

3 méthodes

- Expérimentales:
 - Ondes de choc-> hautes P et T le long de l'hugoniot.
 - Mesures statiques dans l'enclume de diament (DAC) + analyses par synchrotron (e.g. XRD)
- · Calculs théoriques "ab initio"

- Aux conditions de P et T du noyau et de la graine:
 - Température de fusion et phases du fer pur
 - Anisotropie élastique du fer
 - Effets des impuretés
 - Elements légers dans le noyau

Température de fusion et structure du fer à l'ICB

- Déterminations par ondes de choc

 - Brown and McQueen (1980,1986)
 77GPa → 400 Gpa, le long du Hugoniot
 Discontinuité de vitesse du son à 200+/-2GPa: epsilon->gamma?
 - Seconde discontinuité: à 243+/- 2 GPa: fusion du fer
 - Température de fusion entre 5000 et 5700 K Extrapolation aux conditions du noyau (ICB): – 3306Pa; 5800+/-500 K
 - Plus récemment: Nguyen and Holmes (2004)
 Fusion sur le Hugoniot commence à 225 GPa et 5100+/-500K
 - Pas d'autre discontinuité: en fait le point triple
 - Fe ε,γ, liquide est à 50-60 GPa

Calculs ab initio de la courbe de fusion du fer

- Calculs théoriques indiquent que pour Fe pur, la phase stable aux pressions du noyau est hcp (Steinle Neumann et al., 2001; Vocadlo et al., 2000)
- Alfe et al. (2002)
 DFT (Density Functional Theory)
 Calcule l'énergie libre de Gibbs du fer liquide et solide: la courbe de fusion est obtenue en imposant leur égalité à une température T donnée

 T de fusion ~6350K à 3306Pa
- S'accorde avec les résultats d'autres groupes après quelques corrections

Alfe et al. (2009) •

Autre méthode de calcul: simulation liquide/solide en coexistence

Calculs ab initio: hcp ou bcc?

- Pour d'autres métaux de transition, la phase bcc devient la phase stable à haute température, à l'approche de la température de fusion. •
- Calculs AIMD (Ab Initio Molecular Dynamics) de l'énergie libre à hautes T et P (Vocadlo et al., 2003) Calculs basés sur la DFT (density functional theory) avec *GGA* (general gradient approx.) Calculs à 6000K .

 - Considèrent plusieurs facteurs: energies libres, contraintes (sont elles hydrostatiques?)
 Structure bcc n'est pas stable à T<3000 K
- Bcc Fe stabilisé (entropie) aux températures du noyau, mais hcp demeure la phase stable
 Impuretés dans le noyau et la graine: phase bcc stabilisée par rapport à hcp (S, Si)

Volume (ų)	Temperature (K)	F _{b.c.c.} (eV)	F _{h.o.p.} (eV)	∆F _{b.c.ch.c.p.} (meV)
9.0	3,500	-10.063	-10.109	46
8.5	3,500	- 9.738	- 9.796	58
7.8	5,000	-10.512	-10.562	50
7.2	6,000	-10.633	-10.668	35
6.9	6,500	-10.545	-10.582	37
6.7	6,700	-10.288	-10.321	33
*7.2	3,000	- 7.757	- 7.932	175

 $\frac{Alliage \ avec \ S \ ou \ Si:}{FeSi} \ a \ la \ structure \ CsCl \ equivalente \ a \ bcc \ a \ hautes \ pressions$ Calcul montre que les inclusions 5 et 5i sont plus stables en bcc qu'en hcp -> par exemple réduction de 60 meV pour 5 mol% de 5i dans Fe

Vocadlo et al., 2003, Nature

Effet du nickel sur le diagramme de phases

- Dubrovinsky et al. (2007):
 Alliage Fe-Ni avec 9.8% Ni

 - DAC avec chauffage interne + angle dispersive x-ray diffraction
 - Température mesurée par spectro-radiométrie
 - Mesurent la résistance électrique de l'alliage
 - Changement de la résistance vers 225 Gpa
 Structure bcc à P>225 Gpa et T >3400 K

9

Composition du noyau

- Densité du noyau ~8-10% inférieure à celle du fer pur
- Densité de la graine ~2-3% inférieure à celle du fer pur
 - Incertitudes sur la température du noyau
 - Saut de densité à l'ICB 4-7% saut dû à la cristallisation du fer pur (~1.8%)
 - => Le noyau contient des éléments légers.
 - => Une partie de ces éléments légers sont expulsés dans le noyau liquide au moment de la cristallisation de la graine.

Contraintes sur les éléments légers (X) dans le noyau

- Etudes de la composition du manteau
- Composition moyenne à partir d'études cosmochimiques des météorites et de la photosphère solaire,
- Études géochimiques de la composition de la croûte et du manteau
- En supposant la même composition dans le manteau supérieur et inférieur -> composition en éléments légers du noyau
- Etudes expérimentales et théoriques des alliages fer-X :
 - Comparaison avec les modèles sismiques (densité dans le noyau, saut de densité à l'ICB, vitesses sismiques et leurs gradients, anisotropie,)
 Coefficients de partage entre le liquide et le solide

Les éléments légers dans le noyau et dans la graine

- · Quels sont ils et quelles sont leurs proportions?
- Quelle est leur influence:
 - sur la température de fusion à l'ICB?
 - sur les propriétés élastiques dans la graine (vitesse's sismiques et anisotropie)?
 - sur la convection dans le noyau liquide et donc la dynamo?
- Permettrait de préciser le processus de formation du noyau et vice versa

