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How can we probe the Earth’s interior?
(without having to drill to the Core...)

seismometers

Earthquake



1-D seismic profiles €<-> Elasticity of minerals
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“What materials may
have the elastic
properties demonstrated
by the seismic waves
under the conditions of
the interior?”

F. Birch, 1952



but also ...

Unwary readers should take warning that ordinary language
undergoes modification to a high-pressure form when applied
to the interior of the Earth; few example of equivalent
follow:

High-pressure form C—) Ordinary meaning
certain dubious
undoubtedly perhaps
positive proof vague suggestion

unanswerable argument trivial objection
pure iron uncertain mix of

all the elements

F. Birch, 1952



Velocity vs Density Systematics

Birch (1962)

Fe (+Ni) main constituent of Earth’s core



EOS of hcp-Fe vs Earth’ s models
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> 11% density difference for the liquid outer core
» 6% density difference for the solid inner core

msssmm) Light elements in the core (Si, S, O, C ...)

Poirier, PEPI 1994



Sound velocity measurements on Fe and Fe-alloys
as a function of pressure and temperature

“traditional” techniques limited

e HIGHEST ATTAINABLE PRESSURE
(large volume press, probe/sample dimensions)

e CHOICE OF MATERIALS
(transparent samples, Mossbauer isotopes)

e INFORMATION CONTENT
(only partial, surface probe, necessary approximation, complex

data inversion...)



3rd generation synchrotron sources
+ diamond anvil cell
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Pioneering experimental studies on Fe

Sound Velocities in Iron to 110
Gigapascals

Guillaume Fiquet,’* James Badro,’ Francois Guyot,’
Herwig Requardt,? Michael Krisch?

The dispersion of longitudinal acoustic phonons was measured by inelastic x-ray
scattering in the hexagonal closed-packed (hcp) structure of iron from 19to 110
gigapascals. Phonon dispersion curves were recorded on polycrystalline iron
compressed in a diamond anvil cell, revealing an increase of the longitudinal
wave velocity (V,) from 7000 to 8800 meters per second. We show that hcp
iron follows a Birch law for V,,, which is used to extrapolate velocities to inner
core conditions. Extrapolated longitudinal acoustic wave velocities compared
with seismic data suggest an inner core that is 4 to 5% lighter than hcp iron.
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Phonon Density of States of
Iron up to 153 Gigapascals

H. K. Mao,” J. Xu,? V. V. Struzhkin," J. Shy,” R. J. Hemley,’
W. Sturhahn,? M. Y. Hu,? E. E. Alp,? L. Vocadlo,? D. Alfé,?
G. D. Price,® M. J. Gillan,® M. Schwoerer-Béhning,*

D. Hiusermann,* P. Eng,® G. Shen,® H. Giefers,® R. Liibbers,®
G. Wortmann®

We report phonon densities of states (DOS) of iron measured by nuclear
resonant inelastic x-ray scattering to 153 gigapascals and calculated from ab
initio theory. Qualitatively, they are in agreement, but the theory predicts
density at higher energies. From the DOS, we derive elastic and thermodynamic
parameters of iron, including shear modulus, compressional and shear veloc-
ities, heat capacity, entropy, kinetic energy, zero-point energy, and Debye
temperature. In comparison to the compressional and shear velocities from the
preliminary reference Earth model (PREM) seismic model, our results suggest
that Earth’s inner core has a mean atomic number equal to or higher than pure
iron, which is consistent with an iron-nickel alloy.
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Basics of Nuclear Resonant Inelastic X-ray Scattering
(NRIXS)

Secondary photoemission yield from Mossbauer isotopes (*’Fe) resonances
to probe the projected partial vibrational density of states
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Within an harmonic approximation, for solid with Debye like low-
frequency dynamics, parabolic fit to low energy range

: 3/(Vp)*=1/(Vp)> + 2/(Vs)?
- Debye velocity Vj K/p = (Vp)2-(4/3) (Vs)?
G/p = (Vg)?



Basics of Inelastic X-ray Scattering (IXS)

E.., Kis €,

n? 1

e Energy transfer E = E_,; - E;, (E<< E;)
e Momentum transfer Q = k, - K;, = 2k sin (6/2) (Koue=kin=K
¢ Directional analysis of the scattered photons . 0]

¢ Energy analysis of the scattered photons —— E

Large variety of samples, metals as well as semiconductors or insulators

Opaque as well as transparent materials

Single crystals, powders, liquid




Elasticity form IXS measurements

Single crystals: complete phonon dispersion curve - full elastic tensor (C;)

Powders: averaged longitudinal dispersion
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from sinus fit - aggregate compressional sound velocity V,
(aggregate shear sound velocity V)



IXS on pure-Fe
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Fiquet et al., Science 2001

- Birch’s law

- Light elements in the inner core (5i, S, O, C...)



