dataset and Probe

- Global dataset of deep, M>6 events
- GSN stations
- Dataset augmented with CNSN stations
- Data aligned on PP
- Stacked in 5 deg distance bins

- PP as reference phase
- PP min-max phase
- Scattered energy arrives as precursor
- Probe most sensitive to structure at turning point depth

Bentham, Rost and Thorne [2012]

Global Data Stack

- 7905 stacked traces
- Aligned and normalized on PP
- 5 deg distance bins
- Envelope stacks

• No weighting with SNR

• PP SNR > 5

- Not corrected for P/P_{diff} moveout
- VP_{diff} moveout

Regional Data Stack

- Data divided into paths crossing the Pacific and the Atlantic
- Identical processing
- Fewer traces in Atlantic region
- Similar overall structure stable stacking reached at about 50 traces
- P/P_{diff} growth due to misaligned arrival within distance bin
- PKiKP cross over distance about 102 deg

Bentham, Rost and Thorne [2012]

Regional Data Stack

- No dramatic differences in PP precursor coda
- No regional difference between region strongly affected by recent subduction
- Mid-mantle is generally well mixed and does not show strong evidence for imprint of surface tectonics
- Differences for large distances?

PP

- Monte-Carlo Phonon Scattering algorithm
- No P_{diff} modeling (ray based approach)
- Hedlin et al. (1997) or Earle/Shearer (2002) background model
- Variation in heterogeneities in spherical shells
- 3 distance bins –Synthetics processed as data
- Strong Moho arrival in synthetics

PKP scattering

PKP scattering array processing

Frost et al. [2012]

South African Sources

Frost et al. [2012]

Core-Mantle Boundary Structure

- Deterministic scatterer^{o⁵} location through raytracing with highprecision slowness and backazimuth
- Variations in scattering strength and height above CMB in volume

Small and Large-scale structure

Small and Large-scale structure

[McNamara et al, 2010]

UNIVERSITY OF LEEDS

Scattering from Core to Crust - PKP•PKP

UNIVERSITY OF LEEDS

Earle et al., [2011]

PKP•PKP - P'P' Scattering

UNIVERSITY OF LEEDS

Earle et al. [2011]; Rost et al. [2012]

Dataset

- Small dataset M > 6
- 20 40 deg distance
- Data recorded at Yellowknife Array Northern Canada (YKA)
- Events dominantly in Kamchatka and Central America
- F-statistic approach in time slices equivalent to 200 km in depth (~50 s)

Rost et al. [2012]

Kamchatka Event

Central American Event

Power

Rost et al. [2012]

Results

- P'•P' offers the unique opportunity to sample the Earth for small-scale heterogeneity consistently from crust to core
- Kamchatka events consistently show upper mantle scattering from South American subduction zone region (2)
- Kamchatka events consistently show scattering from the edge of the African LLSVP (1)
- Central American events do not show evidence for lower mantle scattering
- Potential scattering points in the north western Pacific dominated by fast velocities
- Upper mantle scattering in a subduction dominated upper mantle

UNIVERSITY OF LEEDS

Conclusions

- Small-scale heterogeneities are evident in many parts of the high-frequency seismic wavefield
- Using information contained in the scattered seismic wavefield allows probing the interior of the Earth for its fine-scale structure
- Many of the scattering areas seem to be connected to the tectonics of the surface or of the Earth's deep interior
- High thermal conductivity of mantle materials will likely lead to fast thermal equilibration of small-scale thermal anomalies
- Likely source for chemical heterogeneities is the subduction process, i.e. crustal material on the way to the CMB

- Several new probes for small-scale structure available
- Mechanical mixing ill-understood
- Better connection between geodynamical, mineral-physical and seismological modeling required

