Towards a mineral-physics reference model for the Moon's core

Daniele Antonangeli

Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC) UMR CNRS 7590, Sorbonne Universités – UPMC Univ. Paris 6, Muséum National d'Histoire Naturelle, IRD

The Moon

Moon seismology: the Apollo Lunar Surface Experiments Package

after Wieczorek et al., Elements 2009

Moon's seismic models

seismic investigation of the deepest lunar structures (> 900 km depth) remains very challenging

 \rightarrow mineral physics constraints

→ density and sound velocities: the link between seismic observations and models

Iron phase diagram vs. planetary cores P-T conditions

Tateno et al., Science 2010

hcp (or ε) structure stable at Earth's core P-T conditions

fcc (or γ) structure stable at P-T conditions of cores of small telluric planets and satellites

fcc-iron EOS

42

0

5

15

P-V-T relations

at Moon's conditions

10

Pressure (GPa)

20

25

-o-- 1273 K -o-- 1073 K -o-- 873 K

XRD in combination with multi-anvil press

+ thermodynamic constraints (metallurgy, phase relations)

First checks on recent seismic models

Weber et al., Science 2011

What about sound velocities?

Phonon dispersion curves and elasticity

Sound velocity from initial slope of acoustic modes Elastic moduli C_{ij} from Christoffel equation $(C_{ijkl}n_jn_k-\rho v^2\delta_{il})u_j=0$

IXS on polycrystalline material

Lost of directional information \rightarrow Aggregate phonon dispersion

Within the framework of the Born-Von Karman lattice dynamics theory, limited to the nearest neighbor interaction

 $E= (2\hbar/\pi)V_PQ_{max} sin[(\pi/2)(Q/Q_{max})]$

Inelastic x-ray scattering (IXS) and x-ray diffraction (XRD) on bcc- and fcc-Fe up to 19 GPa and 1150 K

incident photon energy: 15.817 keV energy resolution: 5.5 meV momentum resolution: 0.25 nm⁻¹ beam size: 12x7 µm² (FWHM)

Phonon dispersions and sound velocities

IXS \rightarrow phonon dispersion $\rightarrow V_P$ XRD \rightarrow compression curve $\rightarrow K$ IXS+XRD $\rightarrow V_S = [3/4 (V_P^2 - K/\rho)]^{1/2}$

Sound velocities vs. density

Anharmonic effects at high temperature?

<u>~25% difference in V_{p} at constant density v.s.</u>

- max 5% reduction in V_{p} for 400 K difference in hcp phase (Z. Mao et al., PNAS 2011)
- max 3% reduction in V_P for 400 K difference in bcc phase (Liu et al., PEPI 2014)
- 7-8% reduction in V_p at constant P for 650 K difference in pre-melting region (Martorell et al., Science 2013)

Frequency-dependent visco-elastic effects?

<u>~25% difference in V_P at constant density v.s.</u>

- Moon's core a seismic quality factor Q of ~100 (Nakamura et al., Science 1973)
- frequency dependence α ~0.1-0.3 (Jackson et al., JGR 2000)

 \rightarrow expected reduction ~ 1-3%

Nickel and light elements?

Ni \rightarrow no effects on V_P at constant density Light element \rightarrow increase V_P at constant density

Towards a direct model of Moon's interior

The sound velocity proposed for the Moon's inner core is incompatible with that of pure solid iron or any plausible solid iron alloy

lunar seismic data, lunar moment of inertia

seismic reflector exists at ICB
liquid outer core

after Weber et al., Science 2011

Reanalysis of seismic results on the basis of mineral physics constraints

Fe-FeS phase diagram at 5 GPa

after Buono & Walker, CGA 2011

- Solid inner core: pure γ-Fe

- Liquid outer core: Fe-S (10-20 at% S)
 - ICB at ~5 GPa and ~1700-1900 K

Density and sound velocities in the outer core

Liquid Fe-S alloys at 1900 K

ρ: 6500-7000 kg/m³ V_P: 3600-4000 m/s

Density and sound velocities in the inner core

Solid y-Fe at 1100 K

A mineral physics reference model for the Moon's core

matching within 0.1% known values of lunar mass and moment of inertia

Sulphur content

mass balance \rightarrow 3-6 wt.% S in the Moon's core

Iunar core formation and metal/silicate partitioning of siderophile elements (Rai & van Westrenen, EPSL, 2014)) → up to 6 wt.% S