Sound velocities in Fe and Fe-compounds
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Sound velocities in Fe and Fe-compounds
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Composition of the core

Badro et al., EPSL 2007



Main assumptions:

1) Birch’ s law
2) “Linear mixing” of velocities of end-members

3) Inclusion of up to 15 wt% Ni is considered negligible

4) Only V; and @ctin@

< Sound velocities and density
measurements on

+ check Fe as reference



Fe sound velocities at high P and ambient T
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¢ NRIXS Mao et al., 2001

m XS Fiquet et al., 2001
Antonangeli et al., 2004

¢ NRIXS Lin et al., 2005
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Antonangeli et al., submitted




IXS measurements to 108 GPa
(ID28-ESRF)

Polycrystalline homogeneous samples of silicon bearing iron-nickel alloy
Electron micro-probe analysis: Si 2> 3.7 wtk% Ni 2 4.3 wth

Compacted pellets (90 pm diameter, 20 um thick) loaded into DAC

longitudinal acoustic
phonon dispersion
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Comparison with pure-Fe, Fe-Ni and Fe-Si
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Comparison with seismic models: V;

Down to PREM
for
Si~1.2wth
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Antonangeli et al., EPSL 2010
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Comparison with seismic models: V, and V.

Down to PREM

for
Si~1.2wth

Down to PREM ?

No for any Si
concentration
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Antonangeli et al., EPSL 2010



Anharmonic temperature effects?

NRIXS measurements on Fe compressed
in laser-heated DAC
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Phonon density of state
Debye velocity

Complex data treatment
Harmonic model

No density determination

Input P-V-T to solve for V, and V,

Is there a more direct way
to probe temperature
| effects on sound velocity?

Density (g/cm3)

Lin et al., Science 2005



IXS measurements on Fe
at high pressure and high temperature

IXS on polycrystalline sample = aggregate phonon dispersion = V;
XRD - phase stability, phase purity and density

Mao type DAC
Internal and external resistive heating
In vacuum measurements

- 30 GPa < P < 93 GPa
- 300K <T< 1100 K (for up to 12 hours)
- hcp-phase

44 GPa, 1600 K




No temperature effect up to 1100 K

T T
O ambient T
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Anharmonic corrections

At core temperatures (4000-7000 K) anharmonic effects are expected

More relevant to V. (e.g. Laio et al., 2000; Steinle-Neumann et al., 2001)

corrections at constant density (13000 Kg/m?3)

-4% on Vp and -30% on V. at 5000 K

after calculations on pure hcp-Fe (Vocadlo et al., 2009) corrected for the
4% density variation of computational results at 300 and 5000 K



Seismic wavespeeds and density
are matched for 1.5 wt% of Si at 5000 K
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Conclusions 1

¢ Si major light element in inner core

¢ Inner core containing 4-5 wt% of Ni and 1-2 wt% of Si

(exact Si amount might vary depending on temperature corrections
and if other light elements are present)

for 1.2 < DYd/s0l < 1.9 (after Alfe et al., 2002)

+ Total core composition with 1.2 wt% < Si < 4 wtk

on the lower range of core formation and core-mantle interactions models
that often call for larger Si amount in the core
e.g. 7.3 wt% (Allegre et al, 1995), 10.3 wt% (Javoy, 1995),
5-7 wt% (Wade and Wood, 2005)



Conclusions 2

¢+ Simple model that simultaneously matches the main
seismic observables: density, P-wave and S-wave velocities

Other mechanisms for lowering V.

- Fluid inclusions (e.g. Singh et al., 2000; Vocadlo, 2007)
- Viscoelastic relaxation (e.g. Jackson et al., 2000)

- Randomly oriented anisotropic “patches” (e.g. Calvet et el., 2008)

No strictly needed to explain seismic velocities

Possibly needed to account for seismic attenuation, seismic
anisotropy, variation with depth, hemisphericity...



Outlooks

=mmm) Deyond radial models, single crystal properties

IXS from textured polycrystalline samples

Vp{€} up to 110 GPa

(Antonangeli et al., EPSL 2004; Mao et al., JGR 2008)

for Fe-alloys expected limit ~150 GPa

hcp Co single crystal . . .
: / IXS from single crystals = full phonon dispersions

PSR C.. up to 39 GPa and 1000 K

B 30 (Antonangeli et al., IJRL 2004; Farber et al, PRL 2005; Antonangeli et al., PRL
um thickness _

; : R 2008)

/ - ‘V‘\\ o . ’ . of o

Helillm 15, Ruby so far limited by sample’ s availability,

dimensions and quality
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