Les éléments légers dans le noyau et dans la graine

- Conditions à remplir:
 - Suffisamment abondants au temps de la formation du noyau mais pas suffisamment volatiles pour s'échapper de la terre à cette époque
 - Doivent pouvoir préférer s'associer au fer dans le noyau à des pressions relativement faibles (au temps de la formation du noyau)
 - Doivent rester solubles dans le fer aux conditions actuelles de P et T
 - Certains doivent être relâchés dans le liquide pendant le processus de solidification à l'ICB
- Ne pas oublier la présence de Ni qui peut changer les diagrammes de phase ternaires Fe-Ni-éléments légers

Contraintes géochimiques et cosmochimiques Formation de la terre à partir de la nébuleuse solaire à 4.56 Milliard d'années Accrétion initiale rapide (1 Million d'années) par collisions et interactions gravitationnelles de corps initialement petits (~10 km diamètre)-> proto-planètes de la taille de la Lune ou Mars · Energie gravitationnelle+

- désintégration des éléments radioactifs
- produisent une grande quantité de chaleur
 + Episode plus tardif de formation de la lune par impact géant
- => fusion importante "océan de magma" pendant toute la période d'accrétion

- L'analyse des isotopes du tungstène (W) indiquent une formation rapide des noyaux planétaires
 - Contraintes fortes sur l'époque de la ségrégation entre le métal et les silicates ¹⁸²Hf-¹⁸²W demi-durée de vie de ~9Ma Hf lithophile (préfère les silicates); W est sidérophile (préfère la phase métallique)

 - Au moment de la formation du noyau, le rapport Hf/W devient élevé dans le silicate mais presque nul dans le métal
 - Si la ségrégation a lieu pendent que ¹⁸²Hf existe encore (<45 Ma après l'origine du système solaire), les silicates doivent présenter des anomalies ¹⁸²W positives et les noyaux des anomalies négatives par rapport au matériau non différentié des chondrites:
 < 5Ma
- Chondrites correspondent le mieux avec ce qu'on sait de la composition de la terre

Météorites rocheux non différentiés

- Composition des chondrites + composition en éléments majeurs du manteau=> composition du noyau (pour les éléments non volatiles) en ٠ supposant la composition du manteau homogène
- Questions non résolues: Rapport Si/Mg des roches du manteau est inférieur à celui des chondrites:
 - 1) Si dans le noyau
 - 2) Si évaporé
 3) manteau inférieur a une composition différente du manteau supérieur
 - Quelles chondrites représentent le mieux la terre?

 Calculs ab initio prédisent une dépression de 600-700 K du point de fusion pour le mélange par rapport au fer pur (Alfe et al., 2007):

– Température à l'ICB : ~5700 K (pour Δρ=4.5%)
 ~5400 K (pour Δρ=6.5%)

 Extrapolation le long de l'adiabat donne alors la température en haut du noyau: ~4000 K

Mesures expérimentales

- Mesure de la vitesse du son aux conditions du noyau n'est devenue possible que récemment (Mao et al., 1998; Figuet et al., 2001):
 - O, S, Si éléments légers favoris
 - Dispersion des rayons X inélastique permet la mesure de la vitesse du son par mesure de la pente de la dispersion des phonons
 - Mesure de la densité par diffraction des rayons X

- Equation d'état du fer ε connue
 - On en déduit celle des systèmes à deux composants solides (Badro et al., 2007):

$$\rho = x\rho_1 + (1 - x)\rho_2$$
$$V = \frac{V_1V_2}{(1 - x)V_1 + xV_2}$$

Où x est la fraction volumique du composant 1 Et ρ et V la densité et vitesse moyenne de la solution idéale solide

- Avec la loi de Birch (qui relie V_2 à ρ_2), et connaissant ρ,V (PREM), $\rho_1,V_1(fer)$ on en déduit x et ρ_2 (dans la graine)
- L'effet de 5% de Ni est négligeable (*Lin et al., 2003*)
- Extrapolation possible au noyau liquide en utilisant les données de solubilité et coef. de partition existants pour les éléments légers.

Comp	osition	de la graii 2007)-2	ne (Badro <u>?</u> :	et al.,
	Element	Fraction (wt%)	Compression (ρ/ρ_0)	
	Si	2.5	1.28	
	0	1.5	1.33	
	S ²⁻ (F	eS) 10	2.51	
	S⁻ (F	eS ₂) 4	1.05	(Badro et al., 2007)
Conséquence Concent Modules => candi Coefficients D ^{liq/Sol} (Si ou	s pour Si rations plu de compr dats viable de partiti S)=1.2	et O: is en accord avec ession réalistes es pour la graine on liquide/solide	c la géochimie ::	s le noveu liquide

Element	Fraction (wt%)	Compression (ρ/ρ _o)	Model Inner Core (wt%)	Model Outer Core (wt%)
Si	2.3	1.28	2.3	2.8
ο	1.6	1.33	minor	5.3
S ²⁻	9.7	2.51	minor	minor
S-	3.6	1.05	minor	minor
		Total	2.5	8

Composition de la graine Antonangeli et al. (2010): - Mesures expérimentales (IXS) de la vitesse du son et de la densité pour un alliage (Fe, Ni, Si)

Si 3.7wt% Ni 4.3wt%

- Obtiennent aussi Vs en combinant avec les mesures du module de compressibilité K (Figuet et al., 2008) sur les mêmes échantillons:

$$V_s = \sqrt{3/4(V_p^2 - K/\rho)}$$

Antonangeli et al. (EPSL, 2010)

15