(long-lived, now extinct) lunar dynamo modeling (Laneuville et al., EPSL 2014) \rightarrow 6 to 8 wt.% S

A mineral physics reference model for the Moon's core

Outlooks

- Sound velocity measurements in solids at higher T
- Sound velocity measurements in liquid samples
 - Nishida et al., EPSL 2013, measurements on Fe-S(30 wt.%)
 - Jing et al., EPSL 2014, measurements on Fe-S (10, 20 and 27wt%)
- Refinement of core radius from tidal dissipation and Love numbers
- Independent constraints on core temperatures?

Extrapolation to telluric planetary cores up to Mars size

Mars core: γ -Fe at 42 GPa and 2500 K (ρ ~9100 Kg/m³) \rightarrow V_P ~7100 m/s; V_s ~3600-4400 m/s

InSight NASA Discovery mission (launch in March 2016)

Acknowledgment

Guillaume Morard, Guillaume Fiquet

Nicholas C. Schmerr

Tetsuya Komabayashi

Michael Krisch

Yingwei Fei

2

grant no. 2010-JCJC-604-01 grant no. ANR-12-BS04-0015-04

IXS particularly well suited for extreme conditions

Large variety of samples

Metals as well as semiconductors or insulators

Opaque as well as transparent materials

Single crystals, powders, liquid, glasses

Nickel and light elements?

Antonangeli et al., EPSL 2010 Kantor et al., PEPI 2007 Tsuchiya and Fujibuchi, PEPI 2009 Badro et al., EPSL 2007; Fiquet et al., PEPI 2009

Ni \rightarrow no effects on V_P at constant density Light element \rightarrow increase V_P at constant density

Density of liquids from g(r)

PHYSICAL REVIEW B, VOLUME 65, 174105

Quantitative structure factor and density measurements of high-pressure fluids in diamond anvil cells by x-ray diffraction: Argon and water

Jon H. Eggert, ^{1,2} Gunnar Weck, ¹ Paul Loubeyre, ¹ and Mohamed Mezouar³ ¹DIF/DPTA/SPMC, CEA, 91680 Bruyres-le-Châtel, France ²Lawrence Livermore National Laboratory, P.O. Box 808, Livermore, California 94550 ³European Synchrotron Radiation Facility, BP 220, 38043 Grenoble, France (Received 14 September 2001; published 22 April 2002)

$$\chi^{2}_{(n)}(\rho_{0},s) = \int_{0}^{r_{min}} [\Delta F_{(n)}(r)]^{2} dr$$

By adjusting the density ρ_0 and the scaling factor for the background signal s, a unique solution can be found.

Density and sound velocity for Fe-S liquid alloy

<u>Modelling:</u> 3rd order Birch Murnaghan equation of state EOS(K_{T0}, K')

<u>Approximations</u>: aK_T and $\gamma\rho$ constant as a function of pressure ($\gamma = aK_T/\rho C_V$)

 $V_{P} = [(1+\alpha\gamma T) K_{T} / \rho]^{1/2}$

<u>Assumptions:</u> constant C_v with S content linear dependence the evolution of $\delta \rho / \delta T$ with S content

P (GPa)	T (K)	ρ (Kg/m³)	phase	$V_P(m/s)$	$V_{S}(m/s)$
0	300	7875	bcc	5920±40	
2.5	800	7790	bcc	5900±40	
3.1	300	7975	bcc	6030±70	
3.3	1020	7700	bcc	5660±70	
7.3	800	8000	bcc	6120±70	
0	1150	7560	fcc	5220±70	2970±150
7	1000	8105	fcc	6080±70	3440±180
10	1100	8205	fcc	5920±60	3420±180
19	1100	8620	fcc	6590±70	3630±200

